
User Documentation for KINSOL v7.1.0
SUNDIALS v7.1.0

Alan C. Hindmarsh1, Radu Serban1, Cody J. Balos1,
David J. Gardner1, Daniel R. Reynolds2, and Carol S. Woodward1

1Center for Applied Scientific Computing, Lawrence Livermore National Laboratory
2Department of Mathematics, Southern Methodist University

June 20, 2024

UCRL-SM-208116

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States government. Neither
the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any
warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or useful-
ness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors ex-
pressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National
Security, LLC, and shall not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344.

Approved for public release; further dissemination unlimited

CONTRIBUTORS

The SUNDIALS library has been developed over many years by a number of contributors. The current SUNDIALS
team consists of Cody J. Balos, David J. Gardner, Alan C. Hindmarsh, Daniel R. Reynolds, and Carol S. Woodward.
We thank Radu Serban for significant and critical past contributions.

Other contributors to SUNDIALS include: James Almgren-Bell, Lawrence E. Banks, Peter N. Brown, George Byrne,
Rujeko Chinomona, Scott D. Cohen, Aaron Collier, Keith E. Grant, Steven L. Lee, Shelby L. Lockhart, John Loffeld,
Daniel McGreer, Yu Pan, Slaven Peles, Cosmin Petra, Steven B. Roberts, H. Hunter Schwartz, Jean M. Sexton, Dan
Shumaker, Steve G. Smith, Shahbaj Sohal, Allan G. Taylor, Hilari C. Tiedeman, Chris White, Ting Yan, and Ulrike M.
Yang.

Contents

1 Introduction 1
1.1 Historical Background . 1
1.2 Changes to SUNDIALS in release 7.1.0 . 2
1.3 Reading this User Guide . 4
1.4 SUNDIALS License and Notices . 5
1.5 Acknowledgments . 6

2 Mathematical Considerations 7
2.1 Basic Newton iteration . 7
2.2 Newton method variants . 8
2.3 Jacobian information update strategy . 8
2.4 Scaling . 9
2.5 Globalization strategy . 9
2.6 Nonlinear iteration stopping criteria . 10
2.7 Additional constraints . 10
2.8 Residual monitoring for Modified Newton method . 10
2.9 Stopping criteria for iterative linear solvers . 11
2.10 Difference quotient Jacobian approximations . 11
2.11 Basic Fixed Point iteration . 12
2.12 Anderson Acceleration . 12
2.13 Anderson Acceleration QR Factorization . 13
2.14 Fixed-point - Anderson Acceleration Stopping Criterion . 14
2.15 Picard - Anderson Acceleration Stopping Criterion . 14

3 Code Organization 15

4 Getting Started 17
4.1 Data Types . 18
4.2 The SUNContext Type . 20
4.3 Error Checking . 25
4.4 Status and Error Logging . 28
4.5 Performance Profiling . 32
4.6 Getting Version Information . 35
4.7 Fortran Interface . 36
4.8 Features for GPU Accelerated Computing . 45

5 Using KINSOL for the Solution of Nonlinear Systems 49
5.1 Access to library and header files . 49
5.2 A skeleton of the user’s main program . 50
5.3 User-callable functions . 52
5.4 User-supplied functions . 76
5.5 A parallel band-block-diagonal preconditioner module . 80
5.6 Alternative to KINSOL for difficult systems . 84

i

6 Vector Data Structures 85
6.1 Description of the NVECTOR Modules . 85
6.2 Description of the NVECTOR operations . 93
6.3 NVECTOR functions used by KINSOL . 106
6.4 The NVECTOR_SERIAL Module . 107
6.5 The NVECTOR_PARALLEL Module . 110
6.6 The NVECTOR_OPENMP Module . 114
6.7 The NVECTOR_PTHREADS Module . 117
6.8 The NVECTOR_PARHYP Module . 121
6.9 The NVECTOR_PETSC Module . 123
6.10 The NVECTOR_CUDA Module . 125
6.11 The NVECTOR_HIP Module . 130
6.12 The NVECTOR_SYCL Module . 135
6.13 The NVECTOR_RAJA Module . 140
6.14 The NVECTOR_KOKKOS Module . 143
6.15 The NVECTOR_OPENMPDEV Module . 146
6.16 The NVECTOR_TRILINOS Module . 149
6.17 The NVECTOR_MANYVECTOR Module . 150
6.18 The NVECTOR_MPIMANYVECTOR Module . 153
6.19 The NVECTOR_MPIPLUSX Module . 157
6.20 NVECTOR Examples . 158

7 Matrix Data Structures 163
7.1 Description of the SUNMATRIX Modules . 163
7.2 Description of the SUNMATRIX operations . 166
7.3 The SUNMATRIX_DENSE Module . 167
7.4 The SUNMATRIX_MAGMADENSE Module . 170
7.5 The SUNMATRIX_ONEMKLDENSE Module . 175
7.6 The SUNMATRIX_BAND Module . 179
7.7 The SUNMATRIX_CUSPARSE Module . 185
7.8 The SUNMATRIX_SPARSE Module . 188
7.9 The SUNMATRIX_SLUNRLOC Module . 194
7.10 The SUNMATRIX_GINKGO Module . 196
7.11 The SUNMATRIX_KOKKOSDENSE Module . 198
7.12 SUNMATRIX Examples . 201
7.13 SUNMatrix functions used by KINSOL . 202

8 Linear Algebraic Solvers 203
8.1 The SUNLinearSolver API . 204
8.2 KINSOL SUNLinearSolver interface . 217
8.3 The SUNLinSol_Band Module . 219
8.4 The SUNLinSol_Dense Module . 220
8.5 The SUNLinSol_KLU Module . 222
8.6 The SUNLinSol_LapackBand Module . 225
8.7 The SUNLinSol_LapackDense Module . 227
8.8 The SUNLinSol_MagmaDense Module . 229
8.9 The SUNLinSol_OneMklDense Module . 230
8.10 The SUNLinSol_PCG Module . 231
8.11 The SUNLinSol_SPBCGS Module . 235
8.12 The SUNLinSol_SPFGMR Module . 238
8.13 The SUNLinSol_SPGMR Module . 242
8.14 The SUNLinSol_SPTFQMR Module . 246
8.15 The SUNLinSol_SuperLUDIST Module . 249
8.16 The SUNLinSol_SuperLUMT Module . 253

ii

8.17 The SUNLinSol_cuSolverSp_batchQR Module . 255
8.18 The SUNLINEARSOLVER_GINKGO Module . 257
8.19 The SUNLINEARSOLVER_KOKKOSDENSE Module . 260
8.20 SUNLinearSolver Examples . 261

9 Tools for Memory Management 263
9.1 The SUNMemoryHelper API . 263
9.2 The SUNMemoryHelper_Cuda Implementation . 268
9.3 The SUNMemoryHelper_Hip Implementation . 270
9.4 The SUNMemoryHelper_Sycl Implementation . 272

10 Acquiring SUNDIALS 275

11 Building and Installing with CMake 277
11.1 Configuring, building, and installing on Unix-like systems . 277
11.2 Configuration options . 281
11.3 Configuration examples . 293
11.4 Working with external Libraries . 294
11.5 Testing the build and installation . 299
11.6 Building and Running Examples . 299
11.7 Configuring, building, and installing on Windows . 299
11.8 Installed libraries and exported header files . 300
11.9 Using SUNDIALS in your project . 300
11.10 Using SUNDIALS as a Third Party Library in other CMake Projects 301
11.11 Table of SUNDIALS libraries and header files . 302
11.12 Installing SUNDIALS on HPC Clusters . 305
11.13 Building with SUNDIALS Addons . 306

12 KINSOL Constants 307
12.1 KINSOL input constants . 307
12.2 KINSOL output constants . 308

13 Release History 311

14 Changelog 313
14.1 Changes to SUNDIALS in release 7.1.0 . 313
14.2 Changes to SUNDIALS in release 7.0.0 . 315
14.3 Changes to SUNDIALS in release 6.7.0 . 318
14.4 Changes to SUNDIALS in release 6.6.2 . 319
14.5 Changes to SUNDIALS in release 6.6.1 . 319
14.6 Changes to SUNDIALS in release 6.6.0 . 319
14.7 Changes to SUNDIALS in release 6.5.1 . 320
14.8 Changes to SUNDIALS in release 6.5.0 . 320
14.9 Changes to SUNDIALS in release 6.4.1 . 321
14.10 Changes to SUNDIALS in release 6.4.0 . 321
14.11 Changes to SUNDIALS in release 6.3.0 . 322
14.12 Changes to SUNDIALS in release 6.2.0 . 323
14.13 Changes to SUNDIALS in release 6.1.1 . 326
14.14 Changes to SUNDIALS in release 6.1.0 . 326
14.15 Changes to SUNDIALS in release 6.0.0 . 326
14.16 Changes to SUNDIALS in release 5.8.0 . 332
14.17 Changes to SUNDIALS in release 5.7.0 . 333
14.18 Changes to SUNDIALS in release 5.6.1 . 333
14.19 Changes to SUNDIALS in release 5.6.0 . 333
14.20 Changes to SUNDIALS in release 5.5.0 . 334

iii

14.21 Changes to SUNDIALS in release 5.4.0 . 334
14.22 Changes to SUNDIALS in release 5.3.0 . 336
14.23 Changes to SUNDIALS in release 5.2.0 . 337
14.24 Changes to SUNDIALS in release 5.1.0 . 338
14.25 Changes to SUNDIALS in release 5.0.0 . 339
14.26 Changes to SUNDIALS in release 4.1.0 . 342
14.27 Changes to SUNDIALS in release 4.0.2 . 343
14.28 Changes to SUNDIALS in release 4.0.1 . 343
14.29 Changes to SUNDIALS in release 4.0.0 . 343
14.30 Changes to SUNDIALS in release 3.2.1 . 346
14.31 Changes to SUNDIALS in release 3.2.0 . 346
14.32 Changes to SUNDIALS in release 3.1.2 . 347
14.33 Changes to SUNDIALS in release 3.1.1 . 347
14.34 Changes to SUNDIALS in release 3.1.0 . 348
14.35 Changes to SUNDIALS in release 3.0.0 . 348
14.36 Changes to SUNDIALS in release 2.7.0 . 350
14.37 Changes to SUNDIALS in release 2.6.2 . 352
14.38 Changes to SUNDIALS in release 2.6.1 . 352
14.39 Changes to SUNDIALS in release 2.6.0 . 353
14.40 Changes to SUNDIALS in release 2.5.0 . 354
14.41 Changes to SUNDIALS in release 2.4.0 . 355
14.42 Changes to SUNDIALS in release 2.3.0 . 356
14.43 Changes to SUNDIALS in release 2.2.0 . 356
14.44 Changes to SUNDIALS in release 2.1.1 . 357
14.45 Changes to SUNDIALS in release 2.1.0 . 357
14.46 Changes to SUNDIALS in release 2.0.2 . 357
14.47 Changes to SUNDIALS in release 2.0.1 . 357
14.48 Changes to SUNDIALS in release 2.0.0 . 358

Bibliography 359

Index 363

iv

Chapter 1

Introduction

KINSOL is part of a software family called SUNDIALS: SUite of Nonlinear and DIfferential/ALgebraic equation
Solvers [33]. This suite consists of CVODE, ARKODE, KINSOL, and IDA, and variants of these with sensitivity
analysis capabilities.

KINSOL is a general-purpose nonlinear system solver based on Newton-Krylov solver technology. A fixed point iter-
ation is also included with the release of KINSOL v.2.8.0 and higher.

1.1 Historical Background

The first nonlinear solver packages based on Newton-Krylov methods were written in Fortran. In particular, the NKSOL
package, written at LLNL, was the first Newton-Krylov solver package written for solution of systems arising in the
solution of partial differential equations [17]. This Fortran code made use of Newton’s method to solve the discrete
nonlinear systems and applied a preconditioned Krylov linear solver for solution of the Jacobian system at each non-
linear iteration. The key to the Newton-Krylov method was that the matrix-vector multiplies required by the Krylov
method could effectively be approximated by a finite difference of the nonlinear system-defining function, avoiding a
requirement for the formation of the actual Jacobian matrix. Significantly less memory was required for the solver as
a result.

In the late 1990s, there was a push at LLNL to rewrite the nonlinear solver in C and port it to distributed memory
parallel machines. Both Newton and Krylov methods are easily implemented in parallel, and this effort gave rise to the
KINSOL package. KINSOL is similar to NKSOL in functionality, except that it provides for more options in the choice
of linear system methods and tolerances, and has a more modular design to provide flexibility for future enhancements.

At present, KINSOL may utilize a variety of Krylov methods provided in SUNDIALS. These methods include the GM-
RES (Generalized Minimal RESidual) [46], FGMRES (Flexible Generalized Minimum RESidual) [45], Bi-CGStab
(Bi-Conjugate Gradient Stabilized) [51], TFQMR (Transpose-Free Quasi-Minimal Residual) [28], and PCG (Precon-
ditioned Conjugate Gradient) [32] linear iterative methods. As Krylov methods, these require little matrix storage
for solving the Newton equations as compared to direct methods. However, the algorithms allow for a user-supplied
preconditioner, and, for most problems, preconditioning is essential for an efficient solution. For very large nonlinear
algebraic systems, the Krylov methods are preferable over direct linear solver methods, and are often the only feasible
choice. Among the Krylov methods in SUNDIALS, we recommend GMRES as the best overall choice. However, users
are encouraged to compare all options, especially if encountering convergence failures with GMRES. Bi-CGStab and
TFQMR have an advantage in storage requirements, in that the number of workspace vectors they require is fixed, while
that number for GMRES depends on the desired Krylov subspace size. FGMRES has an advantage in that it is designed
to support preconditioners that vary between iterations (e.g., iterative methods). PCG exhibits rapid convergence and
minimal workspace vectors, but only works for symmetric linear systems.

1

User Documentation for KINSOL, v7.1.0

For the sake of completeness in functionality, direct linear system solvers are included in KINSOL. These include
methods for both dense and banded linear systems, with Jacobians that are either user-supplied or generated internally
by difference quotients. KINSOL also includes interfaces to sparse direct solvers, including KLU [4, 20] and the
threaded sparse direct solver, SuperLU_MT [9, 22, 40], among others (see Chapter §8 for further details).

In the process of translating NKSOL into C, the overall KINSOL organization has been changed considerably. One key
feature of the KINSOL organization is that a separate module devoted to vector operations was created. This module
facilitated extension to multiprosessor environments with minimal impact on the rest of the solver. The vector module
design is shared across the SUNDIALS suite. This N_Vector module is written in terms of abstract vector operations
with the actual routines attached by a particular implementation (such as serial or parallel) of N_Vector. This abstrac-
tion allows writing the SUNDIALS solvers in a manner independent of the actual N_Vector implementation (which
can be user-supplied), as well as allowing more than one N_Vectormodule linked into an executable file. SUNDIALS
(and thus KINSOL) is supplied with serial, MPI-parallel, OpenMP and Pthreads thread-parallel N_Vector implemen-
tations, as well as multiple N_Vector implementations designed to leverage GPU architectures (see Chapter §6 for
further details).

There are several motivations for choosing the C language for KINSOL. First, a general movement away from Fortran
and toward C in scientific computing was apparent. Second, the pointer, structure, and dynamic memory allocation
features in C are extremely useful in software of this complexity, with the great variety of method options offered.
Finally, we prefer C over C++ for KINSOL because of the wider availability of C compilers, the potentially greater
efficiency of C, and the greater ease of interfacing the solver to applications written in Fortran.

1.2 Changes to SUNDIALS in release 7.1.0

Major Features

Created shared user interface functions for ARKODE to allow more uniform control over time-stepping algorithms,
improved extensibility, and simplified code maintenance. The corresponding stepper-specific user-callable functions
are now deprecated and will be removed in a future major release.

Added CMake infrastructure that enables externally maintained addons/plugins to be optionally built with SUNDIALS.
See Contributing for details.

New Features and Enhancements

Added support for Kokkos Kernels v4.

Added the following Runge-Kutta Butcher tables

• ARKODE_FORWARD_EULER_1_1

• ARKODE_RALSTON_EULER_2_1_2

• ARKODE_EXPLICIT_MIDPOINT_EULER_2_1_2

• ARKODE_BACKWARD_EULER_1_1

• ARKODE_IMPLICIT_MIDPOINT_1_2

• ARKODE_IMPLICIT_TRAPEZOIDAL_2_2

Added the following MRI coupling tables

• ARKODE_MRI_GARK_FORWARD_EULER

• ARKODE_MRI_GARK_RALSTON2

• ARKODE_MRI_GARK_RALSTON3

• ARKODE_MRI_GARK_BACKWARD_EULER

• ARKODE_MRI_GARK_IMPLICIT_MIDPOINT

2 Chapter 1. Introduction

https://sundials.readthedocs.io/en/v7.1.0/contributing/index.html#contributing

User Documentation for KINSOL, v7.1.0

• ARKODE_IMEX_MRI_GARK_EULER

• ARKODE_IMEX_MRI_GARK_TRAPEZOIDAL

• ARKODE_IMEX_MRI_GARK_MIDPOINT

Added ARKodeButcherTable_ERKIDToName() and ARKodeButcherTable_DIRKIDToName() to convert a Butcher
table ID to a string representation.

Added the function ARKodeSetAutonomous() in ARKODE to indicate that the implicit right-hand side function does
not explicitly depend on time. When using the trivial predictor, an autonomous problem may reuse implicit function
evaluations across stage solves to reduce the total number of function evaluations.

Users may now disable interpolated output in ARKODE by passing ARK_INTERP_NONE to ARKodeSetInterpolant-
Type(). When interpolation is disabled, rootfinding is not supported, implicit methods must use the trivial predictor
(the default option), and interpolation at stop times cannot be used (interpolating at stop times is disabled by default).
With interpolation disabled, calling ARKodeEvolve() in ARK_NORMALmode will return at or past the requested output
time (setting a stop time may still be used to halt the integrator at a specific time). Disabling interpolation will reduce
the memory footprint of an integrator by two or more state vectors (depending on the interpolant type and degree) which
can be beneficial when interpolation is not needed e.g., when integrating to a final time without output in between or
using an explicit fast time scale integrator with an MRI method.

Added “Resize” capability to ARKODE’s SPRKStep time-stepping module.

Enabled the Fortran interfaces to build with 32-bit sunindextype.

Bug Fixes

Updated the CMake variable HIP_PLATFORM default to amd as the previous default, hcc, is no longer recognized in
ROCm 5.7.0 or newer. The new default is also valid in older version of ROCm (at least back to version 4.3.1).

Renamed the DPCPP value for the SUNDIALS_GINKGO_BACKENDS CMake option to SYCL to match Ginkgo’s updated
naming convention.

Changed the CMake version compatibility mode for SUNDIALS to AnyNewerVersion instead of SameMajorVer-
sion. This fixes the issue seen here.

Fixed a CMake bug that caused an MPI linking error for our C++ examples in some instances. Fixes GitHub Issue
#464.

Fixed the runtime library installation path for windows systems. This fix changes the default library installation path
from CMAKE_INSTALL_PREFIX/CMAKE_INSTALL_LIBDIR to CMAKE_INSTALL_PREFIX/CMAKE_INSTALL_BINDIR.

Fixed conflicting .lib files between shared and static libs when using MSVC on Windows

Fixed invalid SUNDIALS_EXPORT generated macro when building both shared and static libs.

Fixed a bug in some Fortran examples where c_null_ptr was passed as an argument to a function pointer instead of
c_null_funptr. This caused compilation issues with the Cray Fortran compiler.

Fixed a bug in the HIP execution policies where WARP_SIZE would not be set with ROCm 6.0.0 or newer.

Fixed a bug that caused error messages to be cut off in some cases. Fixes GitHub Issue #461.

Fixed a memory leak when an error handler was added to a SUNContext. Fixes GitHub Issue #466.

Fixed a bug where MRIStepEvolve() would not handle a recoverable error produced from evolving the inner stepper.

Added missing SetRootDirection and SetNoInactiveRootWarn functions to ARKODE’s SPRKStep time-
stepping module.

Fixed a bug in ARKodeSPRKTable_Create() where the coefficient arrays were not allocated.

Fix bug on LLP64 platforms (like Windows 64-bit) where KLU_INDEXTYPE could be 32 bits wide even if SUNDIALS_-
INT64_T is defined.

1.2. Changes to SUNDIALS in release 7.1.0 3

https://sundials.readthedocs.io/en/v7.1.0/arkode/ARKodeButcherTable_link.html#c.ARKodeButcherTable_ERKIDToName
https://sundials.readthedocs.io/en/v7.1.0/arkode/ARKodeButcherTable_link.html#c.ARKodeButcherTable_DIRKIDToName
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/User_callable.html#c.ARKodeSetAutonomous
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/User_callable.html#c.ARKodeSetInterpolantType
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/User_callable.html#c.ARKodeSetInterpolantType
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/User_callable.html#c.ARKodeEvolve
https://github.com/AMReX-Codes/amrex/pull/3835
https://github.com/LLNL/sundials/issues/464
https://github.com/LLNL/sundials/issues/464
https://github.com/LLNL/sundials/issues/461
https://github.com/LLNL/sundials/issues/466
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/MRIStep/User_callable.html#c.MRIStepEvolve
https://sundials.readthedocs.io/en/v7.1.0/arkode/ARKodeSPRKTable_link.html#c.ARKodeSPRKTable_Create

User Documentation for KINSOL, v7.1.0

Check if size of SuiteSparse_long is 8 if the size of sunindextype is 8 when using KLU.

Fixed several build errors with the Fortran interfaces on Windows systems.

Deprecation Notices

Numerous ARKODE stepper-specific functions are now deprecated in favor of ARKODE-wide functions.

Deprecated the ARKStepSetOptimalParams function. Since this function does not have an ARKODE-wide equivalent,
instructions have been added to the user guide for how to retain the current functionality using other user-callable
functions.

The unsupported implementations of N_VGetArrayPointer and N_VSetArrayPointer for the hypre and PETSc
vectors are now deprecated. Users should access the underlying wrapped external library vector objects instead with
N_VGetVector_ParHyp and N_VGetVector_Petsc, respectively.

For changes in prior versions of SUNDIALS see §14.

1.3 Reading this User Guide

This user guide is a combination of general usage instructions and specific examples. We expect that some readers will
want to concentrate on the general instructions, while others will refer mostly to the examples, and the organization is
intended to accommodate both styles.

There are different possible levels of usage of KINSOL. The most casual user, with a small nonlinear system, can get by
with reading all of Chapter §2, then Chapter :numref:KINSOL.Usage.CC through §5 only, and looking at examples in
[19]. In a different direction, a more expert user with a nonlinear system may want to (a) use a package preconditioner
(§5.5), (b) supply his/her own Jacobian or preconditioner routines (§5.4), (c) supply a new N_Vectormodule (Chapter
§6), or even (d) supply a different linear solver module (§5.3.2 and Chapter §8).

The structure of this document is as follows:

• In Chapter §2, we provide short descriptions of the numerical methods implemented by KINSOL for the solution
of nonlinear systems.

• The following chapter describes the software organization of the KINSOL solver (§3).

• Chapter :numref:KINSOL.Usage.CC is the main usage document for KINSOL for C applications. It includes a
complete description of the user interface for the solution of nonlinear algebraic systems.

• Chapter §6 gives a brief overview of the generic N_Vector module shared among the various components of
SUNDIALS, and details on the four N_Vector implementations provided with SUNDIALS.

• Chapter §7 gives a brief overview of the generic SUNMatrix module shared among the various components of
SUNDIALS, and details on the SUNMatrix implementations provided with SUNDIALS.

• Chapter §8 gives a brief overview of the generic SUNLinearSolver module shared among the various compo-
nents of SUNDIALS. This chapter contains details on the SUNLinearSolver implementations provided with
SUNDIALS. The chapter also contains details on the SUNLinearSolver implementations provided with SUN-
DIALS that interface with external linear solver libraries.

• Finally, in the appendices, we provide detailed instructions for the installation of KINSOL, within the structure
of SUNDIALS (Appendix §10), as well as a list of all the constants used for input to and output from KINSOL
functions (Appendix §12).

Finally, the reader should be aware of the following notational conventions in this user guide: program listings and
identifiers (such as KINInit) within textual explanations appear in typewriter type style; fields in C structures (such as
content) appear in italics; and packages or modules are written in all capitals. Usage and

4 Chapter 1. Introduction

User Documentation for KINSOL, v7.1.0

1.4 SUNDIALS License and Notices

All SUNDIALS packages are released open source, under the BSD 3-Clause license. The only requirements of the
license are preservation of copyright and a standard disclaimer of liability. The full text of the license and an additional
notice are provided below and may also be found in the LICENSE and NOTICE files provided with all SUNDIALS
packages.

Note: If you are using SUNDIALS with any third party libraries linked in (e.g., LAPACK, KLU, SuperLU_MT,
PETSc, or hypre), be sure to review the respective license of the package as that license may have more restrictive terms
than the SUNDIALS license. For example, if someone builds SUNDIALS with a statically linked KLU, the build is
subject to terms of the more-restrictive LGPL license (which is what KLU is released with) and not the SUNDIALS
BSD license anymore.

1.4.1 BSD 3-Clause License

Copyright (c) 2002-2024, Lawrence Livermore National Security and Southern Methodist University.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ‘’AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1.4.2 Additional Notice

This work was produced under the auspices of the U.S. Department of Energy by Lawrence Livermore National Lab-
oratory under Contract DE-AC52-07NA27344.

This work was prepared as an account of work sponsored by an agency of the United States Government. Neither
the United States Government nor Lawrence Livermore National Security, LLC, nor any of their employees makes
any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights.

1.4. SUNDIALS License and Notices 5

User Documentation for KINSOL, v7.1.0

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or Lawrence Livermore National Security, LLC.

The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Gov-
ernment or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement
purposes.

1.4.3 SUNDIALS Release Numbers

LLNL-CODE-667205 (ARKODE)

UCRL-CODE-155951 (CVODE)

UCRL-CODE-155950 (CVODES)

UCRL-CODE-155952 (IDA)

UCRL-CODE-237203 (IDAS)

LLNL-CODE-665877 (KINSOL)

1.5 Acknowledgments

We wish to acknowledge the contributions to previous versions of the KINSOL code and user guide by Allan G. Taylor.

6 Chapter 1. Introduction

Chapter 2

Mathematical Considerations

KINSOL solves nonlinear algebraic systems in real N -space.

Using Newton’s method, or the Picard iteration, one can solve

F (u) = 0 , F : RN → RN , (2.1)

given an initial guess u0. Using a fixed-point iteration, the convergence of which can be improved with Anderson
acceleration, one can solve

G(u) = u , G : RN → RN , (2.2)

given an initial guess u0.

2.1 Basic Newton iteration

Depending on the linear solver used, KINSOL can employ either an Inexact Newton method [15, 17, 21, 23, 36], or a
Modified Newton method. At the highest level, KINSOL implements the following iteration scheme:

1. Set u0 = an initial guess

2. For n = 0, 1, 2, ... until convergence do:

a. Solve J(un)δn = −F (un)

b. Set un+1 = un + λδn, 0 < λ ≤ 1

c. Test for convergence

Here, un is the nth iterate to u, and J(u) = F ′(u) is the system Jacobian. At each stage in the iteration process, a
scalar multiple of the step δn, is added to un to produce a new iterate, un+1. A test for convergence is made before the
iteration continues.

7

User Documentation for KINSOL, v7.1.0

2.2 Newton method variants

For solving the linear system given in step (2a), KINSOL provides several choices, including the option of a user-
supplied linear solver module. The linear solver modules distributed with SUNDIALS are organized in two families,
a direct family comprising direct linear solvers for dense, banded, or sparse matrices and a spils family comprising
scaled preconditioned iterative (Krylov) linear solvers. The methods offered through these modules are as follows:

• dense direct solvers, using either an internal implementation or a BLAS/LAPACK implementation (serial or
threaded vector modules only),

• band direct solvers, using either an internal implementation or a BLAS/LAPACK implementation (serial or
threaded vector modules only),

• sparse direct solver interfaces to various libraries, including KLU [4, 20], SuperLU_MT [9, 22, 40], SuperLU_-
Dist [8, 30, 41, 42], and cuSPARSE [7] [Note that users will need to download and install the relevant external
packages independent of KINSOL],

• SPGMR, a scaled preconditioned GMRES (Generalized Minimal Residual method) solver,

• SPFGMR, a scaled preconditioned FGMRES (Flexible Generalized Minimal Residual method) solver,

• SPBCG, a scaled preconditioned Bi-CGStab (Bi-Conjugate Gradient Stable method) solver,

• SPTFQMR, a scaled preconditioned TFQMR (Transpose-Free Quasi-Minimal Residual method) solver, or

• PCG, a scaled preconditioned CG (Conjugate Gradient method) solver.

When using a direct linear solver, the linear system in 2a is solved exactly, thus resulting in a Modified Newton method
(the Jacobian matrix is normally out of date; see below). Note that KINSOL allows the user to enforce a Jacobian
evaluation at each iteration thus allowing for an Exact Newton iteration. Note that each direct linear solver is only
compatible with a subset of vector representations (see §8.1.7 for details).

When using an iterative linear solver, the linear system in (2a) is solved only approximately, thus resulting in an Inexact
Newton method. Here right preconditioning is available by way of the preconditioning setup and solve routines supplied
by the user, in which case the iterative method is applied to the linear systems (JP−1)(Pδ) = −F , where P denotes
the right preconditioning matrix.

Additionally, it is possible for users to supply a matrix-based iterative linear solver to KINSOL, resulting in a Modified
Inexact Newton method. As with the direct linear solvers, the Jacobian matrix is updated infrequently; similarly as with
iterative linear solvers the linear system is solved only approximately.

2.3 Jacobian information update strategy

In general, unless specified otherwise by the user, KINSOL strives to update Jacobian information (the actual system
Jacobian J in the case of matrix-based linear solvers, and the preconditioner matrix P in the case of iterative linear
solvers) as infrequently as possible to balance the high costs of matrix operations against other costs. Specifically, these
updates occur when:

• the problem is initialized,

• ‖λδn−1‖Du,∞ > 1.5 (Inexact Newton only),

• mbset= 10 nonlinear iterations have passed since the last update,

• the linear solver failed recoverably with outdated Jacobian information,

• the global strategy failed with outdated Jacobian information, or

• ‖λδn‖Du,∞ < steptol with outdated Jacobian or preconditioner information,

8 Chapter 2. Mathematical Considerations

User Documentation for KINSOL, v7.1.0

where the norm ‖ · ‖Du,∞ is defined below in (2.3).

KINSOL allows, through optional solver inputs, changes to the above strategy. Indeed, the user can disable the initial
Jacobian information evaluation or change the default value of mbset, the number of nonlinear iterations after which
a Jacobian information update is enforced.

2.4 Scaling

To address the case of ill-conditioned nonlinear systems, KINSOL allows users to prescribe scaling factors both for
the solution vector and for the residual vector. For scaling to be used, the user should supply values Du, which are
diagonal elements of the scaling matrix such that Duun has all components roughly the same magnitude when un is
close to a solution, and DF , which are diagonal scaling matrix elements such that DFF has all components roughly
the same magnitude when un is not too close to a solution. Based on these scaling matrices, we define the following
scaled norms:

‖z‖Du
= ‖Duz‖2, ‖z‖DF

= ‖DF z‖2, ‖z‖Du,∞ = ‖Duz‖∞, and ‖z‖DF ,∞ = ‖DF z‖∞ (2.3)

where ‖ · ‖∞ is the max norm. When scaling values are provided for the solution vector, these values are automati-
cally incorporated into the calculation of the perturbations used for the default difference quotient approximations for
Jacobian information; see (2.6) and (2.8) below.

2.5 Globalization strategy

Two methods of applying a computed step δn to the previously computed solution vector are implemented. The first
and simplest is the standard Newton strategy which applies step 2(b) as above with λ always set to 1. The other
method is a global strategy, which attempts to use the direction implied by δn in the most efficient way for furthering
convergence of the nonlinear problem. This technique is implemented in the second strategy, called Linesearch. This
option employs both the α and β conditions of the Goldstein-Armijo linesearch given in [23] for step 2(b), where λ is
chosen to guarantee a sufficient decrease in F relative to the step length as well as a minimum step length relative to
the initial rate of decrease of F . One property of the algorithm is that the full Newton step tends to be taken close to
the solution.

KINSOL implements a backtracking algorithm to first find a value λ such that un+λδn satisfies the sufficient decrease
condition (or α-condition)

F (un + λδn) ≤ F (un) + α∇F (un)Tλδn ,

where α = 10−4. Although backtracking in itself guarantees that the step is not too small, KINSOL secondly relaxes
λ to satisfy the so-called β-condition (equivalent to Wolfe’s curvature condition):

F (un + λδn) ≥ F (un) + β∇F (un)Tλδn ,

where β = 0.9. During this second phase, λ is allowed to vary in the interval [λmin, λmax] where

λmin =
steptol

‖δ̄n‖∞
, δ̄jn =

δjn

1/Dj
u + |uj |

,

and λmax corresponds to the maximum feasible step size at the current iteration (typically λmax = stepmax/‖δn‖Du).
In the above expressions, vj denotes the jth component of a vector v.

For more details, the reader is referred to [23].

2.4. Scaling 9

User Documentation for KINSOL, v7.1.0

2.6 Nonlinear iteration stopping criteria

Stopping criteria for the Newton method are applied to both of the nonlinear residual and the step length. For the
former, the Newton iteration must pass a stopping test

‖F (un)‖DF ,∞ < ftol ,

where ftol is an input scalar tolerance with a default value of U1/3. Here U is the machine unit roundoff. For the latter,
the Newton method will terminate when the maximum scaled step is below a given tolerance

‖λδn‖Du,∞ < steptol ,

where steptol is an input scalar tolerance with a default value of U2/3. Only the first condition (small residual) is
considered a successful completion of KINSOL. The second condition (small step) may indicate that the iteration is
stalled near a point for which the residual is still unacceptable.

2.7 Additional constraints

As a user option, KINSOL permits the application of inequality constraints, ui > 0 and ui < 0, as well as ui ≥ 0 and
ui ≤ 0, where ui is the ith component of u. Any such constraint, or no constraint, may be imposed on each component.
KINSOL will reduce step lengths in order to ensure that no constraint is violated. Specifically, if a new Newton iterate
will violate a constraint, the maximum step length along the Newton direction that will satisfy all constraints is found,
and δn in Step 2(b) is scaled to take a step of that length.

2.8 Residual monitoring for Modified Newton method

When using a matrix-based linear solver, in addition to the strategy described above for the update of the Jacobian
matrix, KINSOL also provides an optional nonlinear residual monitoring scheme to control when the system Jacobian
is updated. Specifically, a Jacobian update will also occur when mbsetsub=5 nonlinear iterations have passed since
the last update and

‖F (un)‖DF
> ω‖F (um)‖DF

,

where un is the current iterate and um is the iterate at the last Jacobian update. The scalar ω is given by

ω = min
(
ωmin e

max(0,ρ−1), ωmax

)
, (2.4)

with ρ defined as

ρ =
‖F (un)‖DF

ftol
,

where ftol is the input scalar tolerance discussed before. Optionally, a constant value ωconst can be used for the param-
eter ω.

The constants controlling the nonlinear residual monitoring algorithm can be changed from their default values through
optional inputs to KINSOL. These include the parameters ωmin and ωmax, the constant value ωconst, and the threshold
mbsetsub.

10 Chapter 2. Mathematical Considerations

User Documentation for KINSOL, v7.1.0

2.9 Stopping criteria for iterative linear solvers

When using an Inexact Newton method (i.e. when an iterative linear solver is used), the convergence of the overall
nonlinear solver is intimately coupled with the accuracy with which the linear solver in 2(a) above is solved. KINSOL
provides three options for stopping criteria for the linear system solver, including the two algorithms of Eisenstat and
Walker [26]. More precisely, the Krylov iteration must pass a stopping test

‖Jδn + F‖DF
< (ηn + U)‖F‖DF

,

where ηn is one of:

Eisenstat and Walker Choice 1

ηn =
| ‖F (un)‖DF

− ‖F (un−1) + J(un−1)δn‖DF
|

‖F (un−1)‖DF

,

Eisenstat and Walker Choice 2

ηn = γ

(
‖F (un)‖DF

‖F (un−1)‖DF

)α
,

where default values of γ and α are 0.9 and 2, respectively.

Constant η

ηn = constant,

with 0.1 as the default.

The default strategy is “Eisenstat and Walker Choice 1”. For both options 1 and 2, appropriate safeguards are incorpo-
rated to ensure that η does not decrease too quickly [26].

2.10 Difference quotient Jacobian approximations

With the SUNMATRIX_DENSE and SUNMATRIX_BAND matrix modules, the Jacobian may be supplied by a user
routine, or approximated by difference quotients, at the user’s option. In the latter case, we use the usual approximation

J ij = [F i(u+ σje
j)− F i(u)]/σj . (2.5)

The increments σj are given by

σj =
√
U max

{
|uj |, 1/Dj

u

}
. (2.6)

In the dense case, this scheme requires N evaluations of F , one for each column of J . In the band case, the columns
of J are computed in groups, by the Curtis-Powell-Reid algorithm, with the number of F evaluations equal to the
bandwidth. The parameter U above can (optionally) be replaced by a user-specified value, relfunc.

We note that with sparse and user-supplied matrix-based linear solvers, the Jacobian must be supplied by a user routine,
i.e. it is not approximated internally within KINSOL.

In the case of a matrix-free iterative linear solver, Jacobian information is needed only as matrix-vector products Jv.
If a routine for Jv is not supplied, these products are approximated by directional difference quotients as

J(u)v ≈ [F (u+ σv)− F (u)]/σ , (2.7)

2.9. Stopping criteria for iterative linear solvers 11

User Documentation for KINSOL, v7.1.0

where u is the current approximation to a root of (2.1), and σ is a scalar. The choice of σ is taken from [17] and is
given by

σ =
max{|uT v|, uTtyp|v|}

‖v‖22
sign(uT v)

√
U , (2.8)

where utyp is a vector of typical values for the absolute values of the solution (and can be taken to be inverses of the
scale factors given for u as described below). This formula is suitable for scaled vectors u and v, and so is applied to
Duu and Duv. The parameter U above can (optionally) be replaced by a user-specified value, relfunc. Convergence
of the Newton method is maintained as long as the value of σ remains appropriately small, as shown in [15].

2.11 Basic Fixed Point iteration

The basic fixed-point iteration scheme implemented in KINSOL is given by:

1. Set u0 = an initial guess

2. For n = 0, 1, 2, ... until convergence do:

• Set un+1 = (1− β)un + βG(un).

• Test for convergence.

Here, un is the n-th iterate to u. At each stage in the iteration process, the function G is applied to the current iterate
with the damping parameter β to produce a new iterate, un+1. A test for convergence is made before the iteration
continues.

For Picard iteration, as implemented in KINSOL, we consider a special form of the nonlinear function F , such that
F (u) = Lu − N(u), where L is a constant nonsingular matrix and N is (in general) nonlinear. Then the fixed-point
function G is defined as G(u) = u− L−1F (u). The Picard iteration is given by:

1. Set u0 = an initial guess

2. For n = 0, 1, 2, ... until convergence do:

• Set un+1 = (1− β)un + βG(un) where G(un) ≡ un − L−1F (un).

• Test F (un+1) for convergence.

Here, un is the n-th iterate to u. Within each iteration, the Picard step is computed then added to un with the damping
parameter β to produce the new iterate. Next, the nonlinear residual function is evaluated at the new iterate, and
convergence is checked. Noting that L−1N(u) = u − L−1F (u), the above iteration can be written in the same form
as a Newton iteration except that here, L is in the role of the Jacobian. Within KINSOL, however, we leave this in a
fixed-point form as above. For more information, see page 182 of [44].

2.12 Anderson Acceleration

The Picard and fixed point methods can be significantly accelerated using Anderson’s method [11, 27, 43, 52]. Ander-
son acceleration can be formulated as follows:

1. Set u0 = an initial guess and m ≥ 1

2. Set u1 = G(u0)

3. For n = 1, 2, ... until convergence do:

a. Set mn = min{m,n}

b. Set Fn = (fn−mn
, . . . , fn), where fi = G(ui)− ui

12 Chapter 2. Mathematical Considerations

User Documentation for KINSOL, v7.1.0

c. Determine α(n) = (α
(n)
0 , . . . , α

(n)
mn) that solves min

α
‖FnαT ‖2 such that

mn∑
i=0

αi = 1

d. Set un+1 = β

mn∑
i=0

α
(n)
i G(un−mn+i) + (1− β)

mn∑
i=0

α
(n)
i un−mn+i

e. Test for convergence

It has been implemented in KINSOL by turning the constrained linear least-squares problem in step 3c into an uncon-
strained one leading to the algorithm given below:

1. Set u0 = an initial guess and m ≥ 1

2. Set u1 = G(u0)

3. For n = 1, 2, ... until convergence do:

a. Set mn = min{m,n}

b. Set ∆Fn = (∆fn−mn , . . . ,∆fn−1), where ∆fi = fi+1 − fi and fi = G(ui)− ui

c. Determine γ(n) = (γ
(n)
0 , . . . , γ

(n)
mn−1) that solves min

γ
‖fn −∆Fnγ

T ‖2

d. Set un+1 = G(un) −
mn−1∑
i=0

γ
(n)
i ∆gn−mn+i − (1 − β)(f(un) −

mn−1∑
i=0

γ
(n)
i ∆fn−mn+i) with ∆gi =

G(ui+1)−G(ui)

e. Test for convergence

The least-squares problem in 3c is solved by applying a QR factorization to ∆Fn = QnRn and solvingRnγ = QTnfn.
By default the damping is disabled i.e., β = 1.0.

The Anderson acceleration implementation includes an option to delay the start of acceleration until after a given
number of initial fixed-point or Picard iterations have been completed. This delay can be beneficial when the underlying
method has strong global convergence properties as the initial iterations may help bring the iterates closer to a solution
before starting the acceleration.

2.13 Anderson Acceleration QR Factorization

The default QR factorization routine used in Anderson acceleration is Modified Gram-Schmidt, a stable orthogonaliza-
tion routine that requires an increasing number of synchronizations per iteration dependent upon the number of vectors
being orthgonalized against. While practical use of Anderson acceleration only requires a small number of vectors to be
used in the QR factorization, this linearly scaling number of synchronizations per iteration can yield poor performance
when Anderson acceleration is performed in a parallel setting. To combat this poor performance, low synchronization
QR routines are available to the user, in particular: Inverse Compact WY Modified Gram-Schmidt [10], along with
variants of Classical Gram-Schmidt with Reorthogonalization [31]. While all of these QR factorization routines are
mathematically equivalent, they do not exhibit the same stability when performed with floating point arithmetic or in
a parallel setting.

Inverse Compact WY Modified Gram-Schmidt, which is based on triangular solve variants of Gram-Schmidt that were
developed within the context of GMRES, is an option that only requires two synchronizations per iteration. Addition-
ally, it adds a lower triangular solve at every iteration, but this generally does not affect performance due to the system
solve being small i.e., the number of vectors being orthgonalized against.

The remaining orthogonalization options are based on and include Classical Gram-Schmidt with Reorthogonalization
(CGS-2). CGS-2 only requires three synchronizations per iteration, but does not exhibit the same stability as Modified
Gram-Schmidt. Classical Gram-Schmidt with Delayed Reorthogolonization has the same stability as CGS-2, but it
reduces the number of synchronizations per iteration to two.

2.13. Anderson Acceleration QR Factorization 13

User Documentation for KINSOL, v7.1.0

2.14 Fixed-point - Anderson Acceleration Stopping Criterion

The default stopping criterion is

‖un+1 − un‖DF ,∞ < gtol ,

whereDF is a user-defined diagonal matrix that can be the identity or a scaling matrix chosen so that the components of
DF (G(u)− u) have roughly the same order of magnitude. Note that when using Anderson acceleration, convergence
is checked after the acceleration is applied.

2.15 Picard - Anderson Acceleration Stopping Criterion

The default stopping criterion is

‖F (un+1)‖DF ,∞ < ftol ,

where DF is a user-defined diagonal matrix that can be the identity or a scaling matrix chosen so that the components
of DFF (u) have roughly the same order of magnitude. Note that when using Anderson acceleration, convergence is
checked after the acceleration is applied.

14 Chapter 2. Mathematical Considerations

Chapter 3

Code Organization

The KINSOL package is written in ANSI C. The following summarizes the basic structure of the package, although
knowledge of this structure is not necessary for its use.

Fig. 3.1: Overall structure diagram of the KINSOL package. Components specific to KINSOL begin with “KIN-
SOL” (KINLS and KINSOLBBDPRE), all other items correspond to generic SUNDIALS vector, matrix, and solver
interfaces.

The overall organization of the KINSOL package is shown in Fig. 3.1. KINSOL utilizes generic linear solvers defined
by the SUNLinearSolver (see §8). As such, KINSOL has no knowledge of the method being used to solve the linear
and nonlinear systems that arise. For any given user problem, there exists a single nonlinear solver interface and, if
necessary, one of the linear system solver interfaces is specified, and invoked as needed during the integration.

KINSOL has a single unified linear solver interface, KINSOLLS, supporting both direct and iterative linear solvers built
using the generic SUNLinearSolver interface (see §8). These solvers may utilize a SUNMatrix object (see §7) for
storing Jacobian information, or they may be matrix-free. Since KINSOL can operate on any valid SUNLinearSolver,
the set of linear solver modules available to KINSOL will expand as new SUNLinearSolver implementations are
developed.

For users employing SUNMATRIX_DENSE or SUNMATRIX_BAND Jacobian matrices, KINSOL includes algorithms

15

User Documentation for KINSOL, v7.1.0

for their approximation through difference quotients, although the user also has the option of supplying a routine to
compute the Jacobian (or an approximation to it) directly. This user-supplied routine is required when using sparse or
user-supplied Jacobian matrices.

For users employing matrix-free iterative linear solvers, KINSOL includes an algorithm for the approximation by dif-
ference quotients of the product Jv. Again, the user has the option of providing routines for this operation, in two
phases: setup (preprocessing of Jacobian data) and multiplication.

For preconditioned iterative methods, the preconditioning must be supplied by the user, again in two phases: setup and
solve. While there is no default choice of preconditioner analogous to the difference-quotient approximation in the
direct case, the references [16, 18], together with the example and demonstration programs included with KINSOL,
offer considerable assistance in building preconditioners.

KINSOL’s linear solver interface consists of four primary phases, devoted to (1) memory allocation and initialization,
(2) setup of the matrix data involved, (3) solution of the system, and (4) freeing of memory. The setup and solution
phases are separate because the evaluation of Jacobians and preconditioners is done only periodically during the inte-
gration, and only as required to achieve convergence. The call list within the central KINSOL module to each of the
four associated functions is fixed, thus allowing the central module to be completely independent of the linear system
method.

KINSOL also provides a preconditioner module, for use with any of the Krylov iterative linear solvers. It works in
conjunction with the NVECTOR_PARALLEL and generates a preconditioner that is a block-diagonal matrix with each
block being a banded matrix.

All state information used by KINSOL to solve a given problem is stored in N_Vector instances. There is no global
data in the KINSOL package, and so, in this respect, it is reentrant. State information specific to the linear and nonlinear
solver are saved in the SUNLinearSolver and SUNNonlinearSolver instances respectively. The reentrancy of KIN-
SOL enables the setting where two or more problems are solved by intermixed or parallel calls to different instances of
the package from within a single user program.

16 Chapter 3. Code Organization

Chapter 4

Getting Started

The packages that make up SUNDIALS are built upon shared classes for vectors, matrices, and algebraic solvers. In
addition, the packages all leverage some other common infrastructure, which we discuss in this section.

Fig. 4.1: High-level diagram of the SUNDIALS suite.

17

User Documentation for KINSOL, v7.1.0

4.1 Data Types

SUNDIALS defines several data types in the header file sundials_types.h. These types are used in the SUNDIALS
API and internally in SUNDIALS. It is not necessary to use these types in your application, but the type must be
compatible with the SUNDIALS types in the API when calling SUNDIALS functions. The types that are defined are:

• sunrealtype – the floating-point type used by the SUNDIALS packages

• sunindextype – the integer type used for vector and matrix indices

• sunbooleantype – the type used for logic operations within SUNDIALS

• SUNOutputFormat – an enumerated type for SUNDIALS output formats

• SUNComm – a simple typedef to an int when SUNDIALS is built without MPI, or a MPI_Comm when built with
MPI.

4.1.1 Floating point types

type sunrealtype
The type sunrealtype can be float, double, or long double, with the default being double. The user can
change the precision of the arithmetic used in the SUNDIALS solvers at the configuration stage (see SUNDIALS_-
PRECISION).

Additionally, based on the current precision, sundials_types.h defines SUN_BIG_REAL to be the largest value rep-
resentable as a sunrealtype, SUN_SMALL_REAL to be the smallest value representable as a sunrealtype, and SUN_-
UNIT_ROUNDOFF to be the difference between 1.0 and the minimum sunrealtype greater than 1.0.

Within SUNDIALS, real constants are set by way of a macro called SUN_RCONST. It is this macro that needs the ability
to branch on the definition of sunrealtype. In ANSI C, a floating-point constant with no suffix is stored as a double.
Placing the suffix “F” at the end of a floating point constant makes it a float, whereas using the suffix “L” makes it a
long double. For example,

#define A 1.0
#define B 1.0F
#define C 1.0L

defines A to be a double constant equal to 1.0, B to be a float constant equal to 1.0, and C to be a long double
constant equal to 1.0. The macro call SUN_RCONST(1.0) automatically expands to 1.0 if sunrealtype is double,
to 1.0F if sunrealtype is float, or to 1.0L if sunrealtype is long double. SUNDIALS uses the SUN_RCONST
macro internally to declare all of its floating-point constants.

Additionally, SUNDIALS defines several macros for common mathematical functions e.g., fabs, sqrt, exp, etc.
in sundials_math.h. The macros are prefixed with SUNR and expand to the appropriate C function based on the
sunrealtype. For example, the macro SUNRabs expands to the C function fabs when sunrealtype is double,
fabsf when sunrealtype is float, and fabsl when sunrealtype is long double.

A user program which uses the type sunrealtype, the SUN_RCONST macro, and the SUNR mathematical function
macros is precision-independent except for any calls to precision-specific library functions. Our example programs use
sunrealtype, SUN_RCONST, and the SUNRmacros. Users can, however, use the type double, float, or long double
in their code (assuming that this usage is consistent with the typedef for sunrealtype) and call the appropriate math
library functions directly. Thus, a previously existing piece of C or C++ code can use SUNDIALS without modifying
the code to use sunrealtype, SUN_RCONST, or the SUNR macros so long as the SUNDIALS libraries are built to use
the corresponding precision (see §11.2).

18 Chapter 4. Getting Started

User Documentation for KINSOL, v7.1.0

4.1.2 Integer types used for indexing

type sunindextype
The type sunindextype is used for indexing array entries in SUNDIALS modules as well as for storing the total
problem size (e.g., vector lengths and matrix sizes). During configuration sunindextypemay be selected to be
either a 32- or 64-bit signed integer with the default being 64-bit (see SUNDIALS_INDEX_SIZE).

When using a 32-bit integer the total problem size is limited to 231 − 1 and with 64-bit integers the limit is 263 − 1.
For users with problem sizes that exceed the 64-bit limit an advanced configuration option is available to specify the
type used for sunindextype (see SUNDIALS_INDEX_TYPE).

A user program which uses sunindextype to handle indices will work with both index storage types except for any calls
to index storage-specific external libraries. Our C and C++ example programs use sunindextype. Users can, however,
use any compatible type (e.g., int, long int, int32_t, int64_t, or long long int) in their code, assuming that
this usage is consistent with the typedef for sunindextype on their architecture. Thus, a previously existing piece of
C or C++ code can use SUNDIALS without modifying the code to use sunindextype, so long as the SUNDIALS
libraries use the appropriate index storage type (for details see §11.2).

4.1.3 Boolean type

type sunbooleantype
As ANSI C89 (ISO C90) does not have a built-in boolean data type, SUNDIALS defines the type sunboolean-
type as an int.

The advantage of using the name sunbooleantype (instead of int) is an increase in code readability. It also allows the
programmer to make a distinction between int and boolean data. Variables of type sunbooleantype are intended to
have only the two values: SUNFALSE or SUNTRUE.

SUNFALSE

False (0)

SUNTRUE

True (1)

4.1.4 Output formatting type

enum SUNOutputFormat
The enumerated type SUNOutputFormat defines the enumeration constants for SUNDIALS output formats

enumerator SUN_OUTPUTFORMAT_TABLE
The output will be a table of values

enumerator SUN_OUTPUTFORMAT_CSV
The output will be a comma-separated list of key and value pairs e.g., key1,value1,key2,value2,...

Note: The file scripts/sundials_csv.py provides python utility functions to read and output the data from
a SUNDIALS CSV output file using the key and value pair format.

4.1. Data Types 19

User Documentation for KINSOL, v7.1.0

4.1.5 MPI types

type SUNComm
A simple typedef to an int when SUNDIALS is built without MPI, or a MPI_Comm when built with MPI. This
type exists solely to ensure SUNDIALS can support MPI and non-MPI builds.

SUN_COMM_NULL

A macro defined as 0 when SUNDIALS is built without MPI, or as MPI_COMM_NULL when built with MPI.

4.2 The SUNContext Type

New in version 6.0.0.

All of the SUNDIALS objects (vectors, linear and nonlinear solvers, matrices, etc.) that collectively form a SUNDIALS
simulation, hold a reference to a common simulation context object defined by the SUNContext class.

type SUNContext
An opaque pointer used by SUNDIALS objects for error handling, logging, profiling, etc.

Users should create a SUNContext object prior to any other calls to SUNDIALS library functions by calling:

SUNErrCode SUNContext_Create(SUNComm comm, SUNContext *sunctx)
Creates a SUNContext object associated with the thread of execution. The data of the SUNContext class is
private.

Parameters

• comm – the MPI communicator or SUN_COMM_NULL if not using MPI.

• sunctx – [in,out] upon successful exit, a pointer to the newly created SUNContext object.

Returns
SUNErrCode indicating success or failure.

The created SUNContext object should be provided to the constructor routines for different SUNDIALS
classes/modules e.g.,

SUNContext sunctx;
void* package_mem;
N_Vector x;

SUNContext_Create(SUN_COMM_NULL, &sunctx);

package_mem = CVodeCreate(..., sunctx);
package_mem = IDACreate(..., sunctx);
package_mem = KINCreate(..., sunctx);
package_mem = ARKStepCreate(..., sunctx);

x = N_VNew_<SomeVector>(..., sunctx);

After all other SUNDIALS code, the SUNContext object should be freed with a call to:

SUNErrCode SUNContext_Free(SUNContext *sunctx)
Frees the SUNContext object.

Parameters

• sunctx – pointer to a valid SUNContext object, NULL upon successful return.

20 Chapter 4. Getting Started

User Documentation for KINSOL, v7.1.0

Returns
SUNErrCode indicating success or failure.

Warning: When MPI is being used, the SUNContext_Free() must be called prior to MPI_Finalize.

The SUNContext API further consists of the following functions:

SUNErrCode SUNContext_GetLastError(SUNContext sunctx)
Gets the last error code set by a SUNDIALS function call. The function then resets the last error code to SUN_-
SUCCESS.

Parameters

• sunctx – a valid SUNContext object.

Returns
the last SUNErrCode recorded.

SUNErrCode SUNContext_PeekLastError(SUNContext sunctx)
Gets the last error code set by a SUNDIALS function call. The function does not reset the last error code to
SUN_SUCCESS.

Parameters

• sunctx – a valid SUNContext object.

Returns
the last SUNErrCode recorded.

SUNErrCode SUNContext_PushErrHandler(SUNContext sunctx, SUNErrHandlerFn err_fn, void
*err_user_data)

Pushes a new SUNErrHandlerFn onto the error handler stack so that it is called when an error occurs inside of
SUNDIALS.

Parameters

• sunctx – a valid SUNContext object.

• err_fn – a callback function of type SUNErrHandlerFn to be pushed onto the error handler
stack.

• err_user_data – a pointer that will be passed back to the callback function when it is
called.

Returns
SUNErrCode indicating success or failure.

SUNErrCode SUNContext_PopErrHandler(SUNContext sunctx)
Pops the last SUNErrHandlerFn off of the error handler stack.

Parameters

• sunctx – a valid SUNContext object.

Returns
SUNErrCode indicating success or failure.

SUNErrCode SUNContext_ClearErrHandlers(SUNContext sunctx)
Clears the entire error handler stack. After doing this it is important to push an error handler onto the stack with
SUNContext_PushErrHandler otherwise errors will be ignored.

4.2. The SUNContext Type 21

User Documentation for KINSOL, v7.1.0

Parameters

• sunctx – a valid SUNContext object.

Returns
SUNErrCode indicating success or failure.

SUNErrCode SUNContext_GetProfiler(SUNContext sunctx, SUNProfiler *profiler)
Gets the SUNProfiler object associated with the SUNContext object.

Parameters

• sunctx – a valid SUNContext object.

• profiler – [in,out] a pointer to the SUNProfiler object associated with this context; will
be NULL if profiling is not enabled.

Returns
SUNErrCode indicating success or failure.

SUNErrCode SUNContext_SetProfiler(SUNContext sunctx, SUNProfiler profiler)
Sets the SUNProfiler object associated with the SUNContext object.

Parameters

• sunctx – a valid SUNContext object.

• profiler – a SUNProfiler object to associate with this context; this is ignored if profiling
is not enabled.

Returns
SUNErrCode indicating success or failure.

SUNErrCode SUNContext_SetLogger(SUNContext sunctx, SUNLogger logger)
Sets the SUNLogger object associated with the SUNContext object.

Parameters

• sunctx – a valid SUNContext object.

• logger – a SUNLogger object to associate with this context; this is ignored if logging is not
enabled.

Returns
SUNErrCode indicating success or failure.

New in version 6.2.0.

SUNErrCode SUNContext_GetLogger(SUNContext sunctx, SUNLogger *logger)
Gets the SUNLogger object associated with the SUNContext object.

Parameters

• sunctx – a valid SUNContext object.

• logger – [in,out] a pointer to the SUNLogger object associated with this context; will be
NULL if logging is not enabled.

Returns
SUNErrCode indicating success or failure.

New in version 6.2.0.

22 Chapter 4. Getting Started

User Documentation for KINSOL, v7.1.0

4.2.1 Implications for task-based programming and multi-threading

Applications that need to have concurrently initialized SUNDIALS simulations need to take care to understand the
following:

#. A SUNContext object must only be associated with one SUNDIALS simulation (a solver object and its associated
vectors etc.) at a time.

• Concurrently initialized is not the same as concurrently executing. Even if two SUNDIALS simulations execute
sequentially, if both are initialized at the same time with the same SUNContext, behavior is undefined.

• It is OK to reuse a SUNContext object with another SUNDIALS simulation after the first simulation has com-
pleted and all of the simulation’s associated objects (vectors, matrices, algebraic solvers, etc.) have been de-
stroyed.

#. The creation and destruction of a SUNContext object is cheap, especially in comparison to the cost of creat-
ing/destroying a SUNDIALS solver object.

The following (incomplete) code examples demonstrate these points using CVODE as the example SUNDIALS pack-
age.

SUNContext sunctxs[num_threads];
int cvode_initialized[num_threads];
void* cvode_mem[num_threads];

// Create
for (int i = 0; i < num_threads; i++) {
sunctxs[i] = SUNContext_Create(...);
cvode_mem[i] = CVodeCreate(..., sunctxs[i]);
cvode_initialized[i] = 0; // not yet initialized
// set optional cvode inputs...

}

// Solve
#pragma omp parallel for
for (int i = 0; i < num_problems; i++) {
int retval = 0;
int tid = omp_get_thread_num();
if (!cvode_initialized[tid]) {
retval = CVodeInit(cvode_mem[tid], ...);
cvode_initialized[tid] = 1;

} else {
retval = CVodeReInit(cvode_mem[tid], ...);

}
CVode(cvode_mem[i], ...);

}

// Destroy
for (int i = 0; i < num_threads; i++) {
// get optional cvode outputs...
CVodeFree(&cvode_mem[i]);
SUNContext_Free(&sunctxs[i]);

}

Since each thread has its own unique CVODE and SUNContext object pair, there should be no thread-safety issues.
Users should be sure that you apply the same idea to the other SUNDIALS objects needed as well (e.g. an N_Vector).

4.2. The SUNContext Type 23

User Documentation for KINSOL, v7.1.0

The variation of the above code example demonstrates another possible approach:

// Create, Solve, Destroy
#pragma omp parallel for
for (int i = 0; i < num_problems; i++) {
int retval = 0;
void* cvode_mem;
SUNContext sunctx;

sunctx = SUNContext_Create(...);
cvode_mem = CVodeCreate(..., sunctx);
retval = CVodeInit(cvode_mem, ...);

// set optional cvode inputs...

CVode(cvode_mem, ...);

// get optional cvode outputs...

CVodeFree(&cvode_mem);
SUNContext_Free(&sunctx);

}

So long as the overhead of creating/destroying the CVODE object is small compared to the cost of solving the ODE,
this approach is a fine alternative to the first approach since SUNContext_Create() and SUNContext_Free() are
much cheaper than the CVODE create/free routines.

4.2.2 Convenience class for C++ Users

For C++ users a RAII safe class, sundials::Context, is provided:

namespace sundials {

class Context : public sundials::ConvertibleTo<SUNContext>
{
public:
explicit Context(SUNComm comm = SUN_COMM_NULL)
{
sunctx_ = std::make_unique<SUNContext>();
SUNContext_Create(comm, sunctx_.get());

}

/* disallow copy, but allow move construction */
Context(const Context&) = delete;
Context(Context&&) = default;

/* disallow copy, but allow move operators */
Context& operator=(const Context&) = delete;
Context& operator=(Context&&) = default;

SUNContext Convert() override
{
return *sunctx_.get();

(continues on next page)

24 Chapter 4. Getting Started

User Documentation for KINSOL, v7.1.0

(continued from previous page)

}
SUNContext Convert() const override
{
return *sunctx_.get();

}
operator SUNContext() override
{
return *sunctx_.get();

}
operator SUNContext() const override
{
return *sunctx_.get();

}

~Context()
{
if (sunctx_) SUNContext_Free(sunctx_.get());

}

private:
std::unique_ptr<SUNContext> sunctx_;
};

} // namespace sundials

4.3 Error Checking

New in version 7.0.0.

Until version 7.0.0, error reporting and handling was inconsistent throughout SUNDIALS. Starting with version 7.0.0
all of SUNDIALS (the core, implementations of core modules, and packages) reports error mesages through the SUN-
Logger API. Furthermore, functions in the SUNDIALS core API (i.e., SUN or N_V functions only) either return a
SUNErrCode, or (if they don’t return a SUNErrCode) they internally record an error code (if an error occurs) within
the SUNContext for the execution stream. This “last error” is accessible via the SUNContext_GetLastError() or
SUNContext_PeekLastError() functions.

typedef int SUNErrCode

Thus, in user code, SUNDIALS core API functions can be checked for errors in one of two ways:

SUNContext sunctx;
SUNErrCode sunerr;
N_Vector v;
int length;
sunrealtype dotprod;

// Every code that uses SUNDIALS must create a SUNContext.
sunctx = SUNContext_Create(...);

// Create a SUNDIALS serial vector.
// Some functions do not return an error code.

(continues on next page)

4.3. Error Checking 25

User Documentation for KINSOL, v7.1.0

(continued from previous page)

// We have to check for errors in these functions using SUNContext_GetLastError.
length = 2;
v = N_VNew_Serial(length, sunctx);
sunerr = SUNContext_GetLastError(sunctx);
if (sunerr) { /* an error occured, do something */ }

// If the function returns a SUNErrCode, we can check it directly
sunerr = N_VLinearCombination(...);
if (sunerr) { /* an error occured, do something */ }

// Another function that does not return a SUNErrCode.
dotprod = N_VDotProd(...);
SUNContext_GetLastError(sunctx);
if (sunerr) {
/* an error occured, do something */
} else {
print("dotprod = %.2f\n", dotprod);

}

The function SUNGetErrMsg() can be used to get a message describing the error code.

const char *SUNGetErrMsg(SUNErrCode code)
Returns a message describing the error code.

Parameters

• code – the error code

Returns
a message describing the error code.

Note: It is recommended in most cases that users check for an error after calling SUNDIALS functions. However,
users concerned with getting the most performance might choose to exclude or limit these checks.

Warning: If a function returns a SUNErrCode then the return value is the only place the error is available i.e., these
functions do not store their error code as the “last error” so it is invalid to use SUNContext_GetLastError() to
check these functions for errors.

4.3.1 Error Handler Functions

When an error occurs in SUNDIALS, it calls error handler functions that have been pushed onto the error handler
stack in last-in first-out order. Specific error handlers can be enabled by pushing them onto the error handler stack with
the function SUNContext_PushErrHandler(). They may disabled by calling SUNContext_PopErrHandler() or
SUNContext_ClearErrHandlers(). A SUNDIALS error handler function has the type

typedef void (*SUNErrHandlerFn)(int line, const char *func, const char *file, const char *msg, SUNErrCode
err_code, void *err_user_data, SUNContext sunctx)

SUNDIALS provides a few different error handlers that can be used, or a custom one defined by the user can be
provided (useful for linking SUNDIALS errors to your application’s error handling). The default error handler is
SUNLogErrHandlerFn() which logs an error to a specified file or stderr if no file is specified.

26 Chapter 4. Getting Started

User Documentation for KINSOL, v7.1.0

The error handlers provided in SUNDIALS are:

void SUNLogErrHandlerFn(int line, const char *func, const char *file, const char *msg, SUNErrCode err_code,
void *err_user_data, SUNContext sunctx)

Logs the error that occurred using the SUNLogger from sunctx. This is the default error handler.

Parameters

• line – the line number at which the error occured

• func – the function in which the error occured

• file – the file in which the error occured

• msg – the message to log, if this is NULL then the default error message for the error code
will be used

• err_code – the error code for the error that occured

• err_user_data – the user pointer provided to SUNContext_PushErrHandler()

• sunctx – pointer to a valid SUNContext object

Returns
void

void SUNAbortErrHandlerFn(int line, const char *func, const char *file, const char *msg, SUNErrCode err_code,
void *err_user_data, SUNContext sunctx)

Logs the error and aborts the program if an error occured.

Parameters

• line – the line number at which the error occured

• func – the function in which the error occured

• file – the file in which the error occured

• msg – this parameter is ignored

• err_code – the error code for the error that occured

• err_user_data – the user pointer provided to SUNContext_PushErrHandler()

• sunctx – pointer to a valid SUNContext object

Returns
void

void SUNMPIAbortErrHandlerFn(int line, const char *func, const char *file, const char *msg, SUNErrCode
err_code, void *err_user_data, SUNContext sunctx)

Logs the error and calls MPI_Abort if an error occured.

Parameters

• line – the line number at which the error occured

• func – the function in which the error occured

• file – the file in which the error occured

• msg – this parameter is ignored

• err_code – the error code for the error that occured

• err_user_data – the user pointer provided to SUNContext_PushErrHandler()

4.3. Error Checking 27

User Documentation for KINSOL, v7.1.0

• sunctx – pointer to a valid SUNContext object

Returns
void

4.4 Status and Error Logging

New in version 6.2.0.

SUNDIALS includes a built-in logging functionality which can be used to direct error messages, warning messages,
informational output, and debugging output to specified files. This capability requires enabling both build-time and
run-time options to ensure the best possible performance is achieved.

4.4.1 Enabling Logging

To enable logging, the CMake option SUNDIALS_LOGGING_LEVEL must be set to a value greater than 0when configur-
ing SUNDIALS. This option specifies the maximum desired output level. See the documentation entry for SUNDIALS_-
LOGGING_LEVEL for the numeric values correspond to errors, warnings, info output, and debug output where errors <
warnings < info output < debug output < extra debug output. More details in regards to configuring SUNDIALS with
CMake can be found in §10.

Note: As of version 7.0.0, enabling MPI in SUNDIALS enables MPI-aware logging.

When SUNDIALS is built with logging enabled, then the default logger (stored in the SUNContext object) may be
configured through environment variables without any changes to user code. The available environment variables are:

SUNLOGGER_ERROR_FILENAME
SUNLOGGER_WARNING_FILENAME
SUNLOGGER_INFO_FILENAME
SUNLOGGER_DEBUG_FILENAME

These environment variables may be set to a filename string. There are two special filenames: stdout and stderr.
These two filenames will result in output going to the standard output file and standard error file. The different variables
may all be set to the same file, or to distinct files, or some combination there of. To disable output for one of the streams,
then do not set the environment variable, or set it to an empty string.

Warning: A non-default logger should be created prior to any other SUNDIALS calls in order to capture all log
events.

Note: If SUNDIALS_LOGGING_LEVEL was set to 1 (corresponding to error-level output) at build-time, then setting the
environment variable SUNLOGGER_INFO_FILENAME will do nothing.

Note: Extra debugging output is turned on by setting SUNDIALS_LOGGING_LEVEL to 5. This extra output includes
vector-values (so long as the N_Vector used supports printing).

28 Chapter 4. Getting Started

User Documentation for KINSOL, v7.1.0

4.4.2 Logger API

The central piece of the Logger API is the SUNLogger type:

type SUNLogger
An opaque pointer containing logging information.

When SUNDIALS is built with logging enabled, a default logging object is stored in the SUNContext object and can
be accessed with a call to SUNContext_GetLogger().

The enumerated type SUNLogLevel is used by some of the logging functions to identify the output level or file.

enum SUNLogLevel
The SUNDIALS logging level

enumerator SUN_LOGLEVEL_ALL
Represents all output levels

enumerator SUN_LOGLEVEL_NONE
Represents none of the output levels

enumerator SUN_LOGLEVEL_ERROR
Represents error-level logging messages

enumerator SUN_LOGLEVEL_WARNING
Represents warning-level logging messages

enumerator SUN_LOGLEVEL_INFO
Represents info-level logging messages

enumerator SUN_LOGLEVEL_DEBUG
Represents deubg-level logging messages

The SUNLogger class provides the following methods.

int SUNLogger_Create(SUNComm comm, int output_rank, SUNLogger *logger)
Creates a new SUNLogger object.

Arguments:

• comm – the MPI communicator to use, if MPI is enabled, otherwise can be SUN_COMM_NULL.

• output_rank – the MPI rank used for output (can be -1 to print to all ranks).

• logger – [in,out] On input this is a pointer to a
SUNLogger, on output it will point to a new SUNLogger instance.

Returns:

• Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_CreateFromEnv(SUNComm comm, SUNLogger *logger)
Creates a new SUNLogger object and opens the output streams/files from the environment variables:

SUNLOGGER_ERROR_FILENAME
SUNLOGGER_WARNING_FILENAME
SUNLOGGER_INFO_FILENAME
SUNLOGGER_DEBUG_FILENAME

Arguments:

4.4. Status and Error Logging 29

User Documentation for KINSOL, v7.1.0

• comm – the MPI communicator to use, if MPI is enabled, otherwise can be SUN_COMM_NULL.

• logger – [in,out] On input this is a pointer to a
SUNLogger, on output it will point to a new SUNLogger instance.

Returns:

• Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_SetErrorFilename(SUNLogger logger, const char *error_filename)
Sets the filename for error output.

Arguments:

• logger – a SUNLogger object.

• error_filename – the name of the file to use for error output.

Returns:

• Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_SetWarningFilename(SUNLogger logger, const char *warning_filename)
Sets the filename for warning output.

Arguments:

• logger – a SUNLogger object.

• warning_filename – the name of the file to use for warning output.

Returns:

• Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_SetInfoFilename(SUNLogger logger, const char *info_filename)
Sets the filename for info output.

Arguments:

• logger – a SUNLogger object.

• info_filename – the name of the file to use for info output.

Returns:

• Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_SetDebugFilename(SUNLogger logger, const char *debug_filename)
Sets the filename for debug output.

Arguments:

• logger – a SUNLogger object.

• debug_filename – the name of the file to use for debug output.

Returns:

• Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_QueueMsg(SUNLogger logger, SUNLogLevel lvl, const char *scope, const char *label, const char
*msg_txt, ...)

Queues a message to the output log level.

Arguments:

30 Chapter 4. Getting Started

User Documentation for KINSOL, v7.1.0

• logger – a SUNLogger object.

• lvl – the message log level (i.e. error, warning, info, debug).

• scope – the message scope (e.g. the function name).

• label – the message label.

• msg_txt – the message text itself.

• ... – the format string arguments

Returns:

• Returns zero if successful, or non-zero if an error occurred.

Warning: When compiling for ANSI C / C89 / C90 (and without compiler extensions), it is dangerous to
pass any user input to this function because it falls back to using sprintf with a fixed buffer size.

It is highly recommended to compile with C99 or newer if your compiler does not support snprintf through
extensions.

int SUNLogger_Flush(SUNLogger logger, SUNLogLevel lvl)
Flush the message queue(s).

Arguments:

• logger – a SUNLogger object.

• lvl – the message log level (i.e. error, warning, info, debug or all).

Returns:

• Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_GetOutputRank(SUNLogger logger, int *output_rank)
Get the output MPI rank for the logger.

Arguments:

• logger – a SUNLogger object.

• output_rank – [in,out] On input this is a pointer to an int, on output it points to the int holding the
output rank.

Returns:

• Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_Destroy(SUNLogger *logger)
Free the memory for the SUNLogger object.

Arguments:

• logger – a pointer to the SUNLogger object.

Returns:

• Returns zero if successful, or non-zero if an error occur.

4.4. Status and Error Logging 31

User Documentation for KINSOL, v7.1.0

4.4.3 Example Usage

As previously mentioned, if it is enabled at build time, there is a default SUNLogger attached to a SUNContext instance
when it is created. This logger can be configured using the environment variables, e.g.,

SUNDIALS_INFO_FILENAME=stdout ./examples/cvode/serial/cvKrylovDemo_ls

SUNDIALS also includes several example codes that demonstrate how to use the logging interface via the C API.

examples/arkode/CXX_serial/ark_analytic_sys.cpp
examples/cvode/serial/cvAdvDiff_bnd.c
examples/cvode/parallel/cvAdvDiff_diag_p.c
examples/kinsol/CXX_parallel/kin_em_p.cpp
examples/kinsol/CUDA_mpi/kin_em_mpicuda.cpp

4.5 Performance Profiling

New in version 6.0.0.

SUNDIALS includes a lightweight performance profiling layer that can be enabled at compile-time. Optionally, this
profiling layer can leverage Caliper [14] for more advanced instrumentation and profiling. By default, only SUNDIALS
library code is profiled. However, a public profiling API can be utilized to leverage the SUNDIALS profiler to time
user code regions as well (see §4.5.2).

4.5.1 Enabling Profiling

To enable profiling, SUNDIALS must be built with the CMake option SUNDIALS_BUILD_WITH_PROFILING set to
ON. To utilize Caliper support, the CMake option ENABLE_CALIPER must also be set to ON. More details in regards to
configuring SUNDIALS with CMake can be found in §10.

When SUNDIALS is built with profiling enabled and without Caliper, then the environment variable SUNPROFILER_-
PRINT can be utilized to enable/disable the printing of profiler information. Setting SUNPROFILER_PRINT=1will cause
the profiling information to be printed to stdout when the SUNDIALS simulation context is freed. Setting SUNPRO-
FILER_PRINT=0 will result in no profiling information being printed unless the SUNProfiler_Print() function is
called explicitly. By default, SUNPROFILER_PRINT is assumed to be 0. SUNPROFILER_PRINT can also be set to a file
path where the output should be printed.

If Caliper is enabled, then users should refer to the Caliper documentation for information on getting profiler output.
In most cases, this involves setting the CALI_CONFIG environment variable.

Note: The SUNDIALS profiler requires POSIX timers or the Windows profileapi.h timers.

Warning: While the SUNDIALS profiling scheme is relatively lightweight, enabling profiling can still negatively
impact performance. As such, it is recommended that profiling is enabled judiciously.

32 Chapter 4. Getting Started

https://software.llnl.gov/Caliper/

User Documentation for KINSOL, v7.1.0

4.5.2 Profiler API

The primary way of interacting with the SUNDIALS profiler is through the following macros:

SUNDIALS_MARK_FUNCTION_BEGIN(profobj)
SUNDIALS_MARK_FUNCTION_END(profobj)
SUNDIALS_WRAP_STATEMENT(profobj, name, stmt)
SUNDIALS_MARK_BEGIN(profobj, name)
SUNDIALS_MARK_END(profobj, name)

Additionally, in C++ applications, the follow macro is available:

SUNDIALS_CXX_MARK_FUNCTION(profobj)

These macros can be used to time specific functions or code regions. When using the *_BEGIN macros, it is important
that a matching *_ENDmacro is placed at all exit points for the scope/function. The SUNDIALS_CXX_MARK_FUNCTION
macro only needs to be placed at the beginning of a function, and leverages RAII to implicitly end the region.

The profobj argument to the macro should be a SUNProfiler object, i.e.

type SUNProfiler
An opaque pointer containing profiling information.

When SUNDIALS is built with profiling, a default profiling object is stored in the SUNContext object and can be
accessed with a call to SUNContext_GetProfiler().

The name argument should be a unique string indicating the name of the region/function. It is important that the name
given to the *_BEGIN macros matches the name given to the *_END macros.

In addition to the macros, the following methods of the SUNProfiler class are available.

int SUNProfiler_Create(SUNComm comm, const char *title, SUNProfiler *p)
Creates a new SUNProfiler object.

Arguments:

• comm – the MPI communicator to use, if MPI is enabled, otherwise can be SUN_COMM_NULL.

• title – a title or description of the profiler

• p – [in,out] On input this is a pointer to a SUNProfiler, on output it will point to a new SUNProfiler
instance

Returns:

• Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_Free(SUNProfiler *p)
Frees a SUNProfiler object.

Arguments:

• p – [in,out] On input this is a pointer to a SUNProfiler, on output it will be NULL

Returns:

• Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_Begin(SUNProfiler p, const char *name)
Starts timing the region indicated by the name.

Arguments:

4.5. Performance Profiling 33

User Documentation for KINSOL, v7.1.0

• p – a SUNProfiler object

• name – a name for the profiling region

Returns:

• Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_End(SUNProfiler p, const char *name)
Ends the timing of a region indicated by the name.

Arguments:

• p – a SUNProfiler object

• name – a name for the profiling region

Returns:

• Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_GetElapsedTime(SUNProfiler p, const char *name, double *time)
Get the elapsed time for the timer “name” in seconds.

Arguments:

• p – a SUNProfiler object

• name – the name for the profiling region of interest

• time – upon return, the elapsed time for the timer

Returns:

• Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_GetTimerResolution(SUNProfiler p, double *resolution)
Get the timer resolution in seconds.

Arguments:

• p – a SUNProfiler object

• resolution – upon return, the resolution for the timer

Returns:

• Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_Print(SUNProfiler p, FILE *fp)
Prints out a profiling summary. When constructed with an MPI comm the summary will include the average and
maximum time per rank (in seconds) spent in each marked up region.

Arguments:

• p – a SUNProfiler object

• fp – the file handler to print to

Returns:

• Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_Reset(SUNProfiler p)
Resets the region timings and counters to zero.

Arguments:

34 Chapter 4. Getting Started

User Documentation for KINSOL, v7.1.0

• p – a SUNProfiler object

Returns:

• Returns zero if successful, or non-zero if an error occurred

4.5.3 Example Usage

The following is an excerpt from the CVODE example code examples/cvode/serial/cvAdvDiff_bnd.c. It is
applicable to any of the SUNDIALS solver packages.

SUNContext ctx;
SUNProfiler profobj;

/* Create the SUNDIALS context */
retval = SUNContext_Create(SUN_COMM_NULL, &ctx);

/* Get a reference to the profiler */
retval = SUNContext_GetProfiler(ctx, &profobj);

/* ... */

SUNDIALS_MARK_BEGIN(profobj, "Integration loop");
umax = N_VMaxNorm(u);
PrintHeader(reltol, abstol, umax);
for(iout=1, tout=T1; iout <= NOUT; iout++, tout += DTOUT) {
retval = CVode(cvode_mem, tout, u, &t, CV_NORMAL);
umax = N_VMaxNorm(u);
retval = CVodeGetNumSteps(cvode_mem, &nst);
PrintOutput(t, umax, nst);

}
SUNDIALS_MARK_END(profobj, "Integration loop");
PrintFinalStats(cvode_mem); /* Print some final statistics */

4.5.4 Other Considerations

If many regions are being timed, it may be necessary to increase the maximum number of profiler entries (the default
is 2560). This can be done by setting the environment variable SUNPROFILER_MAX_ENTRIES.

4.6 Getting Version Information

SUNDIALS provides additional utilities to all packages, that may be used to retrieve SUNDIALS version information
at runtime.

int SUNDIALSGetVersion(char *version, int len)
This routine fills a string with SUNDIALS version information.

Arguments:

• version – character array to hold the SUNDIALS version information.

• len – allocated length of the version character array.

Return value:

4.6. Getting Version Information 35

User Documentation for KINSOL, v7.1.0

• 0 if successful

• -1 if the input string is too short to store the SUNDIALS version

Notes:
An array of 25 characters should be sufficient to hold the version information.

int SUNDIALSGetVersionNumber(int *major, int *minor, int *patch, char *label, int len)
This routine sets integers for the SUNDIALS major, minor, and patch release numbers and fills a string with the
release label if applicable.

Arguments:

• major – SUNDIALS release major version number.

• minor – SUNDIALS release minor version number.

• patch – SUNDIALS release patch version number.

• label – string to hold the SUNDIALS release label.

• len – allocated length of the label character array.

Return value:

• 0 if successful

• -1 if the input string is too short to store the SUNDIALS label

Notes:
An array of 10 characters should be sufficient to hold the label information. If a label is not used in the
release version, no information is copied to label.

4.7 Fortran Interface

SUNDIALS provides modern, Fortran 2003 based, interfaces as Fortran modules to most of the C API including:

• The SUNDIALS core types, utilities, and data structures via the fsundials_core_mod module.

• All of the time-stepping modules in ARKODE:

– The farkode_arkstep_mod, farkode_erkstep_mod, farkode_mristep_mod, and farkode_sprk-
step_mod modules provide interfaces to the ARKStep, ERKStep, MRIStep, and SPRKStep integrators
respectively.

– The farkode_mod module interfaces to the components of ARKODE which are shared by the time-
stepping modules.

• CVODE via the fcvode_mod module.

• CVODES via the fcvodes_mod module.

• IDA via the fida_mod module.

• IDAS via the fidas_mod module.

• KINSOL via the fkinsol_mod module.

Additionally, all of the SUNDIALS base classes (N_Vector, SUNMatrix, and SUNLinearSolver) include Fortran
interface modules. A complete list of class implementations with Fortran 2003 interface modules is given in Table 4.1.

An interface module can be accessed with the use statement, e.g.

36 Chapter 4. Getting Started

User Documentation for KINSOL, v7.1.0

use fsundials_core_mod ! this is needed to access core SUNDIALS types, utilities, and data structures
use fcvode_mod ! this is needed to access CVODE functions and types
use fnvector_openmp_mod ! this is needed to access the OpenMP implementation of the N_Vector class

and by linking to the Fortran 2003 library in addition to the C library, e.g. libsundials_fcore_mod.<so|a>, lib-
sundials_core.<so|a>, libsundials_fnvecpenmp_mod.<so|a>, libsundials_nvecopenmp.<so|a>, lib-
sundials_fcvode_mod.<so|a> and libsundials_cvode.<so|a>. The use statements mirror the #include
statements needed when using the C API.

The Fortran 2003 interfaces leverage the iso_c_binding module and the bind(C) attribute to closely follow the
SUNDIALS C API (modulo language differences). The SUNDIALS classes, e.g. N_Vector, are interfaced as Fortran
derived types, and function signatures are matched but with an F prepending the name, e.g. FN_VConst instead of
N_VConst() or FCVodeCreate instead of CVodeCreate. Constants are named exactly as they are in the C API.
Accordingly, using SUNDIALS via the Fortran 2003 interfaces looks just like using it in C. Some caveats stemming
from the language differences are discussed in §4.7.2. A discussion on the topic of equivalent data types in C and
Fortran 2003 is presented in §4.7.1.

Further information on the Fortran 2003 interfaces specific to the N_Vector, SUNMatrix, SUNLinearSolver, and
SUNNonlinearSolver classes is given alongside the C documentation. For details on where the Fortran 2003 module
(.mod) files and libraries are installed see §10.

The Fortran 2003 interface modules were generated with SWIG Fortran [35], a fork of SWIG. Users who are interested
in the SWIG code used in the generation process should contact the SUNDIALS development team.

Table 4.1: List of SUNDIALS Fortran 2003 interface modules

Class/Module Fortran 2003 Module Name
SUNDIALS core fsundials_core_mode
ARKODE farkode_mod
ARKODE::ARKSTEP farkode_arkstep_mod
ARKODE::ERKSTEP farkode_erkstep_mod
ARKODE::MRISTEP farkode_mristep_mod
ARKODE::SPRKSTEP farkode_sprkstep_mod
CVODE fcvode_mod
CVODES fcvodes_mod
IDA fida_mod
IDAS fidas_mod
KINSOL fkinsol_mod
NVECTOR_SERIAL fnvector_serial_mod
NVECTOR_OPENMP fnvector_openmp_mod
NVECTOR_PTHREADS fnvector_pthreads_mod
NVECTOR_PARALLEL fnvector_parallel_mod
NVECTOR_PARHYP Not interfaced
NVECTOR_PETSC Not interfaced
NVECTOR_CUDA Not interfaced
NVECTOR_RAJA Not interfaced
NVECTOR_SYCL Not interfaced
NVECTOR_MANVECTOR fnvector_manyvector_mod
NVECTOR_MPIMANVECTOR fnvector_mpimanyvector_mod
NVECTOR_MPIPLUSX fnvector_mpiplusx_mod
SUNMATRIX_BAND fsunmatrix_band_mod
SUNMATRIX_DENSE fsunmatrix_dense_mod
SUNMATRIX_MAGMADENSE Not interfaced
SUNMATRIX_ONEMKLDENSE Not interfaced

continues on next page

4.7. Fortran Interface 37

https://sundials.readthedocs.io/en/v7.1.0/sunnonlinsol/SUNNonlinSol_API_link.html#c.SUNNonlinearSolver

User Documentation for KINSOL, v7.1.0

Table 4.1 – continued from previous page
Class/Module Fortran 2003 Module Name
SUNMATRIX_SPARSE fsunmatrix_sparse_mod
SUNLINSOL_BAND fsunlinsol_band_mod
SUNLINSOL_DENSE fsunlinsol_dense_mod
SUNLINSOL_LAPACKBAND Not interfaced
SUNLINSOL_LAPACKDENSE Not interfaced
SUNLINSOL_MAGMADENSE Not interfaced
SUNLINSOL_ONEMKLDENSE Not interfaced
SUNLINSOL_KLU fsunlinsol_klu_mod
SUNLINSOL_SLUMT Not interfaced
SUNLINSOL_SLUDIST Not interfaced
SUNLINSOL_SPGMR fsunlinsol_spgmr_mod
SUNLINSOL_SPFGMR fsunlinsol_spfgmr_mod
SUNLINSOL_SPBCGS fsunlinsol_spbcgs_mod
SUNLINSOL_SPTFQMR fsunlinsol_sptfqmr_mod
SUNLINSOL_PCG fsunlinsol_pcg_mof
SUNNONLINSOL_NEWTON fsunnonlinsol_newton_mod
SUNNONLINSOL_FIXEDPOINT fsunnonlinsol_fixedpoint_mod
SUNNONLINSOL_PETSCSNES Not interfaced

4.7.1 Data Types

Generally, the Fortran 2003 type that is equivalent to the C type is what one would expect. Primitive types map to
the iso_c_binding type equivalent. SUNDIALS classes map to a Fortran derived type. However, the handling of
pointer types is not always clear as they can depend on the parameter direction. Table 4.2 presents a summary of the
type equivalencies with the parameter direction in mind.

Warning: Currently, the Fortran 2003 interfaces are only compatible with SUNDIALS builds where the sunre-
altype is double-precision.

Changed in version 7.1.0: The Fortran interfaces can now be built with 32-bit sunindextype in addition to 64-bit
sunindextype.

Table 4.2: C/Fortran-2003 Equivalent Types

C Type Parameter Direction Fortran 2003 type
SUNComm in, inout, out, return integer(c_int)
SUNErrCode in, inout, out, return integer(c_int)
double in, inout, out, return real(c_double)
int in, inout, out, return integer(c_int)
long in, inout, out, return integer(c_long)
sunbooleantype in, inout, out, return integer(c_int)
sunrealtype in, inout, out, return real(c_double)
sunindextype in, inout, out, return integer(c_long)
double* in, inout, out real(c_double), dimension(*)
double* return real(c_double), pointer, dimension(:)
int* in, inout, out real(c_int), dimension(*)
int* return real(c_int), pointer, dimension(:)
long* in, inout, out real(c_long), dimension(*)

continues on next page

38 Chapter 4. Getting Started

User Documentation for KINSOL, v7.1.0

Table 4.2 – continued from previous page
C Type Parameter Direction Fortran 2003 type
long* return real(c_long), pointer, dimension(:)
sunrealtype* in, inout, out real(c_double), dimension(*)
sunrealtype* return real(c_double), pointer, dimension(:)
sunindextype* in, inout, out real(c_long), dimension(*)
sunindextype* return real(c_long), pointer, dimension(:)
sunrealtype[] in, inout, out real(c_double), dimension(*)
sunindextype[] in, inout, out integer(c_long), dimension(*)
N_Vector in, inout, out type(N_Vector)
N_Vector return type(N_Vector), pointer
SUNMatrix in, inout, out type(SUNMatrix)
SUNMatrix return type(SUNMatrix), pointer
SUNLinearSolver in, inout, out type(SUNLinearSolver)
SUNLinearSolver return type(SUNLinearSolver), pointer
SUNNonlinearSolver in, inout, out type(SUNNonlinearSolver)
SUNNonlinearSolver return type(SUNNonlinearSolver), pointer
FILE* in, inout, out, return type(c_ptr)
void* in, inout, out, return type(c_ptr)
T** in, inout, out, return type(c_ptr)
T*** in, inout, out, return type(c_ptr)
T**** in, inout, out, return type(c_ptr)

4.7.2 Notable Fortran/C usage differences

While the Fortran 2003 interface to SUNDIALS closely follows the C API, some differences are inevitable due to the
differences between Fortran and C. In this section, we note the most critical differences. Additionally, §4.7.1 discusses
equivalencies of data types in the two languages.

4.7.2.1 Creating generic SUNDIALS objects

In the C API a SUNDIALS class, such as an N_Vector, is actually a pointer to an underlying C struct. However,
in the Fortran 2003 interface, the derived type is bound to the C struct, not the pointer to the struct. For example,
type(N_Vector) is bound to the C struct _generic_N_Vector not the N_Vector type. The consequence of this is
that creating and declaring SUNDIALS objects in Fortran is nuanced. This is illustrated in the code snippets below:

C code:

N_Vector x;
x = N_VNew_Serial(N, sunctx);

Fortran code:

type(N_Vector), pointer :: x
x => FN_VNew_Serial(N, sunctx)

Note that in the Fortran declaration, the vector is a type(N_Vector), pointer, and that the pointer assignment
operator is then used.

4.7. Fortran Interface 39

User Documentation for KINSOL, v7.1.0

4.7.2.2 Arrays and pointers

Unlike in the C API, in the Fortran 2003 interface, arrays and pointers are treated differently when they are return values
versus arguments to a function. Additionally, pointers which are meant to be out parameters, not arrays, in the C API
must still be declared as a rank-1 array in Fortran. The reason for this is partially due to the Fortran 2003 standard for
C bindings, and partially due to the tool used to generate the interfaces. Regardless, the code snippets below illustrate
the differences.

C code:

N_Vector x;
sunrealtype* xdata;
long int leniw, lenrw;

/* create a new serial vector */
x = N_VNew_Serial(N, sunctx);

/* capturing a returned array/pointer */
xdata = N_VGetArrayPointer(x)

/* passing array/pointer to a function */
N_VSetArrayPointer(xdata, x)

/* pointers that are out-parameters */
N_VSpace(x, &leniw, &lenrw);

Fortran code:

type(N_Vector), pointer :: x
real(c_double), pointer :: xdataptr(:)
real(c_double) :: xdata(N)
integer(c_long) :: leniw(1), lenrw(1)

! create a new serial vector
x => FN_VNew_Serial(x, sunctx)

! capturing a returned array/pointer
xdataptr => FN_VGetArrayPointer(x)

! passing array/pointer to a function
call FN_VSetArrayPointer(xdata, x)

! pointers that are out-parameters
call FN_VSpace(x, leniw, lenrw)

40 Chapter 4. Getting Started

User Documentation for KINSOL, v7.1.0

4.7.2.3 Passing procedure pointers and user data

Since functions/subroutines passed to SUNDIALS will be called from within C code, the Fortran procedure must
have the attribute bind(C). Additionally, when providing them as arguments to a Fortran 2003 interface routine, it is
required to convert a procedure’s Fortran address to C with the Fortran intrinsic c_funloc.

Typically when passing user data to a SUNDIALS function, a user may simply cast some custom data structure as a
void*. When using the Fortran 2003 interfaces, the same thing can be achieved. Note, the custom data structure does
not have to be bind(C) since it is never accessed on the C side.

C code:

MyUserData *udata;
void *cvode_mem;

ierr = CVodeSetUserData(cvode_mem, udata);

Fortran code:

type(MyUserData) :: udata
type(c_ptr) :: arkode_mem

ierr = FARKStepSetUserData(arkode_mem, c_loc(udata))

On the other hand, Fortran users may instead choose to store problem-specific data, e.g. problem parameters, within
modules, and thus do not need the SUNDIALS-provided user_data pointers to pass such data back to user-supplied
functions. These users should supply the c_null_ptr input for user_data arguments to the relevant SUNDIALS
functions.

4.7.2.4 Passing NULL to optional parameters

In the SUNDIALS C API some functions have optional parameters that a caller can pass as NULL. If the optional
parameter is of a type that is equivalent to a Fortran type(c_ptr) (see §4.7.1), then a Fortran user can pass the
intrinsic c_null_ptr. However, if the optional parameter is of a type that is not equivalent to type(c_ptr), then a
caller must provide a Fortran pointer that is dissociated. This is demonstrated in the code example below.

C code:

SUNLinearSolver LS;
N_Vector x, b;

/* SUNLinSolSolve expects a SUNMatrix or NULL as the second parameter. */
ierr = SUNLinSolSolve(LS, NULL, x, b);

Fortran code:

type(SUNLinearSolver), pointer :: LS
type(SUNMatrix), pointer :: A
type(N_Vector), pointer :: x, b

! Disassociate A
A => null()

! SUNLinSolSolve expects a type(SUNMatrix), pointer as the second parameter.
(continues on next page)

4.7. Fortran Interface 41

User Documentation for KINSOL, v7.1.0

(continued from previous page)

! Therefore, we cannot pass a c_null_ptr, rather we pass a disassociated A.
ierr = FSUNLinSolSolve(LS, A, x, b)

4.7.2.5 Working with N_Vector arrays

Arrays of N_Vector objects are interfaced to Fortran 2003 as an opaque type(c_ptr). As such, it is not possible to
directly index an array of N_Vector objects returned by the N_Vector “VectorArray” operations, or packages with sen-
sitivity capabilities (CVODES and IDAS). Instead, SUNDIALS provides a utility function FN_VGetVecAtIndexVec-
torArray wrapping N_VGetVecAtIndexVectorArray(). The example below demonstrates accessing a vector in a
vector array.

C code:

N_Vector x;
N_Vector* vecs;

/* Create an array of N_Vectors */
vecs = N_VCloneVectorArray(count, x);

/* Fill each array with ones */
for (int i = 0; i < count; ++i)
N_VConst(vecs[i], 1.0);

Fortran code:

type(N_Vector), pointer :: x, xi
type(c_ptr) :: vecs

! Create an array of N_Vectors
vecs = FN_VCloneVectorArray(count, x)

! Fill each array with ones
do index = 0,count-1
xi => FN_VGetVecAtIndexVectorArray(vecs, index)
call FN_VConst(xi, 1.d0)

enddo

SUNDIALS also provides the functions N_VSetVecAtIndexVectorArray() and N_VNewVectorArray() for work-
ing with N_Vector arrays, that have corresponding Fortran interfaces FN_VSetVecAtIndexVectorArray and FN_-
VNewVectorArray, respectively. These functions are particularly useful for users of the Fortran interface to the NVEC-
TOR_MANYVECTOR or NVECTOR_MPIMANYVECTOR when creating the subvector array. Both of these functions
along with N_VGetVecAtIndexVectorArray() (wrapped as FN_VGetVecAtIndexVectorArray) are further de-
scribed in §6.1.1.

42 Chapter 4. Getting Started

User Documentation for KINSOL, v7.1.0

4.7.2.6 Providing file pointers

There are a few functions in the SUNDIALS C API which take a FILE* argument. Since there is no portable way to
convert between a Fortran file descriptor and a C file pointer, SUNDIALS provides two utility functions for creating a
FILE* and destroying it. These functions are defined in the module fsundials_core_mod.

SUNErrCode SUNDIALSFileOpen(const char *filename, const char *mode, FILE **fp)
The function allocates a FILE* by calling the C function fopen with the provided filename and I/O mode.

Parameters

• filename – the path to the file, that should have Fortran type character(kind=C_CHAR,
len=*). There are two special filenames: stdout and stderr – these two filenames will
result in output going to the standard output file and standard error file, respectively.

• mode – the I/O mode to use for the file. This should have the Fortran type charac-
ter(kind=C_CHAR, len=*). The string begins with one of the following characters:

– r to open a text file for reading

– r+ to open a text file for reading/writing

– w to truncate a text file to zero length or create it for writing

– w+ to open a text file for reading/writing or create it if it does
not exist

– a to open a text file for appending, see documentation of fopen for
your system/compiler

– a+ to open a text file for reading/appending, see documentation for
fopen for your system/compiler

• fp – The FILE* that will be open when the function returns. This should be a type(c_ptr) in
the Fortran.

Returns
A SUNErrCode

Usage example:

type(c_ptr) :: fp

! Open up the file output.log for writing
ierr = FSUNDIALSFileOpen("output.log", "w+", fp)

! The C function ARKStepPrintMem takes void* arkode_mem and FILE* fp as arguments
call FARKStepPrintMem(arkode_mem, fp)

! Close the file
ierr = FSUNDIALSFileClose(fp)

Changed in version 7.0.0: The function signature was updated to return a SUNErrCode and take a FILE** as
the last input parameter rather then return a FILE*.

SUNErrCode SUNDIALSFileClose(FILE **fp)
The function deallocates a C FILE* by calling the C function fclose with the provided pointer.

Parameters

4.7. Fortran Interface 43

User Documentation for KINSOL, v7.1.0

• fp – the C FILE* that was previously obtained from fopen. This should have the Fortran
type type(c_ptr). Note that if either stdout or stderr were opened using SUNDIALS-
FileOpen()

Returns
A SUNErrCode

Changed in version 7.0.0: The function signature was updated to return a SUNErrCode and the fp parameter was
changed from FILE* to FILE**.

4.7.3 Important notes on portability

The SUNDIALS Fortran 2003 interface should be compatible with any compiler supporting the Fortran 2003 ISO
standard.

Upon compilation of SUNDIALS, Fortran module (.mod) files are generated for each Fortran 2003 interface. These
files are highly compiler specific, and thus it is almost always necessary to compile a consuming application with the
same compiler that was used to generate the modules.

4.7.4 Common Issues

In this subsection, we list some common issues users run into when using the Fortran interfaces.

Strange Segmentation Fault in User-Supplied Functions

One common issue we have seen trip up users (and even ourselves) has the symptom of segmentation fault in a user-
supplied function (such as the RHS) when trying to use one of the callback arguments. For example, in the following
RHS function, we will get a segfault on line 21:

1 integer(c_int) function ff(t, yvec, ydotvec, user_data) &
2 result(ierr) bind(C)
3

4 use, intrinsic :: iso_c_binding
5 use fsundials_nvector_mod
6 implicit none
7

8 real(c_double) :: t ! <===== Missing value attribute
9 type(N_Vector) :: yvec

10 type(N_Vector) :: ydotvec
11 type(c_ptr) :: user_data
12

13 real(c_double) :: e
14 real(c_double) :: u, v
15 real(c_double) :: tmp1, tmp2
16 real(c_double), pointer :: yarr(:)
17 real(c_double), pointer :: ydotarr(:)
18

19 ! get N_Vector data arrays
20 yarr => FN_VGetArrayPointer(yvec)
21 ydotarr => FN_VGetArrayPointer(ydotvec) ! <===== SEGFAULTS HERE
22

23 ! extract variables
24 u = yarr(1)
25 v = yarr(2)

(continues on next page)

44 Chapter 4. Getting Started

User Documentation for KINSOL, v7.1.0

(continued from previous page)

26

27 ! fill in the RHS function:
28 ! [0 0]*[(-1+u^2-r(t))/(2*u)] + [0]
29 ! [e -1] [(-2+v^2-s(t))/(2*v)] [sdot(t)/(2*vtrue(t))]
30 tmp1 = (-ONE+u*u-r(t))/(TWO*u)
31 tmp2 = (-TWO+v*v-s(t))/(TWO*v)
32 ydotarr(1) = ZERO
33 ydotarr(2) = e*tmp1 - tmp2 + sdot(t)/(TWO*vtrue(t))
34

35 ! return success
36 ierr = 0
37 return
38

39 end function

The subtle bug in the code causing the segfault is on line 8. It should read real(c_double), value :: t instead
of real(c_double) :: t (notice the value attribute). Fundamental types that are passed by value in C need the
value attribute.

4.8 Features for GPU Accelerated Computing

In this section, we introduce the SUNDIALS GPU programming model and highlight SUNDIALS GPU features. The
model leverages the fact that all of the SUNDIALS packages interact with simulation data either through the shared
vector, matrix, and solver APIs or through user-supplied callback functions. Thus, under the model, the overall structure
of the user’s calling program, and the way users interact with the SUNDIALS packages is similar to using SUNDIALS
in CPU-only environments.

4.8.1 SUNDIALS GPU Programming Model

As described in [13], within the SUNDIALS GPU programming model, all control logic executes on the CPU, and
all simulation data resides wherever the vector or matrix object dictates as long as SUNDIALS is in control of the
program. That is, SUNDIALS will not migrate data (explicitly) from one memory space to another. Except in the most
advanced use cases, it is safe to assume that data is kept resident in the GPU-device memory space. The consequence
of this is that, when control is passed from the user’s calling program to SUNDIALS, simulation data in vector or
matrix objects must be up-to-date in the device memory space. Similarly, when control is passed from SUNDIALS to
the user’s calling program, the user should assume that any simulation data in vector and matrix objects are up-to-date
in the device memory space. To put it succinctly, it is the responsibility of the user’s calling program to manage data
coherency between the CPU and GPU-device memory spaces unless unified virtual memory (UVM), also known as
managed memory, is being utilized. Typically, the GPU-enabled SUNDIALS modules provide functions to copy data
from the host to the device and vice-versa as well as support for unmanaged memory or UVM. In practical terms, the
way SUNDIALS handles distinct host and device memory spaces means that users need to ensure that the user-supplied
functions, e.g. the right-hand side function, only operate on simulation data in the device memory space otherwise extra
memory transfers will be required and performance will suffer. The exception to this rule is if some form of hybrid
data partitioning (achievable with the NVECTOR_MANYVECTOR, see §6.17) is utilized.

SUNDIALS provides many native shared features and modules that are GPU-enabled. Currently, these include the
NVIDIA CUDA platform [5], AMD ROCm/HIP [2], and Intel oneAPI [3]. Table 4.3–Table 4.5 summarize the shared
SUNDIALS modules that are GPU-enabled, what GPU programming environments they support, and what class of
memory they support (unmanaged or UVM). Users may also supply their own GPU-enabled N_Vector, SUNMatrix, or
SUNLinearSolver implementation, and the capabilties will be leveraged since SUNDIALS operates on data through
these APIs.

4.8. Features for GPU Accelerated Computing 45

User Documentation for KINSOL, v7.1.0

In addition, SUNDIALS provides a memory management helper module (see §9) to support applications which imple-
ment their own memory management or memory pooling.

Table 4.3: List of SUNDIALS GPU-enabled N_VectorModules

Module CUDA ROCm/HIP oneAPI Unmanaged Memory UVM
NVECTOR_CUDA X X X
NVECTOR_HIP X X X X
NVECTOR_SYCL X3 X3 X X X
NVECTOR_RAJA X X X X X
NVECTOR_KOKKOS X X X X X
NVECTOR_OPENMPDEV X X2 X2 X

Table 4.4: List of SUNDIALS GPU-enabled SUNMatrixModules

Module CUDA ROCm/HIP oneAPI Unmanaged Memory UVM
SUNMATRIX_CUSPARSE X X X
SUNMATRIX_ONEMKLDENSE X3 X3 X X X
SUNMATRIX_MAGMADENSE X X X X
SUNMATRIX_GINKGO X X X X
SUNMATRIX_KOKKOSDENSE X X X X

Table 4.5: List of SUNDIALS GPU-enabled SUNLinearSolver Mod-
ules

Module CUDA ROCm/HIP oneAPI Unmanaged Memory UVM
SUNLINSOL_CUSOLVERSP X X X
SUNLINSOL_ONEMKLDENSE X3 X3 X X X
SUNLINSOL_MAGMADENSE X X X
SUNLINSOL_GINKGO X X X X
SUNLINSOL_KOKKOSDENSE X X X X
SUNLINSOL_SPGMR X1 X1 X1 X1 X1

SUNLINSOL_SPFGMR X1 X1 X1 X1 X1

SUNLINSOL_SPTFQMR X1 X1 X1 X1 X1

SUNLINSOL_SPBCGS X1 X1 X1 X1 X1

SUNLINSOL_PCG X1 X1 X1 X1 X1

Notes regarding the above tables:

1. This module inherits support from the NVECTOR module used

2. Support for ROCm/HIP and oneAPI are currently untested.

3. Support for CUDA and ROCm/HIP are currently untested.

In addition, note that implicit UVM (i.e. malloc returning UVM) is not accounted for.

46 Chapter 4. Getting Started

User Documentation for KINSOL, v7.1.0

4.8.2 Steps for Using GPU Accelerated SUNDIALS

For any SUNDIALS package, the generalized steps a user needs to take to use GPU accelerated SUNDIALS are:

1. Utilize a GPU-enabled N_Vector implementation. Initial data can be loaded on the host, but must be in the
device memory space prior to handing control to SUNDIALS.

2. Utilize a GPU-enabled SUNLinearSolver linear solver (if applicable).

3. Utilize a GPU-enabled SUNMatrix implementation (if using a matrix-based linear solver).

4. Utilize a GPU-enabled SUNNonlinearSolver nonlinear solver (if applicable).

5. Write user-supplied functions so that they use data only in the device memory space (again, unless an atypical
data partitioning is used). A few examples of these functions are the right-hand side evaluation function, the
Jacobian evalution function, or the preconditioner evaulation function. In the context of CUDA and the right-
hand side function, one way a user might ensure data is accessed on the device is, for example, calling a CUDA
kernel, which does all of the computation, from a CPU function which simply extracts the underlying device data
array from the N_Vector object that is passed from SUNDIALS to the user-supplied function.

Users should refer to the above tables for a complete list of GPU-enabled native SUNDIALS modules.

4.8. Features for GPU Accelerated Computing 47

User Documentation for KINSOL, v7.1.0

48 Chapter 4. Getting Started

Chapter 5

Using KINSOL for the Solution of
Nonlinear Systems

This section is concerned with the use of KINSOL for the solution of nonlinear systems.

The following sections treat the header files and the layout of the user’s main program, and provide descriptions of
the KINSOL user-callable functions and user-supplied functions. The sample programs described in the companion
document [19] may also be helpful. Those codes may be used as templates (with the removal of some lines used in
testing) and are included in the KINSOL package.

KINSOL uses various constants for both input and output. These are defined as needed in this chapter, but for conve-
nience are also listed separately in §12.

The user should be aware that not all SUNLinearSolver and SUNMatrix objects are compatible with all N_Vector
implementations. Details on compatibility are given in the documentation for each SUNMatrix (Chapter §7) and
SUNLinearSolver (Chapter §8) implementation. For example, NVECTOR_PARALLEL is not compatible with the dense,
banded, or sparse SUNMatrix types, or with the corresponding dense, banded, or sparse SUNLinearSolver objects.
Please check Chapters §7 and §8 to verify compatibility between these objects. In addition to that documentation,
we note that the KINBBDPRE preconditioner can only be used with NVECTOR_PARALLEL. It is not recommended to
use a threaded vector object with SuperLU_MT unless it is the NVECTOR_OPENMP module, and SuperLU_MT is also
compiled with OpenMP.

5.1 Access to library and header files

At this point, it is assumed that the installation of KINSOL, following the procedure described in §10, has been com-
pleted successfully. In the proceeding text, the directories libdir and incdir are the installation library and include
directories, respectively. For a default installation, these are instdir/lib and instdir/include, respectively, where
instdir is the directory where SUNDIALS was installed.

Regardless of where the user’s application program resides, its associated compilation and load commands must make
reference to the appropriate locations for the library and header files required by KINSOL. KINSOL symbols are found
in libdir/libsundials_kinsol.lib. Thus, in addition to linking to libdir/libsundials_core.lib, KINSOL
users need to link to the KINSOL library. Symbols for additional SUNDIALS modules, vectors and algebraic solvers,
are found in

<libdir>/libsundials_nvec*.lib
<libdir>/libsundials_sunmat*.lib
<libdir>/libsundials_sunlinsol*.lib

(continues on next page)

49

User Documentation for KINSOL, v7.1.0

(continued from previous page)

<libdir>/libsundials_sunnonlinsol*.lib
<libdir>/libsundials_sunmem*.lib

The file extension .lib is typically .so for shared libraries and .a for static libraries.

The relevant header files for KINSOL are located in the subdirectories incdir/include/kinsol. To use KINSOL
the application needs to include the header file for KINSOL in addition to the SUNDIALS core header file:

#include <sundials/sundials_core.h> // Provides core SUNDIALS types
#include <kinsol/kinsol.h> // KINSOL provides methods for solving nonlinear systems

The calling program must also include an N_Vector implementation header file, of the form nvector/nvector_*.h.
See §6 for the appropriate name.

If using a Newton or Picard nonlinear solver that requires the solution of a linear system, the calling program must
also include a SUNLinearSolver implementation header file, of the from sunlinsol/sunlinsol_*.h where * is
the name of the linear solver (see Chapter §8 for more information).

If the linear solver is matrix-based, the linear solver header will also include a header file of the from sunmatrix/
sunmatrix_*.h where * is the name of the matrix implementation compatible with the linear solver. (see Chapter §7
for more information).

Other headers may be needed, according to the choice of preconditioner, etc. For example, in the example kinFood-
Web_kry_p (see [19]), preconditioning is done with a block-diagonal matrix. For this, even though the SUNLINSOL_-
SPGMR linear solver is used, the header sundials/sundials_dense.h is included for access to the underlying generic
dense matrix arithmetic routines.

5.2 A skeleton of the user’s main program

The following is a skeleton of the user’s main program (or calling program) for the solution of a nonlinear system
problem.. Most of the steps are independent of the N_Vector, SUNMatrix, and SUNLinearSolver implementations
used. For the steps that are not, refer to §6, §7, and §8 for the specific name of the function to be called or macro to be
referenced.

1. Initialize parallel or multi-threaded environment (if appropriate)

For example, call MPI_Init to initialize MPI if used.

2. Create the SUNDIALS context object

Call SUNContext_Create() to allocate the SUNContext object.

3. Set the problem dimensions etc.

This generally includes the problem size N, and may include the local vector length Nlocal.

4. Create the vector with the initial guess

Construct an N_Vector of initial guess values using the appropriate functions defined by the particular N_Vector
implementation (see §6 for details).

For native SUNDIALS vector implementations, use a call of the form y0 = N_VMake_***(..., ydata) if
the array containing the initial values of y already exists. Otherwise, create a new vector by making a call of
the form N_VNew_***(...), and then set its elements by accessing the underlying data with a call of the form
ydata = N_VGetArrayPointer(y0). Here, *** is the name of the vector implementation.

For hypre, PETSc, and Trilinos vector wrappers, first create and initialize the underlying vector, and then create
an N_Vector wrapper with a call of the form y0 = N_VMake_***(yvec), where yvec is a hypre, PETSc, or

50 Chapter 5. Using KINSOL for the Solution of Nonlinear Systems

User Documentation for KINSOL, v7.1.0

Trilinos vector. Note that calls like N_VNew_***(...) and N_VGetArrayPointer(...) are not available for
these vector wrappers.

5. Create matrix object (if appropriate)

If a linear solver is required (e.g., when using the default Newton solver) and the linear solver will be a matrix-
based linear solver, then a template Jacobian matrix must be created by calling the appropriate constructor defined
by the particular SUNMatrix implementation.

For the native SUNDIALS SUNMatrix implementations, the matrix object may be created using a call of the
form SUN***Matrix(...) where *** is the name of the matrix (see §7 for details).

6. Create linear solver object (if appropriate)

If a linear solver is required (e.g., when using the default Newton solver), then the desired linear solver object must
be created by calling the appropriate constructor defined by the particular SUNLinearSolver implementation.

For any of the native SUNDIALS SUNLinearSolver implementations, the linear solver object may be created
using a call of the form SUNLinearSolver LS = SUNLinSol_***(...);where *** is the name of the linear
solver (see §8 for details).

7. Create KINSOL object

Call KINCreate() to create the KINSOL solver object.

8. Initialize KINSOL solver

Call KINInit() to allocate internal memory.

9. Attach the linear solver (if appropriate)

If a linear solver was created above, initialize the KINLS linear solver interface by attaching the linear solver
object (and matrix object, if applicable) with KINSetLinearSolver().

10. Set linear solver optional inputs (if appropriate)

See Table 5.1 for KINLS optional inputs and Chapter §8 for linear solver specific optional inputs.

11. Set optional inputs

Call KINSet*** functions to change any optional inputs that control the behavior of KINSOL from their default
values. See §5.3.4 for details.

12. Solve problem

Call ier = KINSol(...) to solve the nonlinear problem for a given initial guess.

See KINSol() for details.

13. Get optional outputs

Call KINGet*** functions to obtain optional output. See §5.3.5 for details.

14. Deallocate memory

Upon completion of the integration call the following, as necessary, to free any objects or memory allocated
above:

• Call N_VDestroy() to free vector objects.

• Call SUNMatDestroy() to free matrix objects.

• Call SUNLinSolFree() to free linear solvers objects.

• Call SUNNonlinSolFree() to free nonlinear solvers objects.

• Call KINFree() to free the memory allocated by KINSOL.

5.2. A skeleton of the user’s main program 51

https://sundials.readthedocs.io/en/v7.1.0/sunnonlinsol/SUNNonlinSol_API_link.html#c.SUNNonlinSolFree

User Documentation for KINSOL, v7.1.0

• Call SUNContext_Free() to free the SUNContext object

15. Finalize MPI, if used

Call MPI_Finalize to terminate MPI.

5.3 User-callable functions

This section describes the KINSOL functions that are called by the user to setup and then solve an IVP. Some of these
are required. However, starting with §5.3.4, the functions listed involve optional inputs/outputs or restarting, and those
paragraphs may be skipped for a casual use of KINSOL. In any case, refer to §5.2 for the correct order of these calls.

On an error, each user-callable function returns a negative value and sends an error message to the error handler routine,
which prints the message on stderr by default. However, the user can set a file as error output or can provide his own
error handler function (see §5.3.4).

5.3.1 KINSOL initialization and deallocation functions

void KINCreate(SUNContext sunctx)
The function KINCreate() instantiates a KINSOL solver object.

Arguments:

• sunctx – the SUNContext object (see §4.2)

Return value:

• void

int KINInit(void *kin_mem, KINSysFn func, N_Vector tmpl)
The function KINInit() specifies the problem-defining function, allocates internal memory, and initializes KIN-
SOL.

Arguments:

• kin_mem – pointer to the KINSOL memory block returned by KINCreate().

• func – is the CC function which computes the system function F (u) (orG(u) for fixed-point iteration)
in the nonlinear problem. This function has the form func(u, fval, user_data). (For full details
see §5.4.1).

• tmpl – is any N_Vector (e.g. the initial guess vector u) which is used as a template to create (by
cloning) necessary vectors in kin_mem.

Return value:

• KIN_SUCCESS – The call to KINInit() was successful.

• KIN_MEM_NULL – The KINSOL memory block was not initialized through a previous call to KINCre-
ate().

• KIN_MEM_FAIL – A memory allocation request has failed.

• KIN_ILL_INPUT – An input argument to KINInit() has an illegal value.

Notes:
If an error occurred, KINInit() sends an error message to the error handler function.

52 Chapter 5. Using KINSOL for the Solution of Nonlinear Systems

User Documentation for KINSOL, v7.1.0

void KINFree(void **kin_mem)
The function KINFree() frees the pointer allocated by a previous call to KINCreate().

Arguments:

• kin_mem – pointer to the KINSOL solver object.

Return value:

• void

5.3.2 Linear solver specification functions

As previously explained, Newton and Picard iterations require the solution of linear systems of the form Jδ = −F .
Solution of these linear systems is handled using the KINLS linear solver interface. This interface supports all valid
SUNLinearSolver modules. Here, matrix-based SUNLinearSolver modules utilize SUNMatrix objects to store
the Jacobian matrix J = F ′(u) and factorizations used throughout the solution process. Conversely, matrix-free
SUNLinearSolver modules instead use iterative methods to solve the linear systems of equations, and only require
the action of the Jacobian on a vector, Jv.

With most iterative linear solvers, preconditioning can be done on the left only, on the right only, on both the left and
the right, or not at all. However, only right preconditioning is supported within KINLS. If preconditioning is done,
user-supplied functions define the linear operator corresponding to a right preconditioner matrix P , which should
approximate the system Jacobian matrix J . For the specification of a preconditioner, see the iterative linear solver
sections in §5.3.4 and §5.4. A preconditioner matrix P must approximate the Jacobian J , at least crudely.

To specify a generic linear solver to KINSOL, after the call to KINCreate() but before any calls to KINSol(), the
user’s program must create the appropriate SUNLinearSolver object and call the function KINSetLinearSolver(),
as documented below. To create the SUNLinearSolver object, the user may call one of the SUNDIALS-packaged
SUNLinearSolver module constructor routines via a call of the form

SUNLinearSolver LS = SUNLinSol_*(...);

For a current list of such constructor routines see §8.

Alternately, a user-supplied SUNLinearSolver module may be created and used instead. The use of each of the
generic linear solvers involves certain constants, functions and possibly some macros, that are likely to be needed
in the user code. These are available in the corresponding header file associated with the specific SUNMatrix or
SUNLinearSolver module in question, as described in Chapters §7 and §8.

Once this solver object has been constructed, the user should attach it to KINSOL via a call to KINSetLinear-
Solver(). The first argument passed to this function is the KINSOL memory pointer returned by KINCreate();
the second argument is the desired SUNLinearSolver object to use for solving Newton or Picard systems. The third
argument is an optional SUNMatrix object to accompany matrix-based SUNLinearSolver inputs (for matrix-free lin-
ear solvers, the third argument should be NULL). A call to this function initializes the KINLS linear solver interface,
linking it to the main KINSOL solver, and allows the user to specify additional parameters and routines pertinent to
their choice of linear solver.

int KINSetLinearSolver(void *kin_mem, SUNLinearSolver LS, SUNMatrix J)
The function KINSetLinearSolver() attaches a generic SUNLinSol object LS and corresponding template
Jacobian SUNMatrix object J (if applicable) to KINSOL, initializing the KINLS linear solver interface.

Arguments:

• kin_mem – pointer to the KINSOL memory block.

• LS – SUNLINSOL object to use for solving Newton linear systems.

• J – SUNMATRIX object for used as a template for the Jacobian (or NULL if not applicable).

5.3. User-callable functions 53

User Documentation for KINSOL, v7.1.0

Return value:

• KINLS_SUCCESS – The KINLS initialization was successful.

• KINLS_MEM_NULL – The kin_mem pointer is NULL.

• KINLS_ILL_INPUT – The KINLS interface is not compatible with the LS or J input objects or is
incompatible with the current NVECTOR module.

• KINLS_SUNLS_FAIL – A call to the LS object failed.

• KINLS_MEM_FAIL – A memory allocation request failed.

Notes:
If LS is a matrix-based linear solver, then the template Jacobian matrix J will be used in the solve process,
so if additional storage is required within the SUNMatrix object (e.g. for factorization of a banded ma-
trix), ensure that the input object is allocated with sufficient size (see the documentation of the particular
SUNMatrix type in Chapter §7 for further information).

New in version 4.0.0: Replaces the deprecated functions KINDlsSetLinearSolver and KINSpilsSetLin-
earSolver.

5.3.3 KINSOL solver function

This is the central step in the solution process, the call to solve the nonlinear algebraic system.

int KINSol(void *kin_mem, N_Vector u, int strategy, N_Vector u_scale, N_Vector f_scale)
The function KINSol() computes an approximate solution to the nonlinear system.

Arguments:

• kin_mem – pointer to the KINSOL memory block.

• u – vector set to initial guess by user before calling KINSol() , but which upon return contains an
approximate solution of the nonlinear system F (u) = 0.

• strategy – strategy used to solve the nonlinear system. It must be of the following:

– KIN_NONE basic Newton iteration

– KIN_LINESEARCH Newton with globalization

– KIN_FP fixed-point iteration with Anderson Acceleration (no linear solver needed)

– KIN_PICARD Picard iteration with Anderson Acceleration (uses a linear solver)

• u_scale – vector containing diagonal elements of scaling matrix Du for vector u chosen so that the
components ofDu u (as a matrix multiplication) all have roughly the same magnitude when u is close
to a root of F (u).

• f_scale – vector containing diagonal elements of scaling matrix DF for F (u) chosen so that the
components of DF F (u) (as a matrix multiplication) all have roughly the same magnitude when u is
not too near a root of F (u). In the case of a fixed-point iteration, consider F (u) = G(u)− u.

Return value:

• KIN_SUCCESS – KINSol() succeeded; the scaled norm of F (u) is less than fnormtol.

• KIN_INITIAL_GUESS_OK – The guess u = u0 satisfied the system F (u) = 0 within the tolerances
specified (the scaled norm of F (u0) is less than 0.01*fnormtol).

• KIN_STEP_LT_STPTOL – KINSOL stopped based on scaled step length. This means that the current
iterate may be an approximate solution of the given nonlinear system, but it is also quite possible that

54 Chapter 5. Using KINSOL for the Solution of Nonlinear Systems

User Documentation for KINSOL, v7.1.0

the algorithm is “stalled” (making insufficient progress) near an invalid solution, or that the scalar sc-
steptol is too large (see KINSetScaledStepTol() in §5.3.4 to change scsteptol from its default
value).

• KIN_MEM_NULL – The KINSOL memory block pointer was NULL.

• KIN_ILL_INPUT – An input parameter was invalid.

• KIN_NO_MALLOC – The KINSOL memory was not allocated by a call to KINCreate().

• KIN_MEM_FAIL – A memory allocation failed.

• KIN_LINESEARCH_NONCONV – The line search algorithm was unable to find an iterate sufficiently dis-
tinct from the current iterate, or could not find an iterate satisfying the sufficient decrease condition.
Failure to satisfy the sufficient decrease condition could mean the current iterate is “close” to an ap-
proximate solution of the given nonlinear system, the difference approximation of the matrix-vector
product J(u) v is inaccurate, or the real scalar scsteptol is too large.

• KIN_MAXITER_REACHED – The maximum number of nonlinear iterations has been reached.

• KIN_MXNEWT_5X_EXCEEDED – Five consecutive steps have been taken that satisfy the inequality
‖Dup‖L2 > 0.99 mxnewtstep , where p denotes the current step and mxnewtstep is a scalar up-
per bound on the scaled step length. Such a failure may mean that ‖DFF (u)‖L2 asymptotes from
above to a positive value, or the real scalar mxnewtstep is too small.

• KIN_LINESEARCH_BCFAIL – The line search algorithm was unable to satisfy the “beta-condition”
for MXNBCF+1 nonlinear iterations (not necessarily consecutive), which may indicate the algorithm is
making poor progress.

• KIN_LINSOLV_NO_RECOVERY – The user-supplied routine psolve encountered a recoverable error,
but the preconditioner is already current.

• KIN_LINIT_FAIL – The KINLS initialization routine (linit) encountered an error.

• KIN_LSETUP_FAIL – The KINLS setup routine (lsetup) encountered an error; e.g., the user-supplied
routine pset (used to set up the preconditioner data) encountered an unrecoverable error.

• KIN_LSOLVE_FAIL – The KINLS solve routine (lsolve) encountered an error; e.g., the user-supplied
routine psolve (used to to solve the preconditioned linear system) encountered an unrecoverable error.

• KIN_SYSFUNC_FAIL – The system function failed in an unrecoverable manner.

• KIN_FIRST_SYSFUNC_ERR – The system function failed recoverably at the first call.

• KIN_REPTD_SYSFUNC_ERR – The system function had repeated recoverable errors. No recovery is
possible.

Notes:
The components of vectors u_scale and f_scale should be strictly positive. KIN_SUCCESS=0, KIN_INI-
TIAL_GUESS_OK=1, and KIN_STEP_LT_STPTOL=2. All remaining return values are negative and therefore
a test flag < 0 will trap all KINSol() failures.

5.3. User-callable functions 55

User Documentation for KINSOL, v7.1.0

5.3.4 Optional input functions

There are numerous optional input parameters that control the behavior of the KINSOL solver. KINSOL provides
functions that can be used to change these from their default values. Table 5.1 lists all optional input functions in
KINSOL which are then described in detail in the remainder of this section, beginning with those for the main KINSOL
solver and continuing with those for the KINLS linear solver interface.

We note that, on error return, all of these functions also send an error message to the error handler function. We also
note that all error return values are negative, so a test retval < 0 will catch any error.

Table 5.1: Optional inputs for KINSOL and KINLS

Optional input Function name Default
KINSOL main solver
Data for problem-defining function KINSetUserData() NULL
Max. number of nonlinear iterations KINSetNumMaxIters() 200
No initial matrix setup KINSetNoInitSetup() SUNFALSE
No residual monitoring KINSetNoResMon() SUNFALSE
Max. iterations without matrix setup KINSetMaxSetupCalls() 10
Max. iterations without residual check KINSetMaxSubSetupCalls() 5
Form of η coefficient KINSetEtaForm() KIN_ETACHOICE1
Constant value of η KINSetEtaConstValue() 0.1
Values of γ and α KINSetEtaParams() 0.9 and 2.0
Values of ωmin and ωmax KINSetResMonParams() 0.00001 and 0.9
Constant value of ω KINSetResMonConstValue() 0.9
Lower bound on ε KINSetNoMinEps() SUNFALSE
Max. scaled length of Newton step KINSetMaxNewtonStep() 1000|Duu0|2
Max. number of β-condition failures KINSetMaxBetaFails() 10
Rel. error for D.Q. Jv KINSetRelErrFunc()

√
uround

Function-norm stopping tolerance KINSetFuncNormTol() uround1/3

Scaled-step stopping tolerance KINSetScaledStepTol() uround2/3
Inequality constraints on solution KINSetConstraints() NULL
Nonlinear system function KINSetSysFunc() none
Return the newest fixed point iteration KINSetReturnNewest() SUNFALSE
Fixed point/Picard damping parameter KINSetDamping() 1.0
Anderson Acceleration subspace size KINSetMAA() 0
Anderson Acceleration damping parameter KINSetDampingAA() 1.0
Anderson Acceleration delay KINSetDelayAA() 0
Anderson Acceleration orthogonalization routine KINSetOrthAA() KIN_ORTH_MGS
KINLS linear solver interface
Jacobian function KINSetJacFn() DQ
Preconditioner functions and data KINSetPreconditioner() NULL, NULL, NULL
Jacobian-times-vector function and data KINSetJacTimesVecFn() internal DQ, NULL
Jacobian-times-vector system function KINSetJacTimesVecSysFn() NULL

int KINSetUserData(void *kin_mem, void *user_data)
The function KINSetUserData() specifies the pointer to user-defined memory that is to be passed to all user-
supplied functions.

Arguments:

• kin_mem – pointer to the KINSOL memory block.

• user_data – pointer to the user-defined memory.

56 Chapter 5. Using KINSOL for the Solution of Nonlinear Systems

User Documentation for KINSOL, v7.1.0

Return value:

• KIN_SUCCESS – The optional value has been successfully set.

• KIN_MEM_NULL – The kin_mem pointer is NULL.

Notes:
If specified, the pointer to user_data is passed to all user-supplied functions that have it as an argument.
Otherwise, a NULL pointer is passed.

Warning: If user_data is needed in user linear solver or preconditioner functions, the call to KINSe-
tUserData() must be made before the call to specify the linear solver module.

int KINSetNumMaxIters(void *kin_mem, long int mxiter)
The function KINSetNumMaxIters() specifies the maximum number of nonlinear iterations allowed.

Arguments:

• kin_mem – pointer to the KINSOL memory block.

• mxiter – maximum number of nonlinear iterations.

Return value:

• KIN_SUCCESS – The optional value has been successfully set.

• KIN_MEM_NULL – The kin_mem pointer is NULL.

• KIN_ILL_INPUT – The maximum number of iterations was non-positive.

Notes:
The default value for mxiter is MXITER_DEFAULT = 200.

int KINSetNoInitSetup(void *kin_mem, sunbooleantype noInitSetup)
The function KINSetNoInitSetup() specifies whether an initial call to the preconditioner or Jacobian setup
function should be made or not.

Arguments:

• kin_mem – pointer to the KINSOL memory block.

• noInitSetup – flag controlling whether an initial call to the preconditioner or Jacobian setup function
is made (pass SUNFALSE) or not made (pass SUNTRUE).

Return value:

• KIN_SUCCESS – The optional value has been successfully set.

• KIN_MEM_NULL – The kin_mem pointer is NULL.

Notes:
The default value for noInitSetup is SUNFALSE, meaning that an initial call to the preconditioner or
Jacobian setup function will be made. A call to this function is useful when solving a sequence of problems,
in which the final preconditioner or Jacobian value from one problem is to be used initially for the next
problem.

int KINSetNoResMon(void *kin_mem, sunbooleantype noNNIResMon)
The function KINSetNoResMon() specifies whether or not the nonlinear residual monitoring scheme is used to
control Jacobian updating

Arguments:

• kin_mem – pointer to the KINSOL memory block.

5.3. User-callable functions 57

User Documentation for KINSOL, v7.1.0

• noNNIResMon – flag controlling whether residual monitoring is used (pass SUNFALSE) or not used
(pass SUNTRUE).

Return value:

• KIN_SUCCESS – The optional value has been successfully set.

• KIN_MEM_NULL – The kin_mem pointer is NULL.

Notes:
When using a direct solver, the default value for noNNIResMon is SUNFALSE, meaning that the nonlinear
residual will be monitored.

Warning: Residual monitoring is only available for use with matrix-based linear solver modules.

int KINSetMaxSetupCalls(void *kin_mem, long int msbset)
The function KINSetMaxSetupCalls() specifies the maximum number of nonlinear iterations that can be per-
formed between calls to the preconditioner or Jacobian setup function.

Arguments:

• kin_mem – pointer to the KINSOL memory block.

• msbset – maximum number of nonlinear iterations without a call to the preconditioner or Jacobian
setup function. Pass 0 to indicate the default.

Return value:

• KIN_SUCCESS – The optional value has been successfully set.

• KIN_MEM_NULL – The kin_mem pointer is NULL.

• KIN_ILL_INPUT – The argument msbset was negative.

Notes:
The default value for msbset is MSBSET_DEFAULT=10. The value of msbset should be a multiple of
msbsetsub (see KINSetMaxSubSetupCalls()).

int KINSetMaxSubSetupCalls(void *kin_mem, long int msbsetsub)
The function KINSetMaxSubSetupCalls() specifies the maximum number of nonlinear iterations between
checks by the residual monitoring algorithm.

Arguments:

• kin_mem – pointer to the KINSOL memory block.

• msbsetsub – maximum number of nonlinear iterations without checking the nonlinear residual. Pass
0 to indicate the default.

Return value:

• KIN_SUCCESS – The optional value has been successfully set.

• KIN_MEM_NULL – The kin_mem pointer is NULL.

• KIN_ILL_INPUT – The argument msbsetsub was negative.

Notes:
The default value for msbsetsub is MSBSET_SUB_DEFAULT = 5. The value of msbset (see KINSet-
MaxSetupCalls()) should be a multiple of msbsetsub.

58 Chapter 5. Using KINSOL for the Solution of Nonlinear Systems

User Documentation for KINSOL, v7.1.0

Warning: Residual monitoring is only available for use with matrix-based linear solver modules.

int KINSetEtaForm(void *kin_mem, int etachoice)
The function KINSetEtaForm() specifies the method for computing the value of the η coefficient used in the
calculation of the linear solver convergence tolerance.

Arguments:

• kin_mem – pointer to the KINSOL memory block.

• etachoice – flag indicating the method for computing η. The value must be one of KIN_ETACHOICE1
, KIN_ETACHOICE2 , or KIN_ETACONSTANT (see Chapter §2 for details).

Return value:

• KIN_SUCCESS – The optional value has been successfully set.

• KIN_MEM_NULL – The kin_mem pointer is NULL.

• KIN_ILL_INPUT – The argument etachoice had an illegal value.

Notes:
The default value for etachoice is KIN_ETACHOICE1. When using either KIN_ETACHOICE1 or KIN_-
ETACHOICE2 the safeguard

ηn = max(ηn, ηsafe)

is applied when ηsafe > 0.1. For KIN_ETACHOICE1

ηsafe = η
1+

√
5

2
n−1

and for KIN_ETACHOICE2

ηsafe = γηαn−1

where γ and α can be set with KINSetEtaParams().

The following safeguards are always applied when using either KIN_ETACHOICE1 or KIN_ETACHOICE2 so
that ηmin ≤ ηn ≤ ηmax:

ηn = max(ηn, ηmin)

ηn = min(ηn, ηmax)

where ηmin = 10−4 and ηmax = 0.9.

int KINSetEtaConstValue(void *kin_mem, sunrealtype eta)
The function KINSetEtaConstValue() specifies the constant value for η in the case etachoice = KIN_-
ETACONSTANT.

Arguments:

• kin_mem – pointer to the KINSOL memory block.

• eta – constant value for η. Pass 0.0 to indicate the default.

Return value:

• KIN_SUCCESS – The optional value has been successfully set.

• KIN_MEM_NULL – The kin_mem pointer is NULL.

• KIN_ILL_INPUT – The argument eta had an illegal value

5.3. User-callable functions 59

User Documentation for KINSOL, v7.1.0

Notes:
The default value for eta is 0.1. The legal values are 0.0 < eta ≤ 1.0.

int KINSetEtaParams(void *kin_mem, sunrealtype egamma, sunrealtype ealpha)
The function KINSetEtaParams() specifies the parameters γ and α in the formula for η, in the case etachoice
= KIN_ETACHOICE2.

Arguments:

• kin_mem – pointer to the KINSOL memory block.

• egamma – value of the γ parameter. Pass 0.0 to indicate the default.

• ealpha – value of the α parameter. Pass 0.0 to indicate the default.

Return value:

• KIN_SUCCESS – The optional values have been successfully set.

• KIN_MEM_NULL – The kin_mem pointer is NULL.

• KIN_ILL_INPUT – One of the arguments egamma or ealpha had an illegal value.

Notes:
The default values for egamma and ealpha are 0.9 and 2.0, respectively. The legal values are 0.0 < egamma
≤ 1.0 and 1.0 < ealpha ≤ 2.0.

int KINSetResMonConstValue(void *kin_mem, sunrealtype omegaconst)
The function KINSetResMonConstValue() specifies the constant value for ω when using residual monitoring.

Arguments:

• kin_mem – pointer to the KINSOL memory block.

• omegaconst – constant value for ω. Passing 0.0 results in using Eqn. (2.4).

Return value:

• KIN_SUCCESS – The optional value has been successfully set.

• KIN_MEM_NULL – The kin_mem pointer is NULL.

• KIN_ILL_INPUT – The argument omegaconst had an illegal value

Notes:
The default value for omegaconst is 0.9. The legal values are 0.0 < omegaconst < 1.0.

int KINSetResMonParams(void *kin_mem, sunrealtype omegamin, sunrealtype omegamax)
The function KINSetResMonParams() specifies the parameters ωmin and ωmax in the formula (2.4) for ω.

Arguments:

• kin_mem – pointer to the KINSOL memory block.

• omegamin – value of the ωmin parameter. Pass 0.0 to indicate the default.

• omegamax – value of the ωmax parameter. Pass 0.0 to indicate the default.

Return value:

• KIN_SUCCESS – The optional values have been successfully set.

• KIN_MEM_NULL – The kin_mem pointer is NULL.

• KIN_ILL_INPUT – One of the arguments omegamin or omegamax had an illegal value.

60 Chapter 5. Using KINSOL for the Solution of Nonlinear Systems

User Documentation for KINSOL, v7.1.0

Notes:
The default values for omegamin and omegamax are 0.00001 and 0.9, respectively. The legal values are
0.0 < omegamin < omegamax < 1.0.

Warning: Residual monitoring is only available for use with matrix-based linear solver modules.

int KINSetNoMinEps(void *kin_mem, sunbooleantype noMinEps)
The function KINSetNoMinEps() specifies a flag that controls whether or not the value of ε, the scaled linear
residual tolerance, is bounded from below.

Arguments:

• kin_mem – pointer to the KINSOL memory block.

• noMinEps – flag controlling the bound on ε. If SUNFALSE is passed the value of ε is constrained and
if SUNTRUE is passed then ε is not constrained.

Return value:

• KIN_SUCCESS – The optional value has been successfully set.

• KIN_MEM_NULL – The kin_mem pointer is NULL.

Notes:
The default value for noMinEps is SUNFALSE, meaning that a positive minimum value, equal to 0.01‘ ∗
“fnormtol‘, is applied to ε (see KINSetFuncNormTol() below).

int KINSetMaxNewtonStep(void *kin_mem, sunrealtype mxnewtstep)
The function KINSetMaxNewtonStep() specifies the maximum allowable scaled length of the Newton step.

Arguments:

• kin_mem – pointer to the KINSOL memory block.

• mxnewtstep – maximum scaled step length (≥ 0.0). Pass 0.0 to indicate the default.

Return value:

• KIN_SUCCESS – The optional value has been successfully set.

• KIN_MEM_NULL – The kin_mem pointer is NULL.

• KIN_ILL_INPUT – The input value was negative.

Notes:
The default value of mxnewtstep is 1000 ‖u0‖Du

, where u0 is the initial guess.

int KINSetMaxBetaFails(void *kin_mem, sunrealtype mxnbcf)
The function KINSetMaxBetaFails() specifies the maximum number of β-condition failures in the linesearch
algorithm.

Arguments:

• kin_mem – pointer to the KINSOL memory block.

• mxnbcf – maximum number of β -condition failures. Pass 0.0 to indicate the default.

Return value:

• KIN_SUCCESS – The optional value has been successfully set.

• KIN_MEM_NULL – The kin_mem pointer is NULL.

• KIN_ILL_INPUT – mxnbcf was negative.

5.3. User-callable functions 61

User Documentation for KINSOL, v7.1.0

Notes:
The default value of mxnbcf is MXNBCF_DEFAULT = 10.

int KINSetRelErrFunc(void *kin_mem, sunrealtype relfunc)
The function KINSetRelErrFunc() specifies the relative error in computing F (u), which is used in the differ-
ence quotient approximation to the Jacobian matrix [see Eq. (2.6)] or the Jacobian-vector product [see Eq. (2.8)
]. The value stored is

√
relfunc.

Arguments:

• kin_mem – pointer to the KINSOL memory block.

• relfunc – relative error in F (u) (relfunc ≥ 0.0). Pass 0.0 to indicate the default.

Return value:

• KIN_SUCCESS – The optional value has been successfully set.

• KIN_MEM_NULL – The kin_mem pointer is NULL.

• KIN_ILL_INPUT – The relative error was negative.

Notes:
The default value for relfunc is U = unit roundoff.

int KINSetFuncNormTol(void *kin_mem, sunrealtype fnormtol)
The function KINSetFuncNormTol() specifies the scalar used as a stopping tolerance on the scaled maximum
norm of the system function F (u).

Arguments:

• kin_mem – pointer to the KINSOL memory block.

• fnormtol – tolerance for stopping based on scaled function norm (≥ 0.0). Pass 0.0 to indicate the
default.

Return value:

• KIN_SUCCESS – The optional value has been successfully set.

• KIN_MEM_NULL – The kin_mem pointer is NULL.

• KIN_ILL_INPUT – The tolerance was negative.

Notes:
The default value for fnormtol is (unit roundoff) 1/3.

int KINSetScaledStepTol(void *kin_mem, sunrealtype scsteptol)
The function KINSetScaledStepTol() specifies the scalar used as a stopping tolerance on the minimum scaled
step length.

Arguments:

• kin_mem – pointer to the KINSOL memory block.

• scsteptol – tolerance for stopping based on scaled step length (≥ 0.0). Pass 0.0 to indicate the
default.

Return value:

• KIN_SUCCESS – The optional value has been successfully set.

• KIN_MEM_NULL – The kin_mem pointer is NULL.

• KIN_ILL_INPUT – The tolerance was non-positive.

62 Chapter 5. Using KINSOL for the Solution of Nonlinear Systems

User Documentation for KINSOL, v7.1.0

Notes:
The default value for scsteptol is (unit roundoff) 2/3.

int KINSetConstraints(void *kin_mem, N_Vector constraints)
The function KINSetConstraints() specifies a vector that defines inequality constraints for each component
of the solution vector u.

Arguments:

• kin_mem – pointer to the KINSOL memory block.

• constraints – vector of constraint flags. If constraints[i] is

– 0.0 then no constraint is imposed on ui.

– 1.0 then ui will be constrained to be ui ≥ 0.0.

– −1.0 then ui will be constrained to be ui ≤ 0.0.

– 2.0 then ui will be constrained to be ui > 0.0.

– −2.0 then ui will be constrained to be ui < 0.0.

Return value:

• KIN_SUCCESS – The optional value has been successfully set.

• KIN_MEM_NULL – The kin_mem pointer is NULL.

• KIN_ILL_INPUT – The constraint vector contains illegal values.

Notes:
The presence of a non-NULL constraints vector that is not 0.0 in all components will cause constraint check-
ing to be performed. If a NULL vector is supplied, constraint checking will be disabled. The function
creates a private copy of the constraints vector. Consequently, the user-supplied vector can be freed after
the function call, and the constraints can only be changed by calling this function.

int KINSetSysFunc(void *kin_mem, KINSysFn func)
The function KINSetSysFunc() specifies the user-provided function that evaluates the nonlinear system func-
tion F (u) or G(u).

Arguments:

• kin_mem – pointer to the KINSOL memory block.

• func – user-supplied function that evaluates F (u) (or G(u) for fixed-point iteration).

Return value:

• KIN_SUCCESS – The optional value has been successfully set.

• KIN_MEM_NULL – The kin_mem pointer is NULL.

• KIN_ILL_INPUT – The argument func was NULL.

Notes:
The nonlinear system function is initially specified through KINInit(). The option of changing the system
function is provided for a user who wishes to solve several problems of the same size but with different
functions.

int KINSetReturnNewest(void *kin_mem, sunbooleantype ret_newest)
The function KINSetReturnNewest() specifies if the fixed point iteration should return the newest iteration or
the iteration consistent with the last function evaluation.

Arguments:

5.3. User-callable functions 63

User Documentation for KINSOL, v7.1.0

• kin_mem – pointer to the KINSOL memory block.

• ret_newest – SUNTRUE – return the newest iteration. SUNFALSE – return the iteration consistent with
the last function evaluation.

Return value:

• KIN_SUCCESS – The optional value has been successfully set.

• KIN_MEM_NULL – The kin_mem pointer is NULL.

Notes:
The default value of ret_newest is SUNFALSE.

int KINSetDamping(void *kin_mem, sunrealtype beta)
The function KINSetDamping() specifies the value of the damping parameter in the fixed point or Picard itera-
tion.

Arguments:

• kin_mem – pointer to the KINSOL memory block.

• beta – the damping parameter value 0 < beta ≤ 1.0.

Return value:

• KIN_SUCCESS – The optional value has been successfully set.

• KIN_MEM_NULL – The kin_mem pointer is NULL.

• KIN_ILL_INPUT – The argument beta was zero or negative.

Notes:
This function sets the damping parameter value, which needs to be greater than zero and less than one
if damping is to be used. A value ≥ 1 disables damping. The default value of beta is 1.0, indicating no
damping. To set the damping parameter used in Anderson acceleration see KINSetDampingAA(). With the
fixed point iteration the difference between successive iterations is used to determine convergence. As such,
when damping is enabled, the tolerance used to stop the fixed point iteration is scaled by beta to account
for the effects of damping. If beta is extremely small (close to zero), this can lead to an excessively tight
tolerance.

int KINSetMAA(void *kin_mem, long int maa)
The function KINSetMAA() specifies the size of the subspace used with Anderson acceleration in conjunction
with Picard or fixed-point iteration.

Arguments:

• kin_mem – pointer to the KINSOL memory block.

• maa – subspace size for various methods. A value of 0 means no acceleration, while a positive value
means acceleration will be done.

Return value:

• KIN_SUCCESS – The optional value has been successfully set.

• KIN_MEM_NULL – The kin_mem pointer is NULL.

• KIN_ILL_INPUT – The argument maa was negative.

Notes:
This function sets the subspace size, which needs to be > 0 if Anderson Acceleration is to be used. It
also allocates additional memory necessary for Anderson Acceleration. The default value of maa is 0,
indicating no acceleration. The value of maa should always be less than mxiter. This function MUST be

64 Chapter 5. Using KINSOL for the Solution of Nonlinear Systems

User Documentation for KINSOL, v7.1.0

called before calling KINInit(). If the user calls the function KINSetNumMaxIters, that call should be
made before the call to KINSetMAA, as the latter uses the value of mxiter.

int KINSetDampingAA(void *kin_mem, sunrealtype beta)
The function KINSetDampingAA() specifies the value of the Anderson acceleration damping paramter.

Arguments:

• kin_mem – pointer to the KINSOL memory block.

• beta – the damping parameter value 0 < beta ≤ 1.0.

Return value:

• KIN_SUCCESS – The optional value has been successfully set.

• KIN_MEM_NULL – The kin_mem pointer is NULL.

• KIN_ILL_INPUT – The argument beta was zero or negative.

Notes:
This function sets the damping parameter value, which needs to be greater than zero and less than one if
damping is to be used. A value ≥ 1 disables damping. The default value of beta is 1.0, indicating no
damping. When delaying the start of Anderson acceleration with KINSetDelayAA(), use KINSetDamp-
ing() to set the damping parameter in the fixed point or Picard iterations before Anderson acceleration
begins. When using Anderson acceleration without delay, the value provided to KINSetDampingAA() is
applied to all iterations and any value provided to KINSetDamping() is ignored.

int KINSetDelayAA(void *kin_mem, long int delay)
The function KINSetDelayAA() specifies the number of iterations to delay the start of Anderson acceleration.

Arguments:

• kin_mem – pointer to the KINSOL memory block.

• delay – the number of iterations to delay Anderson acceleration.

Return value:

• KIN_SUCCESS – The optional value has been successfully set.

• KIN_MEM_NULL – The kin_mem pointer is NULL.

• KIN_ILL_INPUT – The argument delay was less than zero.

Notes:
The default value of delay is 0, indicating no delay.

int KINSetOrthAA(void *kin_mem, int orthaa)
The function KINSetOrthAA() specifies the orthogonalization routine to be used in the QR factorization portion
of Anderson acceleration.

Arguments:

• kin_mem – pointer to the KINSOL memory block.

• orthaa – the orthogonalization routine parameter. Can be set to any of
the following

– KIN_ORTH_MGS – Modified Gram Schmidt (default)

– KIN_ORTH_ICWY – Inverse Compact WY Modified Gram Schmidt

– KIN_ORTH_CGS2 – Classical Gram Schmidt with Reorthogonalization (CGS2)

– KIN_ORTH_DCGS2 – Classical Gram Schmidt with Delayed Reorthogonlization

5.3. User-callable functions 65

User Documentation for KINSOL, v7.1.0

Return value:

• KIN_SUCCESS – The optional value has been successfully set.

• KIN_MEM_NULL – The kin_mem pointer is NULL.

• KIN_ILL_INPUT – The argument orthaa was not one of the predefined orthogonalization routines
defined in KINSOL.

Note: This function must be called before calling KINInit().

An example of how to use this function can be found in examples/kinsol/serial/kinAnalytic_fp.c

5.3.4.1 Linear solver interface optional input functions

For matrix-based linear solver modules, the KINLS solver interface needs a function to compute an approximation
to the Jacobian matrix J(u). This function must be of type KINLsJacFn. The user can supply a Jacobian function,
or if using the SUNMATRIX_DENSE or SUNMATRIX_BAND modules for J can use the default internal difference
quotient approximation that comes with the KINLS solver. To specify a user-supplied Jacobian function jac, KINLS
provides the function KINSetJacFn(). The KINLS interface passes the pointer user_data to the Jacobian function.
This allows the user to create an arbitrary structure with relevant problem data and access it during the execution of the
user-supplied Jacobian function, without using global data in the program. The pointer user_data may be specified
through KINSetUserData().

int KINSetJacFn(void *kin_mem, KINLsJacFn jac)
The function KINSetJacFn() specifies the Jacobian approximation function to be used for a matrix-based solver
within the KINLS interface.

Arguments:

• kin_mem – pointer to the KINSOL solver object.

• jac – user-defined Jacobian approximation function. See KINLsJacFn for more details.

Return value:

• KINLS_SUCCESS – The optional value has been successfully set.

• KINLS_MEM_NULL – The kin_mem pointer is NULL.

• KINLS_LMEM_NULL – The KINLS linear solver interface has not been initialized.

Notes:
This function must be called after the KINLS linear solver interface has been initialized through a call to
KINSetLinearSolver(). By default, KINLS uses an internal difference quotient function for the SUN-
MATRIX_DENSE and SUNMATRIX_BAND modules. If NULL is passed to jac, this default function is
used. An error will occur if no jac is supplied when using other matrix types.

New in version 4.0.0: Replaces the deprecated function KINDlsSetJacFn.

When using matrix-free linear solver modules, the KINLS linear solver interface requires a function to compute an
approximation to the product between the Jacobian matrix J(u) and a vector v. The user can supply his/her own
Jacobian-times-vector approximation function, or use the internal difference quotient approximation that comes with
the KINLS solver interface.

A user-defined Jacobian-vector function must be of type KINLsJacTimesVecFn and can be specified through a call
to KINSetJacTimesVecFn() (see §5.4.3 for specification details). The pointer user_data received through KINSe-
tUserData() (or a pointer to NULL if user_data was not specified) is passed to the Jacobian-times-vector function
jtimes each time it is called. This allows the user to create an arbitrary structure with relevant problem data and access
it during the execution of the user-supplied functions without using global data in the program.

66 Chapter 5. Using KINSOL for the Solution of Nonlinear Systems

User Documentation for KINSOL, v7.1.0

int KINSetJacTimesVecFn(void *kin_mem, KINLsJacTimesVecFn jtimes)
The function KINSetJacTimesVecFn() specifies the Jacobian-vector product function.

Arguments:

• kin_mem – pointer to the KINSOL memory block.

• jtimes – user-defined Jacobian-vector product function.

Return value:

• KINLS_SUCCESS – The optional value has been successfully set.

• KINLS_MEM_NULL – The kin_mem pointer is NULL.

• KINLS_LMEM_NULL – The KINLS linear solver has not been initialized.

• KINLS_SUNLS_FAIL – An error occurred when setting up the system matrix-times-vector routines in
the SUNLINSOL object used by the KINLS interface.

Notes:
The default is to use an internal difference quotient for jtimes. If NULL is passed as jtimes, this default
is used. This function must be called after the KINLS linear solver interface has been initialized through a
call to KINSetLinearSolver(). The function type KINLsJacTimesVecFn is described in §5.4.3.

New in version 4.0.0: Replaces the deprecated function KINSpilsSetJacTimesVecFn.

When using the internal difference quotient the user may optionally supply an alternative system function for use in
the Jacobian-vector product approximation by calling KINSetJacTimesVecSysFn(). The alternative system func-
tion should compute a suitable (and differentiable) approximation of the system function provided to KINInit(). For
example, as done in [24] when solving the nonlinear systems that arise in the implicit integration of ordinary differ-
ential equations, the alternative function may use lagged values when evaluating a nonlinearity to avoid differencing a
potentially non-differentiable factor.

int KINSetJacTimesVecSysFn(void *kin_mem, KINSysFn jtimesSysFn)
The function KINSetJacTimesVecSysFn() specifies an alternative system function for use in the internal
Jacobian-vector product difference quotient approximation.

Arguments:

• kin_mem – pointer to the KINSOL memory block.

• jtimesSysFn – is the CC function which computes the alternative system function to use in Jacobian-
vector product difference quotient approximations. This function has the form func(u, fval,
user_data). (For full details see §5.4.1.)

Return value:

• KINLS_SUCCESS – The optional value has been successfully set.

• KINLS_MEM_NULL – The kin_mem pointer is NULL.

• KINLS_LMEM_NULL – The KINLS linear solver has not been initialized.

• KINLS_ILL_INPUT – The internal difference quotient approximation is disabled.

Notes:
The default is to use the system function provided to KINInit() in the internal difference quotient. If the
input system function is NULL, the default is used. This function must be called after the KINLS linear
solver interface has been initialized through a call to KINSetLinearSolver().

When using an iterative linear solver, the user may supply a preconditioning operator to aid in solution of the system.
This operator consists of two user-supplied functions, psetup and psolve, that are supplied to KINLS using the
function KINSetPreconditioner(). The psetup function supplied to this routine should handle evaluation and

5.3. User-callable functions 67

User Documentation for KINSOL, v7.1.0

preprocessing of any Jacobian data needed by the user’s preconditioner solve function, psolve. Both of these functions
are fully specified in §5.4. The user data pointer received through KINSetUserData() (or a pointer to NULL if user
data was not specified) is passed to the psetup and psolve functions. This allows the user to create an arbitrary
structure with relevant problem data and access it during the execution of the user-supplied preconditioner functions
without using global data in the program.

int KINSetPreconditioner(void *kin_mem, KINLsPrecSetupFn psetup, KINLsPrecSolveFn psolve)
The function KINSetPreconditioner() specifies the preconditioner setup and solve functions.

Arguments:

• kin_mem – pointer to the KINSOL solver object.

• psetup – user-defined function to set up the preconditioner. See KINLsPrecSetupFn for more details.
Pass NULL if no setup is necessary.

• psolve – user-defined preconditioner solve function. See KINLsPrecSolveFn for more details.

Return value:

• KINLS_SUCCESS – The optional values have been successfully set.

• KINLS_MEM_NULL – The kin_mem pointer is NULL.

• KINLS_LMEM_NULL – The KINLS linear solver has not been initialized.

• KINLS_SUNLS_FAIL – An error occurred when setting up preconditioning in the SUNLinearSolver
object used by the KINLS interface.

Notes:
The default is NULL for both arguments (i.e., no preconditioning). This function must be called after the
KINLS linear solver interface has been initialized through a call to KINSetLinearSolver().

New in version 4.0.0: Replaces the deprecated function KINSpilsSetPreconditioner.

5.3.5 Optional output functions

KINSOL provides an extensive list of functions that can be used to obtain solver performance information. Table
5.2 lists all optional output functions in KINSOL, which are then described in detail in the remainder of this section,
beginning with those for the main KINSOL solver and continuing with those for the KINLS linear solver interface.
Where the name of an output from a linear solver module would otherwise conflict with the name of an optional output
from the main solver, a suffix LS (for Linear Solver) has been added here (e.g., lenrwLS).

68 Chapter 5. Using KINSOL for the Solution of Nonlinear Systems

User Documentation for KINSOL, v7.1.0

Table 5.2: Optional outputs from KINSOL and KINLS

Optional output Function name
KINSOL main solver
Size of KINSOL real and integer workspaces KINGetWorkSpace()
Number of function evaluations KINGetNumFuncEvals()
Number of nonlinear iterations KINGetNumNonlinSolvIters()
Number of β-condition failures KINGetNumBetaCondFails()
Number of backtrack operations KINGetNumBacktrackOps()
Scaled norm of F KINGetFuncNorm()
Scaled norm of the step KINGetStepLength()
User data pointer KINGetUserData()
Print all statistics KINPrintAllStats()
Name of constant associated with a return flag KINGetReturnFlagName()
KINLS linear solver interface
Stored Jacobian of the nonlinear system KINGetJac()
Nonlinear iteration number at which the Jacobian was evaluated KINGetJacNumIters()
Size of real and integer workspaces KINGetLinWorkSpace()
No. of Jacobian evaluations KINGetNumJacEvals()
No. of F calls for D.Q. Jacobian[-vector] evals. KINGetNumLinFuncEvals()
No. of linear iterations KINGetNumLinIters()
No. of linear convergence failures KINGetNumLinConvFails()
No. of preconditioner evaluations KINGetNumPrecEvals()
No. of preconditioner solves KINGetNumPrecSolves()
No. of Jacobian-vector product evaluations KINGetNumJtimesEvals()
Last return from a KINLS function KINGetLastLinFlag()
Name of constant associated with a return flag KINGetLinReturnFlagName()

5.3.5.1 Main solver optional output functions

KINSOL provides several user-callable functions that can be used to obtain different quantities that may be of interest
to the user, such as solver workspace requirements and solver performance statistics. These optional output functions
are described next.

int KINGetWorkSpace(void *kin_mem, long int lenrw, long int leniw)
The function KINGetWorkSpace() returns the KINSOL integer and real workspace sizes.

Arguments:

• kin_mem – pointer to the KINSOL memory block.

• lenrw – the number of sunrealtype values in the KINSOL workspace.

• leniw – the number of integer values in the KINSOL workspace.

Return value:

• KIN_SUCCESS – The optional output values have been successfully set.

• KIN_MEM_NULL – The kin_mem pointer is NULL.

Notes:
KINSOL solver In terms of the problem size N , the actual size of the real workspace is 17 + 5N sunre-
altype words. The real workspace is increased by an additionalN words if constraint checking is enabled
(see KINSetConstraints()).

5.3. User-callable functions 69

User Documentation for KINSOL, v7.1.0

The actual size of the integer workspace (without distinction between int and long int) is 22 + 5N
(increased by N if constraint checking is enabled).

int KINGetNumFuncEvals(void *kin_mem, long int nfevals)
The function KINGetNumFuncEvals() returns the number of evaluations of the system function.

Arguments:

• kin_mem – pointer to the KINSOL memory block.

• nfevals – number of calls to the user-supplied function that evaluates F (u).

Return value:

• KIN_SUCCESS – The optional output value has been successfully set.

• KIN_MEM_NULL – The kin_mem pointer is NULL.

int KINGetNumNonlinSolvIters(void *kin_mem, long int nniters)
The function KINGetNumNonlinSolvIters() returns the number of nonlinear iterations.

Arguments:

• kin_mem – pointer to the KINSOL memory block.

• nniters – number of nonlinear iterations.

Return value:

• KIN_SUCCESS – The optional output value has been successfully set.

• KIN_MEM_NULL – The kin_mem pointer is NULL.

int KINGetNumBetaCondFails(void *kin_mem, long int nbcfails)
The function KINGetNumBetaCondFails() returns the number of β-condition failures.

Arguments:

• kin_mem – pointer to the KINSOL memory block.

• nbcfails – number of β -condition failures.

Return value:

• KIN_SUCCESS – The optional output value has been successfully set.

• KIN_MEM_NULL – The kin_mem pointer is NULL.

int KINGetNumBacktrackOps(void *kin_mem, long int nbacktr)
The function KINGetNumBacktrackOps() returns the number of backtrack operations (step length adjustments)
performed by the line search algorithm.

Arguments:

• kin_mem – pointer to the KINSOL memory block.

• nbacktr – number of backtrack operations.

Return value:

• KIN_SUCCESS – The optional output value has been successfully set.

• KIN_MEM_NULL – The kin_mem pointer is NULL.

70 Chapter 5. Using KINSOL for the Solution of Nonlinear Systems

User Documentation for KINSOL, v7.1.0

int KINGetFuncNorm(void *kin_mem, sunrealtype fnorm)
The function KINGetFuncNorm() returns the scaled Euclidean `2 norm of the nonlinear system function F (u)
evaluated at the current iterate.

Arguments:

• kin_mem – pointer to the KINSOL memory block.

• fnorm – current scaled norm of F (u).

Return value:

• KIN_SUCCESS – The optional output value has been successfully set.

• KIN_MEM_NULL – The kin_mem pointer is NULL.

int KINGetStepLength(void *kin_mem, sunrealtype steplength)
The function KINGetStepLength() returns the scaled Euclidean `2 norm of the step used during the previous
iteration.

Arguments:

• kin_mem – pointer to the KINSOL memory block.

• steplength – scaled norm of the Newton step.

Return value:

• KIN_SUCCESS – The optional output value has been successfully set.

• KIN_MEM_NULL – The kin_mem pointer is NULL.

int KINGetUserData(void *kin_mem, void **user_data)
The function KINGetUserData() returns the user data pointer provided to KINSetUserData().

Arguments:

• kin_mem – pointer to the KINSOL memory block.

• user_data – memory reference to a user data pointer.

Return value:

• KIN_SUCCESS – The optional output value has been successfully set.

• KIN_MEM_NULL – The kin_mem pointer is NULL.

New in version 6.3.0.

int KINPrintAllStats(void *cvode_mem, FILE *outfile, SUNOutputFormat fmt)
The function KINPrintAllStats() outputs all of the nonlinear solver, linear solver, and other statistics.

Arguments:

• kin_mem – pointer to the KINSOL memory block.

• outfile – pointer to output file.

• fmt – the output format:

– SUN_OUTPUTFORMAT_TABLE – prints a table of values

– SUN_OUTPUTFORMAT_CSV – prints a comma-separated list of key and value pairs e.g., key1,
value1,key2,value2,...

Return value:

• KIN_SUCCESS – The output was successfully.

5.3. User-callable functions 71

User Documentation for KINSOL, v7.1.0

• KIN_MEM_NULL – The kin_mem pointer is NULL.

• KIN_ILL_INPUT – An invalid formatting option was provided.

Note: The file scripts/sundials_csv.py provides python utility functions to read and output the data from
a SUNDIALS CSV output file using the key and value pair format.

New in version 6.2.0.

char *KINGetReturnFlagName(int flag)
The function KINGetReturnFlagName() returns the name of the KINSOL constant corresponding to flag.

Arguments:

• flag – return flag from a KINSOL function.

Return value:

• A string containing the name of the corresponding constant

5.3.5.2 KINLS linear solver interface optional output functions

The following optional outputs are available from the KINLS modules:

int KINGetJac(void *kin_mem, SUNMatrix *J)
Returns the internally stored copy of the Jacobian matrix of the nonlinear system function.

Parameters

• kin_mem – the KINSOL solver object

• J – the Jacobian matrix

Return values

• KINLS_SUCCESS – the output value has been successfully set

• KINLS_MEM_NULL – kin_mem was NULL

• KINLS_LMEM_NULL – the linear solver interface has not been initialized

Warning: With linear solvers that overwrite the input Jacobian matrix as part of the linear solver setup (e.g.,
performing an in-place LU factorization) the matrix returned by KINGetJac() may differ from the matrix
returned by the last Jacobian evaluation.

Warning: This function is provided for debugging purposes and the values in the returned matrix should
not be altered.

int KINGetJacNumIters(void *kin_mem, sunrealtype *nni_J)
Returns the nonlinear iteration number at which the Jacobian was evaluated.

Parameters

• kin_mem – the KINSOL memory structure

• nni_J – the nonlinear iteration number

72 Chapter 5. Using KINSOL for the Solution of Nonlinear Systems

User Documentation for KINSOL, v7.1.0

Return values

• KINLS_SUCCESS – the output value has been successfully set

• KINLS_MEM_NULL – kin_mem was NULL

• KINLS_LMEM_NULL – the linear solver interface has not been initialized

int KINGetLinWorkSpace(void *kin_mem, long int *lenrwLS, long int *leniwLS)
The function KINGetLinWorkSpace() returns the sizes of the real and integer workspaces used by the KINLS
linear solver interface.

Arguments:

• kin_mem – pointer to the KINSOL solver object.

• lenrwLS – the number of real values in the KINLS workspace.

• leniwLS – the number of integer values in the KINLS workspace.

Return value:

• KINLS_SUCCESS – The optional output value has been successfully set.

• KINLS_MEM_NULL – The kin_mem pointer is NULL.

• KINLS_LMEM_NULL – The KINLS linear solver has not been initialized.

Notes:
The workspace requirements reported by this routine correspond only to memory allocated within this
interface and to memory allocated by the SUNLinearSolver object attached to it. The template Jacobian
matrix allocated by the user outside of KINLS is not included in this report.

New in version 4.0.0: Replaces the deprecated function KINDlsGetWorkspace and KINSpilsGetWorkspace.

int KINGetNumJacEvals(void *kin_mem, long int *njevals)
The function KINGetNumJacEvals() returns the cumulative number of calls to the KINLS Jacobian approxi-
mation function.

Arguments:

• kin_mem – pointer to the KINSOL solver object.

• njevals – the cumulative number of calls to the Jacobian function total so far.

Return value:

• KINLS_SUCCESS – The optional output value has been successfully set.

• KINLS_MEM_NULL – The kin_mem pointer is NULL.

• KINLS_LMEM_NULL – The KINLS linear solver has not been initialized.

New in version 4.0.0: Replaces the deprecated function KINDlsGetNumJacEvals.

int KINGetNumLinFuncEvals(void *kin_mem, long int *nrevalsLS)
The function KINGetNumLinFuncEvals() returns the cumulative number of calls to the user residual function
due to the finite difference Jacobian approximation or finite difference Jacobian-vector product approximation.

Arguments:

• kin_mem – pointer to the KINSOL solver object.

• nrevalsLS – the cumulative number of calls to the user residual function.

Return value:

• KINLS_SUCCESS – The optional output value has been successfully set.

5.3. User-callable functions 73

User Documentation for KINSOL, v7.1.0

• KINLS_MEM_NULL – The kin_mem pointer is NULL.

• KINLS_LMEM_NULL – The KINLS linear solver has not been initialized.

Notes:
The value nrevalsLS is incremented only if one of the default internal difference quotient functions is
used.

New in version 4.0.0: Replaces the deprecated functions KINDlsGetNumRhsEvals and KINSpilsGetNumRh-
sEvals.

int KINGetNumLinIters(void *kin_mem, long int *nliters)
The function KINGetNumLinIters() returns the cumulative number of linear iterations.

Arguments:

• kin_mem – pointer to the KINSOL solver object.

• nliters – the current number of linear iterations.

Return value:

• KINLS_SUCCESS – The optional output value has been successfully set.

• KINLS_MEM_NULL – The kin_mem pointer is NULL.

• KINLS_LMEM_NULL – The KINLS linear solver has not been initialized.

New in version 4.0.0: Replaces the deprecated function KINSpilsGetNumLinIters.

int KINGetNumLinConvFails(void *kin_mem, long int *nlcfails)
The function KINGetNumLinConvFails() returns the cumulative number of linear convergence failures.

Arguments:

• kin_mem – pointer to the KINSOL solver object.

• nlcfails – the current number of linear convergence failures.

Return value:

• KINLS_SUCCESS – The optional output value has been successfully set.

• KINLS_MEM_NULL – The kin_mem pointer is NULL.

• KINLS_LMEM_NULL – The KINLS linear solver has not been initialized.

New in version 4.0.0: Replaces the deprecated function KINSpilsGetNumConvFails.

int KINGetNumPrecEvals(void *kin_mem, long int *npevals)
The function KINGetNumPrecEvals() returns the cumulative number of preconditioner evaluations, i.e., the
number of calls made to psetup.

Arguments:

• kin_mem – pointer to the KINSOL solver object.

• npevals – the cumulative number of calls to psetup.

Return value:

• KINLS_SUCCESS – The optional output value has been successfully set.

• KINLS_MEM_NULL – The kin_mem pointer is NULL.

• KINLS_LMEM_NULL – The KINLS linear solver has not been initialized.

New in version 4.0.0: Replaces the deprecated function KINSpilsGetNumPrecEvals.

74 Chapter 5. Using KINSOL for the Solution of Nonlinear Systems

User Documentation for KINSOL, v7.1.0

int KINGetNumPrecSolves(void *kin_mem, long int *npsolves)
The function KINGetNumPrecSolves() returns the cumulative number of calls made to the preconditioner solve
function, psolve.

Arguments:

• kin_mem – pointer to the KINSOL solver object.

• npsolves – the cumulative number of calls to psolve.

Return value:

• KINLS_SUCCESS – The optional output value has been successfully set.

• KINLS_MEM_NULL – The kin_mem pointer is NULL.

• KINLS_LMEM_NULL – The KINLS linear solver has not been initialized.

New in version 4.0.0: Replaces the deprecated function KINSpilsGetNumPrecSolves.

int KINGetNumJtimesEvals(void *kin_mem, long int *njvevals)
The function KINGetNumJtimesEvals() returns the cumulative number of calls made to the Jacobian-vector
product function, jtimes.

Arguments:

• kin_mem – pointer to the KINSOL solver object.

• njvevals – the cumulative number of calls to jtimes.

Return value:

• KINLS_SUCCESS – The optional output value has been successfully set.

• KINLS_MEM_NULL – The kin_mem pointer is NULL.

• KINLS_LMEM_NULL – The KINLS linear solver has not been initialized.

New in version 4.0.0: Replaces the deprecated function KINSpilsGetNumJtimesEvals.

int KINGetLastLinFlag(void *kin_mem, long int *lsflag)
The function KINGetLastLinFlag() returns the last return value from an KINLS routine.

Arguments:

• kin_mem – pointer to the KINSOL solver object.

• lsflag – the value of the last return flag from an KINLS function.

Return value:

• KINLS_SUCCESS – The optional output value has been successfully set.

• KINLS_MEM_NULL – The kin_mem pointer is NULL.

• KINLS_LMEM_NULL – The KINLS linear solver has not been initialized.

Notes:
If the KINLS setup function failed (i.e., KINSol() returned KIN_LSETUP_FAIL) when using the SUN-
LINSOL_DENSE or SUNLINSOL_BAND modules, then the value of lsflag is equal to the column index
(numbered from one) at which a zero diagonal element was encountered during the LU factorization of the
(dense or banded) Jacobian matrix.

If the KINLS setup function failed when using another SUNLinearSolver object, then lsflag will be
SUNLS_PSET_FAIL_UNREC, SUNLS_ASET_FAIL_UNREC, or SUN_ERR_EXT_FAIL.

5.3. User-callable functions 75

User Documentation for KINSOL, v7.1.0

If the KINLS solve function failed (KINSol() returned KIN_LSOLVE_FAIL), lsflag contains the error
return flag from the SUNLinearSolver object, which will be one of: SUN_ERR_ARG_CORRUPTRRUPT,
indicating that the SUNLinearSolver memory is NULL; SUNLS_ATIMES_FAIL_UNREC, indicating an un-
recoverable failure in the J ∗ v function; SUNLS_PSOLVE_FAIL_UNREC, indicating that the preconditioner
solve function psolve failed unrecoverably; SUNLS_GS_FAIL, indicating a failure in the Gram-Schmidt
procedure (generated only in SPGMR or SPFGMR); SUNLS_QRSOL_FAIL, indicating that the matrix R
was found to be singular during the QR solve phase (SPGMR and SPFGMR only); or SUN_ERR_EXT_-
FAIL, indicating an unrecoverable failure in an external iterative linear solver package.

New in version 4.0.0: Replaces the deprecated functions KINDlsGetLastFlag and KINSpilsGetLastFlag.

char *KINGetLinReturnFlagName(long int lsflag)
The function KINGetLinReturnFlagName() returns the name of the KINLS constant corresponding to lsflag.

Arguments:

• flag – the flag returned by a call to an KINSOL function

Return value:

• char* – the flag name string or if 1 ≤ lsflag ≤ N (LU factorization failed), this function returns
“NONE”.

New in version 4.0.0: Replaces the deprecated functions KINDlsGetReturnFlagName and KINSpilsGetRe-
turnFlagName.

5.4 User-supplied functions

The user-supplied functions consist of one function defining the nonlinear system, (optionally) a function that handles
error and warning messages, (optionally) a function that handles informational messages, (optionally) one or two func-
tions that provides Jacobian-related information for the linear solver, and (optionally) one or two functions that define
the preconditioner for use in any of the Krylov iterative algorithms.

5.4.1 Problem defining function

The user must provide a function of type KINSysFn defined as follows:

typedef int (*KINSysFn)(N_Vector u, N_Vector fval, void *user_data)
This function computes the F (u) (orG(u) for fixed-point iteration and Anderson acceleration) for a given value
of the vector u.

Arguments:

• u – is the current value of the dependent variable vector, u

• fval – is the output vector F (u)

• user_data – is a pointer to user data, the same as the user_data pointer parameter passed to KIN-
SetUserData()

Return value:
An KINSysFn function type should return a value of 0 if successful, a positive value if a recoverable error
occurred (in which case KINSOL will attempt to correct), or a negative value if a nonrecoverable error
occurred. In the last case, the integrator halts. If a recoverable error occurred, the integrator will attempt
to correct and retry.

Notes:
Allocation of memory for fval is handled within KINSOL.

76 Chapter 5. Using KINSOL for the Solution of Nonlinear Systems

User Documentation for KINSOL, v7.1.0

5.4.2 Jacobian construction (matrix-based linear solvers)

If a matrix-based linear solver module is used (i.e. a non-NULL SUNMatrix object was supplied to KINSetLinear-
Solver()), the user may provide a function of type KINLsJacFn defined as follows:

typedef int (*KINLsJacFn)(N_Vector u, N_Vector fu, SUNMatrix J, void *user_data, N_Vector tmp1, N_Vector
tmp2)

This function computes the Jacobian matrix J(u) (or an approximation to it).

Arguments:

• u – is the current (unscaled) iterate.

• fu – is the current value of the vector, F (u).

• J – is the output (approximate) Jacobian matrix (of type SUNMatrix), F ′(u).

• user_data - is a pointer to user data, the same as the user_data parameter passed to KINSetUser-
Data().

• tmp1, tmp2, – are pointers to memory allocated for variables of type N_Vector which can be used by
KINLsJacFn function as temporary storage or work space.

Return value:
An KINLsJacFn should return 0 if successful, or a non-zero value otherwise.

Notes:
Information regarding the structure of the specific SUNMatrix structure (e.g. number of rows, upper/lower
bandwidth, sparsity type) may be obtained through using the implementation-specific SUNMatrix interface
functions (see Chapter §7 for details).

With direct linear solvers (i.e., linear solvers with type SUNLINEARSOLVER_DIRECT), the Jacobian matrix
J(u) is zeroed out prior to calling the user-supplied Jacobian function so only nonzero elements need to be
loaded into J.

If the user’s KINLsJacFn function uses difference quotient approximations, it may need to access quantities
not in the call list. These quantities may include the scale vectors and the unit roundoff. To obtain the scale
vectors, the user will need to add to user_data pointers to u_scale and/or f_scale as needed. The unit
roundoff can be accessed as SUN_UNIT_ROUNDOFF defined in sundials_types.h.

dense:

A user-supplied dense Jacobian function must load the N × N dense matrix J with an approximation to
the Jacobian matrix J(u) at the point (u). The accessor macros SM_ELEMENT_D and SM_COLUMN_D allow
the user to read and write dense matrix elements without making explicit references to the underlying
representation of the SUNMATRIX_DENSE type. SM_ELEMENT_D(J, i, j) references the (i, j)-th element
of the dense matrix J (with i, j= 0 . . . N−1). This macro is meant for small problems for which efficiency
of access is not a major concern. Thus, in terms of the indices m and n ranging from 1 to N , the Jacobian
element Jm,n can be set using the statement SM_ELEMENT_D(J, m-1, n-1) = Jm,n. Alternatively, SM_-
COLUMN_D(J, j) returns a pointer to the first element of the j-th column of J (with j= 0 . . . N− 1), and
the elements of the j-th column can then be accessed using ordinary array indexing. Consequently, Jm,n
can be loaded using the statements col_n = SM_COLUMN_D(J, n-1); col_n[m-1] = Jm,n. For large
problems, it is more efficient to use SM_COLUMN_D than to use SM_ELEMENT_D. Note that both of these
macros number rows and columns starting from 0. The SUNMATRIX_DENSE type and accessor macros are
documented in §7.3.

banded:

A user-supplied banded Jacobian function must load the N × N banded matrix J with an approximation
to the Jacobian matrix J(u) at the point (u). The accessor macros SM_ELEMENT_B, SM_COLUMN_B, and
SM_COLUMN_ELEMENT_B allow the user to read and write banded matrix elements without making specific

5.4. User-supplied functions 77

User Documentation for KINSOL, v7.1.0

references to the underlying representation of the SUNMATRIX_BAND type. SM_ELEMENT_B(J, i, j) ref-
erences the (i, j)-th element of the banded matrix J, counting from 0. This macro is meant for use in
small problems for which efficiency of access is not a major concern. Thus, in terms of the indices m and
n ranging from 1 to N with (m,n) within the band defined by mupper and mlower, the Jacobian element
Jm,n can be loaded using the statement SM_ELEMENT_B(J, m-1, n-1) = Jm,n. The elements within the
band are those with -mupper ≤ m-n ≤ mlower. Alternatively, SM_COLUMN_B(J, j) returns a pointer to
the diagonal element of the j-th column of J, and if we assign this address to sunrealtype *col_j, then
the i-th element of the j-th column is given by SM_COLUMN_ELEMENT_B(col_j, i, j), counting from
0. Thus, for (m,n) within the band, Jm,n can be loaded by setting col_n = SM_COLUMN_B(J, n-1);
and SM_COLUMN_ELEMENT_B(col_n, m-1, n-1) = Jm,n. The elements of the j-th column can also be
accessed via ordinary array indexing, but this approach requires knowledge of the underlying storage for a
band matrix of type SUNMATRIX_BAND. The array col_n can be indexed from −mupper to mlower. For
large problems, it is more efficient to use SM_COLUMN_B and SM_COLUMN_ELEMENT_B than to use the SM_-
ELEMENT_B macro. As in the dense case, these macros all number rows and columns starting from 0. The
SUNMATRIX_BAND type and accessor macros are documented in §7.6.

sparse:

A user-supplied sparse Jacobian function must load the N × N compressed-sparse-column or compressed-
sparse-row matrix J with an approximation to the Jacobian matrix J(u) at the point (u). Storage for J
already exists on entry to this function, although the user should ensure that sufficient space is allocated
in J to hold the nonzero values to be set; if the existing space is insufficient the user may reallocate the
data and index arrays as needed. The amount of allocated space in a SUNMATRIX_SPARSE object may
be accessed using the macro SM_NNZ_S or the routine SUNSparseMatrix_NNZ. The SUNMATRIX_SPARSE
type and accessor macros are documented in §7.8.

New in version 4.0.0: Replaces the deprecated type KINDlsJacFn.

5.4.3 Jacobian-vector product (matrix-free linear solvers)

If a matrix-free linear solver is to be used (i.e., a NULL-valued SUNMatrix was supplied to KINSetLinearSolver()),
the user may provide a function of type KINLsJacTimesVecFn in the following form, to compute matrix-vector prod-
ucts Jv. If such a function is not supplied, the default is a difference quotient approximation to these products.

typedef int (*KINLsJacTimesVecFn)(N_Vector v, N_Vector Jv, N_Vector u, sunbooleantype *new_u, void
*user_data)

This function computes the product Jv (or an approximation to it).

Arguments:

• v – is the vector by which the Jacobian must be multplied to the right.

• Jv – is the computed output vector.

• u – is the current value of the dependent variable vector.

• user_data – is a pointer to user data, the same as the user_data parameter passed to KINSetUser-
Data().

Return value:
The value returned by the Jacobian-times-vector function should be 0 if successful. If a recoverable failure
occurred, the return value should be positive. In this case, KINSOL will attempt to correct by calling the
preconditioner setup function. If this information is current, KINSOL halts. If the Jacobian-times-vector
function encounters an unrecoverable error, it should return a negative value, prompting KINSOL to halt.

Notes:
If a user-defined routine is not given, then an internal jtimes function, using a difference quotient approx-
imation, is used.

78 Chapter 5. Using KINSOL for the Solution of Nonlinear Systems

User Documentation for KINSOL, v7.1.0

This function must return a value of J ∗ v that uses the current value of J , i.e. as evaluated at the current
u.

If the user’s KINLsJacTimesVecFn function uses difference quotient approximations, it may need to access
quantities not in the call list. These might include the scale vectors and the unit roundoff. To obtain the
scale vectors, the user will need to add to user_data pointers to u_scale and/or f_scale as needed. The
unit roundoff can be accessed as SUN_UNIT_ROUNDOFF defined in sundials_types.h.

New in version 4.0.0: Replaces the deprecated type KINSpilsJacTimesVecFn.

5.4.4 Preconditioner solve (iterative linear solvers)

If a user-supplied preconditioner is to be used with a SUNLinearSolver solver module, then the user must provide a
function to solve the linear system Pz = r where P is the preconditioner matrix which approximates (at least crudely)
the Jacobian matrix J = F ′(u). This function must be of type KINLsPrecSolveFn, defined as follows:

typedef int (*KINLsPrecSolveFn)(N_Vector u, N_Vector uscale, N_Vector fval, N_Vector fscale, N_Vector v, void
*user_data)

This function solves the preconditioning system Pz = r.

Arguments:

• u – is the current (unscaled) value of the iterate.

• uscale – is a vector containing diagonal elements of the scaling matrix u

• fval – is the vector F (u) evaluated at u

• fscale – is a vector containing diagonal elements of the scaling matrix for fval

• v – on inpuut, v is set to the right-hand side vector of the linear system, r. On output, v must contain
the solution z of the linear system Pz = r

• user_data – is a pointer to user data, the same as the user_data parameter passed to KINSetUser-
Data().

Return value:
The value returned by the preconditioner solve function should be 0 if successful, positive for a recoverable
error, or negative for an unrecoverable error.

Notes:
If the preconditioner solve function fails recoverably and if the preconditioner information (set by the pre-
conditioner setup function) is out of date, KINSOL attempts to correct by calling the setup function. If the
preconditioner data is current, KINSOL halts.

5.4.5 Preconditioner setup (iterative linear solvers)

If the user’s preconditioner requires that any Jacobian-related data be evaluated or preprocessed, then this needs to be
done in a user-supplied function of type KINLsPrecSetupFn, defined as follows:

typedef int (*KINLsPrecSetupFn)(N_Vector u, N_Vector uscale, N_Vector fval, N_Vector fscale, void *user_data)
This function evaluates and/or preprocesses Jacobian-related data needed by the preconditioner solve function.

Arguments:

• u – is the current (unscaled) value of the iterate.

• uscale – is a vector containing diagonal elements of the scaling matrix u

• fval – is the vector F (u) evaluated at u

5.4. User-supplied functions 79

User Documentation for KINSOL, v7.1.0

• fscale – is a vector containing diagonal elements of the scaling matrix for fval

• user_data – is a pointer to user data, the same as the user_data parameter passed to KINSetUser-
Data().

Return value:
The value returned by the preconditioner setup function should be 0 if successful, positive for a recoverable
error (in which case the step will be retried), or negative for an unrecoverable error (in which case the
integration is halted).

Notes:
The user-supplied preconditioner setup subroutine should compute the right preconditioner matrix P
(stored in the memory block referenced by the user_data pointer) used to form the scaled preconditioned
linear system

(DFJ(u)P−1D−1u)(DuPx) = −DFF (u) ,

where Du and DF denote the diagonal scaling matrices whose diagonal elements are stored in the vectors
uscale and fscale, respectively.

The preconditioner setup routine will not be called prior to every call made to the preconditioner solve
function, but will instead be called only as often as necessary to achieve convergence of the Newton iteration.

If the user’s KINLsPrecSetupFn function uses difference quotient approximations, it may need to access
quantities not in the call list. These might include the scale vectors and the unit roundoff. To obtain the
scale vectors, the user will need to add to user_data pointers to u_scale and/or f_scale as needed. The
unit roundoff can be accessed as SUN_UNIT_ROUNDOFF defined in sundials_types.h.

If the preconditioner solve routine requires no preparation, then a preconditioner setup function need not
be given.

5.5 A parallel band-block-diagonal preconditioner module

The efficiency of Krylov iterative methods for the solution of linear systems can be greatly enhanced through precon-
ditioning. For problems in which the user cannot define a more effective, problem-specific preconditioner, KINSOL
provides a band-block-diagonal preconditioner module KINBBDPRE, to be used with the parallel N_Vector module
described in §6.5.

This module provides a preconditioner matrix for KINSOL that is block-diagonal with banded blocks. The blocking
corresponds to the distribution of the dependent variable vector u amongst the processes. Each preconditioner block
is generated from the Jacobian of the local part (associated with the current process) of a given function G(u) ap-
proximating F (u) (G = F is allowed). The blocks are generated by each process via a difference quotient scheme,
utilizing a specified band structure. This structure is given by upper and lower half-bandwidths, mudq and mldq, defined
as the number of non-zero diagonals above and below the main diagonal, respectively. However, from the resulting
approximate Jacobain blocks, only a matrix of bandwidth mukeep + mlkeep +1 is retained.

Neither pair of parameters need be the true half-bandwidths of the Jacobian of the local block of G, if smaller values
provide a more efficient preconditioner. Such an efficiency gain may occur if the couplings in the system outside a
certain bandwidth are considerably weaker than those within the band. Reducing mukeep and mlkeep while keeping
mudq and mldq at their true values, discards the elements outside the narrower band. Reducing both pairs has the
additional effect of lumping the outer Jacobian elements into the computed elements within the band, and requires
more caution and experimentation to see whether the lower cost of narrower band matrices offsets the loss of accuracy
in the blocks.

The KINBBDPRE module calls two user-provided functions to constructP : a required function Gloc (of type KINBBD-
LocalFn) which approximates the nonlinear system function G(u) ≈ F (u) and which is computed locally, and an

80 Chapter 5. Using KINSOL for the Solution of Nonlinear Systems

User Documentation for KINSOL, v7.1.0

optional function Gcomm (of type KINBBDCommFn) which performs all interprocess communication necessary to eval-
uate the approximate function G. These are in addition to the user-supplied nonlinear system function that evaluates
F (u). Both functions take as input the same pointer user_data as that passed by the user to KINSetUserData() and
passed to the user’s function func, and neither function has a return value. The user is responsible for providing space
(presumably within user_data) for components of u that are communicated by Gcomm from the other processes, and
that are then used by Gloc, which should not do any communication.

typedef int (*KINBBDLocalFn)(sunindextype Nlocal, N_Vector u, N_Vector gval, void *user_data)
This Gloc function computes G(u), and outputs the resulting vector as gval.

Arguments:

• Nlocal – is the local vector length.

• u – is the current value of the iterate.

• gval – is the output vector.

• user_data – is a pointer to user data, the same as the user_data parameter passed to KINSetUser-
Data().

Return value:
An KINBBDLocalFn function type should return 0 to indicate success, or non-zero if an error occured.

Notes:
This function must assume that all inter-processor communication of data needed to calculate gval has
already been done, and this data is accessible within user_data.

The case where G is mathematically identical to F is allowed.

typedef int (*KINBBDCommFn)(sunindextype Nlocal, N_Vector u, void *user_data)
This Gcomm function performs all inter-processor communications necessary for the execution of the Gloc func-
tion above, using the input vectors u.

Arguments:

• Nlocal – is the local vector length.

• u – is the current value of the iterate.

• user_data – is a pointer to user data, the same as the user_data parameter passed to KINSetUser-
Data().

Return value:
An KINBBDLocalFn function type should return 0 to indicate success, or non-zero if an error occured.

Notes:
The Gcomm function is expected to save communicated data in space defined within the structure user_-
data.

Each call to the Gcomm function is preceded by a call to the residual function func with the same u argu-
ment. Thus Gcomm can omit any communications done by func if relevant to the evaluation of Gloc. If
all necessary communication was done in func, then Gcomm = NULL can be passed in the call to KINBB-
DPrecInit().

Besides the header files required for the integration of the DAE problem (see §5.1), to use the KINBBDPRE module,
the main program must include the header file kin_bbdpre.h which declares the needed function prototypes.

The following is a summary of the usage of this module and describes the sequence of calls in the user main program.
Steps that are unchanged from the user main program presented in §5.2 are not bold.

1. Initialize parallel or multi-threaded environment (if appropriate)

2. Create the SUNDIALS context object

5.5. A parallel band-block-diagonal preconditioner module 81

User Documentation for KINSOL, v7.1.0

3. Set the problem dimensions etc.

4. Create the vector with the initial guess

5. Create matrix object (if appropriate)

6. Create linear solver object (if appropriate)

When creating the iterative linear solver object, specify the use of right preconditioning (SUN_PREC_RIGHT) as
KINSOL only supports right preconditioning.

7. Create nonlinear solver object (if appropriate)

8. Create KINSOL object

9. Initialize KINSOL solver

10. Attach the linear solver (if appropriate)

11. Set linear solver optional inputs (if appropriate)

Note that the user should not overwrite the preconditioner setup function or solve function through calls to
KINSetPreconditioner() optional input function.

12. Initialize the KINBBDPRE preconditioner module

Call KINBBDPrecInit() to allocate memory and initialize the internal preconditioner data. The last two argu-
ments of KINBBDPrecInit() are the two user-supplied functions described above.

13. Set optional inputs

14. Solve problem

15. Get optional outputs

Additional optional outputs associated with KINBBDPRE are available by way of two routines described below,
KINBBDPrecGetWorkSpace() and KINBBDPrecGetNumGfnEvals().

16. Deallocate memory

17. Finalize MPI, if used

The user-callable functions that initialize or re-initialize the KINBBDPRE preconditioner module are described next.

int KINBBDPrecInit(void *kin_mem, sunindextype Nlocal, sunindextype mudq, sunindextype mldq, sunindextype
mukeep, sunindextype mlkeep, sunrealtype dq_rel_u, KINBBDLocalFn Gloc,
KINBBDCommFn Gcomm)

The function KINBBDPrecInit() initializes and allocates memory for the KINBBDPRE preconditioner.

Arguments:

• kin_mem – pointer to the KINSOL memory block.

• Nlocal – local vector length.

• mudq – upper half-bandwidth to be used in the difference-quotient Jacobian approximation.

• mldq – lower half-bandwidth to be used in the difference-quotient Jacobian approximation.

• mukeep – upper half-bandwidth of the retained banded approximate Jacobian block.

• mlkeep – lower half-bandwidth of the retained banded approximate Jacobian block.

• dq_rel_u – the relative increment in components of u used in the difference quotient approximations.
The default is dq_rel_u =

√
unit roundoff , which can be specified by passing dq_rel_u= 0.0.

• Gloc – the CC function which computes the approximation G(u) ≈ F (u).

82 Chapter 5. Using KINSOL for the Solution of Nonlinear Systems

User Documentation for KINSOL, v7.1.0

• Gcomm – the optional CC function which performs all interprocess communication required for the
computation of G(u).

Return value:

• KINLS_SUCCESS – The call to KINBBDPrecInit() was successful.

• KINLS_MEM_NULL – The kin_mem pointer was NULL.

• KINLS_MEM_FAIL – A memory allocation request has failed.

• KINLS_LMEM_NULL – The KINLS linear solver interface has not been initialized.

• KINLS_ILL_INPUT – The supplied vector implementation was not compatible with the block band
preconditioner.

Notes:
If one of the half-bandwidths mudq or mldq to be used in the difference-quotient calculation of the approx-
imate Jacobian is negative or exceeds the value Nlocal-1, it is replaced with 0 or Nlocal-1 accordingly.

The half-bandwidths mudq and mldq need not be the true half-bandwidths of the Jacobian of the local block
of G, when smaller values may provide greater efficiency.

Also, the half-bandwidths mukeep and mlkeep of the retained banded approximate Jacobian block may be
even smaller, to reduce storage and computation costs further.

For all four half-bandwidths, the values need not be the same for every process.

The following two optional output functions are available for use with the KINBBDPRE module:

int KINBBDPrecGetWorkSpace(void *kin_mem, long int *lenrwBBDP, long int *leniwBBDP)
The function KINBBDPrecGetWorkSpace() returns the local sizes of the KINBBDPRE real and integer
workspaces.

Arguments:

• kin_mem – pointer to the KINSOL solver object.

• lenrwBBDP – local number of real values in the KINBBDPRE workspace.

• leniwBBDP – local number of integer values in the KINBBDPRE workspace.

Return value:

• KINLS_SUCCESS – The optional output value has been successfully set.

• KINLS_MEM_NULL – The kin_mem pointer was NULL.

• KINLS_PMEM_NULL – The KINBBDPRE preconditioner has not been initialized.

Notes:
The workspace requirements reported by this routine correspond only to memory allocated within the
KINBBDPRE module (the banded matrix approximation, banded SUNLinearSolver object, temporary
vectors). These values are local to each process.

The workspaces referred to here exist in addition to those given by the corresponding KINGetLin-
WorkSpace() function.

int KINBBDPrecGetNumGfnEvals(void *kin_mem, long int *ngevalsBBDP)
The function KINBBDPrecGetNumGfnEvals() returns the cumulative number of calls to the user Gres function
due to the finite difference approximation of the Jacobian blocks used within KINBBDPRE’s preconditioner setup
function.

Arguments:

• kin_mem – pointer to the KINSOL solver object.

5.5. A parallel band-block-diagonal preconditioner module 83

User Documentation for KINSOL, v7.1.0

• ngevalsBBDP – the cumulative number of calls to the user Gres function.

Return value:

• KINLS_SUCCESS – The optional output value has been successfully set.

• KINLS_MEM_NULL – The kin_mem pointer was NULL.

• KINLS_PMEM_NULL – The KINBBDPRE preconditioner has not been initialized.

In addition to the ngevalsBBDP evaluations of Gres, the costs associated with KINBBDPRE also includes nlin-
setups LU factorizations, nlinsetups calls to Gcomm, npsolves banded backsolve calls, and nrevalsLS residual
function evaluations, where nlinsetups is an optional KINSOL output (see §5.3.5.1), and npsolves and nrevalsLS
are linear solver optional outputs (see §5.3.5.2).

5.6 Alternative to KINSOL for difficult systems

A nonlinear system F (u) = 0 may be difficult to solve with KINSOL (or any other nonlinear system solver) for a
variety of reasons. The possible reasons include high nonlinearity, small region of convergence, and lack of a good
initial guess. For systems with such difficulties, there is an alternative approach that may be more successful. This is
an old idea, but deserves some new attention.

If the nonlinear system isF (u) = 0, consider instead the ODE system du/dt = −M−1F (u), whereM is a nonsingular
matrix that is an approximation (even a crude approximation) to the system Jacobian Fu = dF/du. Whatever M is, if
this ODE is solved until it reaches a steady state u∗, then u∗ is a zero of the right-hand side of the ODE, and hence a
solution to F (u) = 0. There is no issue of having a close enough initial guess.

A further basis for this choice of ODE is the following: If M approximates Fu, then the Jacobian of the ODE system,
−M−1Fu, is approximately equal to −I where I is the identity matrix. This means that (in a local approximation
sense) the solution modes of the ODE behave like exp(−t), and that asymptotically the approach to the steady state
goes as exp(−t). Of course, the closer M is to Fu, the better this basis applies.

Using (say) CVODE to solve the above ODE system requires, in addition to the objective function F (u), the calculation
of a suitable matrix M and its inverse, or at least a routine that solves linear systems Mx = b. This is similar to the
KINSOL requirement of supplying the system Jacobian J (or solutions to Jx = b), but differs in that M may be
simpler than J and hence easier to deal with. Depending on the nature of M , this may be handled best with a direct
solver, or with a preconditioned Krylov solver. The latter calls for the use of a preconditioner P that may be a crude
approximation toM , hence even easier to solve. Note if using ARKODE, the ODE system may be posed in the linearly
implicit from Mdu/dt = −F (u) where M is the “mass matrix” for the system. This use case requires supplying
ARKODE with a function to evaluate M or to compute its action on a vector (Mv = w) and attaching a linear solver
(direct or iterative) to solve the linear systems Mx = b.

The solution of the ODE may be made easier by solving instead the equivalent DAE, Mdu/dt+ F (u) = 0. Applying
IDA to this system requires solutions to linear systems whose matrix is the DAE system Jacobian, J = Fu+αM , where
α is the scalar coefficient cj supplied to the user’s Jacobian or preconditioner routine. Selecting a preconditioned Krylov
method requires an approximation to this Jacobian as preconditioner P . Given that M approximates Fu (possibly
crudely), the appropriate approximation to J is P = M + αM = (1 + α)M . Again the user must supply a routine
that solves linear systems Px = b, or Mx = b/(1 + α). If M is too difficult to solve, than an approximation M ′ that
is easier can be substituted, as long as it achieves convergence. As always, there is a trade-off between the expense of
solving M and the difficulty of achieving convergence in the linear solver.

For the solution of either the ODE or DAE system above, the chances for convergence can be improved with a piecewise
constant choice for M . Specifically, starting from an initial guess u0, an initial choice for M might be M0 = Fu(u0),
or some approximation to this Jacobian. Then one could integrate M0du/dt + F (u) = 0 from t = 0 to t = T for
some sizable value T , evaluate Fu(u(T)), and take M1 to be an approximation to that Jacobian. Then integrate using
M1 from t = T to t = 2T , and repeat the process until it converges to a steady state.

84 Chapter 5. Using KINSOL for the Solution of Nonlinear Systems

Chapter 6

Vector Data Structures

The SUNDIALS library comes packaged with a variety of NVECTOR implementations, designed for simulations in
serial, shared-memory parallel, and distributed-memory parallel environments, as well as interfaces to vector data
structures used within external linear solver libraries. All native implementations assume that the process-local data is
stored contiguously, and they in turn provide a variety of standard vector algebra operations that may be performed on
the data.

In addition, SUNDIALS provides a simple interface for generic vectors (akin to a C++ abstract base class). All of the
major SUNDIALS solvers (CVODE(s), IDA(s), KINSOL, ARKODE) in turn are constructed to only depend on these
generic vector operations, making them immediately extensible to new user-defined vector objects. The only exceptions
to this rule relate to the dense, banded and sparse-direct linear system solvers, since they rely on particular data storage
and access patterns in the NVECTORS used.

6.1 Description of the NVECTOR Modules

SUNDIALS solvers are written in a data-independent manner. They all operate on generic vectors (of type N_Vector)
through a set of operations defined by, and specific to, the particular vector implementation. Users can provide a
custom vector implementation or use one provided with SUNDIALS. The generic operations are described below. In
the sections following, the implementations provided with SUNDIALS are described.

An N_Vector is a pointer to the _generic_N_Vector structure:

typedef struct _generic_N_Vector *N_Vector

struct _generic_N_Vector
The structure defining the SUNDIALS vector class.

void *content
Pointer to vector-specific member data.

N_Vector_Ops ops
A virtual table of vector operations provided by a specific implementation.

SUNContext sunctx
The SUNDIALS simulation context

The virtual table structure is defined as

typedef _generic_N_Vector_Ops *N_Vector_Ops

85

User Documentation for KINSOL, v7.1.0

struct _generic_N_Vector_Ops
The structure defining N_Vector operations.

N_Vector_ID (*nvgetvectorid)(N_Vector)
The function implementing N_VGetVectorID()

N_Vector (*nvclone)(N_Vector)
The function implementing N_VClone()

N_Vector (*nvcloneempty)(N_Vector)
The function implementing N_VCloneEmpty()

void (*nvdestroy)(N_Vector)
The function implementing N_VDestroy()

void (*nvspace)(N_Vector, sunindextype*, sunindextype*)
The function implementing N_VSpace()

sunrealtype *(*nvgetarraypointer)(N_Vector)
The function implementing N_VGetArrayPointer()

sunrealtype *(*nvgetdevicearraypointer)(N_Vector)
The function implementing N_VGetDeviceArrayPointer()

void (*nvsetarraypointer)(sunrealtype*, N_Vector)
The function implementing N_VSetArrayPointer()

SUNComm (*nvgetcommunicator)(N_Vector)
The function implementing N_VGetCommunicator()

sunindextype (*nvgetlength)(N_Vector)
The function implementing N_VGetLength()

sunindextype (*nvgetlocallength)(N_Vector)
The function implementing N_VGetLocalLength()

void (*nvlinearsum)(sunrealtype, N_Vector, sunrealtype, N_Vector, N_Vector)
The function implementing N_VLinearSum()

void (*nvconst)(sunrealtype, N_Vector)
The function implementing N_VConst()

void (*nvprod)(N_Vector, N_Vector, N_Vector)
The function implementing N_VProd()

void (*nvdiv)(N_Vector, N_Vector, N_Vector)
The function implementing N_VDiv()

void (*nvscale)(sunrealtype, N_Vector, N_Vector)
The function implementing N_VScale()

void (*nvabs)(N_Vector, N_Vector)
The function implementing N_VAbs()

void (*nvinv)(N_Vector, N_Vector)
The function implementing N_VInv()

86 Chapter 6. Vector Data Structures

User Documentation for KINSOL, v7.1.0

void (*nvaddconst)(N_Vector, sunrealtype, N_Vector)
The function implementing N_VAddConst()

sunrealtype (*nvdotprod)(N_Vector, N_Vector)
The function implementing N_VDotProd()

sunrealtype (*nvmaxnorm)(N_Vector)
The function implementing N_VMaxNorm()

sunrealtype (*nvwrmsnorm)(N_Vector, N_Vector)
The function implementing N_VWrmsNorm()

sunrealtype (*nvwrmsnormmask)(N_Vector, N_Vector, N_Vector)
The function implementing N_VWrmsNormMask()

sunrealtype (*nvmin)(N_Vector)
The function implementing N_VMin()

sunrealtype (*nvwl2norm)(N_Vector, N_Vector)
The function implementing N_VWL2Norm()

sunrealtype (*nvl1norm)(N_Vector)
The function implementing N_VL1Norm()

void (*nvcompare)(sunrealtype, N_Vector, N_Vector)
The function implementing N_VCompare()

sunbooleantype (*nvinvtest)(N_Vector, N_Vector)
The function implementing N_VInvTest()

sunbooleantype (*nvconstrmask)(N_Vector, N_Vector, N_Vector)
The function implementing N_VConstrMask()

sunrealtype (*nvminquotient)(N_Vector, N_Vector)
The function implementing N_VMinQuotient()

SUNErrCode (*nvlinearcombination)(int, sunrealtype*, N_Vector*, N_Vector)
The function implementing N_VLinearCombination()

SUNErrCode (*nvscaleaddmulti)(int, sunrealtype*, N_Vector, N_Vector*, N_Vector*)
The function implementing N_VScaleAddMulti()

SUNErrCode (*nvdotprodmulti)(int, N_Vector, N_Vector*, sunrealtype*)
The function implementing N_VDotProdMulti()

SUNErrCode (*nvlinearsumvectorarray)(int, sunrealtype, N_Vector*, sunrealtype, N_Vector*,
N_Vector*)

The function implementing N_VLinearSumVectorArray()

SUNErrCode (*nvscalevectorarray)(int, sunrealtype*, N_Vector*, N_Vector*)
The function implementing N_VScaleVectorArray()

SUNErrCode (*nvconstvectorarray)(int, sunrealtype, N_Vector*)
The function implementing N_VConstVectorArray()

SUNErrCode (*nvwrmsnormvectorarray)(int, N_Vector*, N_Vector*, sunrealtype*)
The function implementing N_VWrmsNormVectorArray()

6.1. Description of the NVECTOR Modules 87

User Documentation for KINSOL, v7.1.0

SUNErrCode (*nvwrmsnormmaskvectorarray)(int, N_Vector*, N_Vector*, N_Vector, sunrealtype*)
The function implementing N_VWrmsNormMaskVectorArray()

SUNErrCode (*nvscaleaddmultivectorarray)(int, int, sunrealtype*, N_Vector*, N_Vector**,
N_Vector**)

The function implementing N_VScaleAddMultiVectorArray()

SUNErrCode (*nvlinearcombinationvectorarray)(int, int, sunrealtype*, N_Vector**, N_Vector*)
The function implementing N_VLinearCombinationVectorArray()

sunrealtype (*nvdotprodlocal)(N_Vector, N_Vector)
The function implementing N_VDotProdLocal()

sunrealtype (*nvmaxnormlocal)(N_Vector)
The function implementing N_VMaxNormLocal()

sunrealtype (*nvminlocal)(N_Vector)
The function implementing N_VMinLocal()

sunrealtype (*nvl1normlocal)(N_Vector)
The function implementing N_VL1NormLocal()

sunbooleantype (*nvinvtestlocal)(N_Vector, N_Vector)
The function implementing N_VInvTestLocal()

sunbooleantype (*nvconstrmasklocal)(N_Vector, N_Vector, N_Vector)
The function implementing N_VConstrMaskLocal()

sunrealtype (*nvminquotientlocal)(N_Vector, N_Vector)
The function implementing N_VMinQuotientLocal()

sunrealtype (*nvwsqrsumlocal)(N_Vector, N_Vector)
The function implementing N_VWSqrSumLocal()

sunrealtype (*nvwsqrsummasklocal)(N_Vector, N_Vector, N_Vector)
The function implementing N_VWSqrSumMaskLocal()

SUNErrCode (*nvdotprodmultilocal)(int, N_Vector, N_Vector*, sunrealtype*)
The function implementing N_VDotProdMultiLocal()

SUNErrCode (*nvdotprodmultiallreduce)(int, N_Vector, sunrealtype*)
The function implementing N_VDotProdMultiAllReduce()

SUNErrCode (*nvbufsize)(N_Vector, sunindextype*)
The function implementing N_VBufSize()

SUNErrCode (*nvbufpack)(N_Vector, void*)
The function implementing N_VBufPack()

SUNErrCode (*nvbufunpack)(N_Vector, void*)
The function implementing N_VBufUnpack()

void (*nvprint)(N_Vector)
The function implementing N_VPrint()

88 Chapter 6. Vector Data Structures

User Documentation for KINSOL, v7.1.0

void (*nvprintfile)(N_Vector, FILE*)
The function implementing N_VPrintFile()

The generic NVECTOR module defines and implements the vector operations acting on a N_Vector. These routines
are nothing but wrappers for the vector operations defined by a particular NVECTOR implementation, which are
accessed through the ops field of the N_Vector structure. To illustrate this point we show below the implementation
of a typical vector operation from the generic NVECTOR module, namely N_VScale, which performs the operation
z ← cx for vectors x and z and a scalar c:

void N_VScale(sunrealtype c, N_Vector x, N_Vector z) {
z->ops->nvscale(c, x, z);

}

§6.2 contains a complete list of all standard vector operations defined by the generic NVECTOR module. §6.2.2,
§6.2.3, §6.2.4, §6.2.5, and §6.2.6 list optional fused, vector array, local reduction, single buffer reduction, and exchange
operations, respectively.

Fused and vector array operations (see §6.2.2 and §6.2.3) are intended to increase data reuse, reduce parallel communi-
cation on distributed memory systems, and lower the number of kernel launches on systems with accelerators. If a par-
ticular NVECTOR implementation defines a fused or vector array operation as NULL, the generic NVECTOR module
will automatically call standard vector operations as necessary to complete the desired operation. In all SUNDIALS-
provided NVECTOR implementations, all fused and vector array operations are disabled by default. However, these
implementations provide additional user-callable functions to enable/disable any or all of the fused and vector array
operations. See the following sections for the implementation specific functions to enable/disable operations.

Local reduction operations (see §6.2.4) are similarly intended to reduce parallel communication on distributed memory
systems, particularly when NVECTOR objects are combined together within an NVECTOR_MANYVECTOR object
(see §6.17). If a particular NVECTOR implementation defines a local reduction operation as NULL, the NVECTOR_-
MANYVECTOR module will automatically call standard vector reduction operations as necessary to complete the
desired operation. All SUNDIALS-provided NVECTOR implementations include these local reduction operations,
which may be used as templates for user-defined implementations.

The single buffer reduction operations (§6.2.5) are used in low-synchronization methods to combine separate reductions
into one MPI_Allreduce call.

The exchange operations (see §6.2.6) are intended only for use with the XBraid library for parallel-in-time integration
(accessible from ARKODE) and are otherwise unused by SUNDIALS packages.

6.1.1 NVECTOR Utility Functions

The generic NVECTOR module also defines several utility functions to aid in creation and management of arrays of
N_Vector objects – these functions are particularly useful for Fortran users to utilize the NVECTOR_MANYVECTOR
or SUNDIALS’ sensitivity-enabled packages CVODES and IDAS.

The functions N_VCloneVectorArray() and N_VCloneVectorArrayEmpty() create (by cloning) an array of count
variables of type N_Vector, each of the same type as an existing N_Vector input:

N_Vector *N_VCloneVectorArray(int count, N_Vector w)
Clones an array of count N_Vector objects, allocating their data arrays (similar to N_VClone()).

Arguments:

• count – number of N_Vector objects to create.

• w – template N_Vector to clone.

Return value:

• pointer to a new N_Vector array on success.

6.1. Description of the NVECTOR Modules 89

User Documentation for KINSOL, v7.1.0

• NULL pointer on failure.

N_Vector *N_VCloneVectorArrayEmpty(int count, N_Vector w)
Clones an array of count N_Vector objects, leaving their data arrays unallocated (similar to N_-
VCloneEmpty()).

Arguments:

• count – number of N_Vector objects to create.

• w – template N_Vector to clone.

Return value:

• pointer to a new N_Vector array on success.

• NULL pointer on failure.

An array of variables of type N_Vector can be destroyed by calling N_VDestroyVectorArray():

void N_VDestroyVectorArray(N_Vector *vs, int count)
Destroys an array of count N_Vector objects.

Arguments:

• vs – N_Vector array to destroy.

• count – number of N_Vector objects in vs array.

Notes:
This routine will internally call the N_Vector implementation-specific N_VDestroy() operation.

If vs was allocated using N_VCloneVectorArray() then the data arrays for each N_Vector object will
be freed; if vs was allocated using N_VCloneVectorArrayEmpty() then it is the user’s responsibility to
free the data for each N_Vector object.

Finally, we note that users of the Fortran 2003 interface may be interested in the additional utility functions N_VNewVec-
torArray(), N_VGetVecAtIndexVectorArray(), and N_VSetVecAtIndexVectorArray(), that are wrapped as
FN_NewVectorArray, FN_VGetVecAtIndexVectorArray, and FN_VSetVecAtIndexVectorArray, respectively.
These functions allow a Fortran 2003 user to create an empty vector array, access a vector from this array, and set a
vector within this array:

N_Vector *N_VNewVectorArray(int count, SUNContext sunctx)
Creates an array of count N_Vector objects, the pointers to each are initialized as NULL.

Arguments:

• count – length of desired N_Vector array.

• sunctx – a SUNContext object

Return value:

• pointer to a new N_Vector array on success.

• NULL pointer on failure.

Changed in version 7.0.0: The function signature was updated to add the SUNContext argument.

N_Vector *N_VGetVecAtIndexVectorArray(N_Vector *vs, int index)
Accesses the N_Vector at the location index within the N_Vector array vs.

Arguments:

• vs – N_Vector array.

90 Chapter 6. Vector Data Structures

User Documentation for KINSOL, v7.1.0

• index – desired N_Vector to access from within vs.

Return value:

• pointer to the indexed N_Vector on success.

• NULL pointer on failure (index < 0 or vs == NULL).

Notes:
This routine does not verify that index is within the extent of vs, since vs is a simple N_Vector array that
does not internally store its allocated length.

void N_VSetVecAtIndexVectorArray(N_Vector *vs, int index, N_Vector w)
Sets a pointer to w at the location index within the vector array vs.

Arguments:

• vs – N_Vector array.

• index – desired location to place the pointer to w within vs.

• w – N_Vector to set within vs.

Notes:
This routine does not verify that index is within the extent of vs, since vs is a simple N_Vector array that
does not internally store its allocated length.

6.1.2 Implementing a custom NVECTOR

A particular implementation of the NVECTOR module must:

• Specify the content field of the N_Vector structure.

• Define and implement the vector operations. Note that the names of these routines should be unique to that im-
plementation in order to permit using more than one NVECTOR module (each with different N_Vector internal
data representations) in the same code.

• Define and implement user-callable constructor and destructor routines to create and free an N_Vector with the
new content field and with ops pointing to the new vector operations.

• Optionally, define and implement additional user-callable routines acting on the newly-defined N_Vector (e.g.,
a routine to print the content for debugging purposes).

• Optionally, provide accessor macros as needed for that particular implementation to be used to access different
parts in the content field of the newly-defined N_Vector.

To aid in the creation of custom NVECTOR modules, the generic NVECTOR module provides two utility functions N_-
VNewEmpty() and N_VCopyOps(). When used in custom NVECTOR constructors and clone routines these functions
will ease the introduction of any new optional vector operations to the NVECTOR API by ensuring that only required
operations need to be set, and that all operations are copied when cloning a vector.

N_Vector N_VNewEmpty(SUNContext sunctx)
This allocates a new generic N_Vector object and initializes its content pointer and the function pointers in the
operations structure to NULL.

Return value: If successful, this function returns an N_Vector object. If an error occurs when allocating the
object, then this routine will return NULL.

void N_VFreeEmpty(N_Vector v)
This routine frees the generic N_Vector object, under the assumption that any implementation-specific data that
was allocated within the underlying content structure has already been freed. It will additionally test whether the
ops pointer is NULL, and, if it is not, it will free it as well.

6.1. Description of the NVECTOR Modules 91

User Documentation for KINSOL, v7.1.0

Arguments:

• v – an N_Vector object

SUNErrCode N_VCopyOps(N_Vector w, N_Vector v)
This function copies the function pointers in the ops structure of w into the ops structure of v.

Arguments:

• w – the vector to copy operations from

• v – the vector to copy operations to

Return value: Returns a SUNErrCode.

enum N_Vector_ID
Each N_Vector implementation included in SUNDIALS has a unique identifier specified in enumeration and
shown in Table 6.1. It is recommended that a user supplied NVECTOR implementation use the SUNDIALS_-
NVEC_CUSTOM identifier.

Table 6.1: Vector Identifications associated with vector kernels supplied
with SUNDIALS

Vector ID Vector type ID Value
SUNDIALS_NVEC_SERIAL Serial 0
SUNDIALS_NVEC_PARALLEL Distributed memory parallel (MPI) 1
SUNDIALS_NVEC_OPENMP OpenMP shared memory parallel 2
SUNDIALS_NVEC_PTHREADS PThreads shared memory parallel 3
SUNDIALS_NVEC_PARHYP hypre ParHyp parallel vector 4
SUNDIALS_NVEC_PETSC PETSc parallel vector 5
SUNDIALS_NVEC_CUDA CUDA vector 6
SUNDIALS_NVEC_HIP HIP vector 7
SUNDIALS_NVEC_SYCL SYCL vector 8
SUNDIALS_NVEC_RAJA RAJA vector 9
SUNDIALS_NVEC_OPENMPDEV OpenMP vector with device offloading 10
SUNDIALS_NVEC_TRILINOS Trilinos Tpetra vector 11
SUNDIALS_NVEC_MANYVECTOR “ManyVector” vector 12
SUNDIALS_NVEC_MPIMANYVECTOR MPI-enabled “ManyVector” vector 13
SUNDIALS_NVEC_MPIPLUSX MPI+X vector 14
SUNDIALS_NVEC_CUSTOM User-provided custom vector 15

6.1.3 Support for complex-valued vectors

While SUNDIALS itself is written under an assumption of real-valued data, it does provide limited support for complex-
valued problems. However, since none of the built-in NVECTOR modules supports complex-valued data, users must
provide a custom NVECTOR implementation for this task. Many of the NVECTOR routines described in the subsection
§6.2 naturally extend to complex-valued vectors; however, some do not. To this end, we provide the following guidance:

• N_VMin() and N_VMinLocal() should return the minimum of all real components of the vector, i.e., m =
min

0≤i<n
real(xi).

• N_VConst() (and similarly N_VConstVectorArray()) should set the real components of the vector to the input
constant, and set all imaginary components to zero, i.e., zi = c+ 0j for 0 ≤ i < n.

• N_VAddConst() should only update the real components of the vector with the input constant, leaving all imag-
inary components unchanged.

92 Chapter 6. Vector Data Structures

User Documentation for KINSOL, v7.1.0

• N_VWrmsNorm(), N_VWrmsNormMask(), N_VWSqrSumLocal() and N_VWSqrSumMaskLocal() should assume
that all entries of the weight vector w and the mask vector id are real-valued.

• N_VDotProd() should mathematically return a complex number for complex-valued vectors; as this is not pos-
sible with SUNDIALS’ current sunrealtype, this routine should be set to NULL in the custom NVECTOR
implementation.

• N_VCompare(), N_VConstrMask(), N_VMinQuotient(), N_VConstrMaskLocal() and N_VMinQuotient-
Local() are ill-defined due to the lack of a clear ordering in the complex plane. These routines should be set to
NULL in the custom NVECTOR implementation.

While many SUNDIALS solver modules may be utilized on complex-valued data, others cannot. Specifically, although
each package’s linear solver interface (e.g., ARKLS or CVLS) may be used on complex-valued problems, none of the
built-in SUNMatrix or SUNLinearSolver modules will work (all of the direct linear solvers must store complex-valued
data, and all of the iterative linear solvers require N_VDotProd()). Hence a complex-valued user must provide custom
linear solver modules for their problem. At a minimum this will consist of a custom SUNLinearSolver implementation
(see §8.1.8), and optionally a custom SUNMatrix as well. The user should then attach these modules as normal to the
package’s linear solver interface.

Finally, constraint-handling features of each package cannot be used for complex-valued data, due to the issue of order-
ing in the complex plane discussed above with N_VCompare(), N_VConstrMask(), N_VMinQuotient(), N_VCon-
strMaskLocal() and N_VMinQuotientLocal().

We provide a simple example of a complex-valued example problem, including a custom complex-valued Fortran
2003 NVECTOR module, in the files examples/arkode/F2003_custom/ark_analytic_complex_f2003.f90,
examples/arkode/F2003_custom/fnvector_complex_mod.f90, and examples/arkode/F2003_custom/
test_fnvector_complex_mod.f90.

6.2 Description of the NVECTOR operations

6.2.1 Standard vector operations

The standard vector operations defined by the generic N_Vector module are defined as follows. For each of these
operations, we give the name, usage of the function, and a description of its mathematical operations below.

N_Vector_ID N_VGetVectorID(N_Vector w)
Returns the vector type identifier for the vector w. It is used to determine the vector implementation type (e.g.
serial, parallel, . . .) from the abstract N_Vector interface. Returned values are given in Table 6.1.

Usage:

id = N_VGetVectorID(w);

N_Vector N_VClone(N_Vector w)
Creates a new N_Vector of the same type as an existing vector w and sets the ops field. It does not copy the
vector, but rather allocates storage for the new vector.

Usage:

v = N_VClone(w);

N_Vector N_VCloneEmpty(N_Vector w)
Creates a new N_Vector of the same type as an existing vector w and sets the ops field. It does not allocate
storage for the new vector’s data.

Usage:

6.2. Description of the NVECTOR operations 93

User Documentation for KINSOL, v7.1.0

v = N VCloneEmpty(w);

void N_VDestroy(N_Vector v)
Destroys the N_Vector v and frees memory allocated for its internal data.

Usage:

N_VDestroy(v);

void N_VSpace(N_Vector v, sunindextype *lrw, sunindextype *liw)
Returns storage requirements for the N_Vector v:

• lrw contains the number of sunrealtype words

• liw contains the number of integer words.

This function is advisory only, for use in determining a user’s total space requirements; it could be a dummy
function in a user-supplied NVECTOR module if that information is not of interest.

Usage:

N_VSpace(nvSpec, &lrw, &liw);

sunrealtype *N_VGetArrayPointer(N_Vector v)
Returns a pointer to a sunrealtype array from the N_Vector v. Note that this assumes that the internal data in
the N_Vector is a contiguous array of sunrealtype and is accesible from the CPU.

This routine is only used in the solver-specific interfaces to the dense and banded (serial) linear solvers, and in
the interfaces to the banded (serial) and band-block-diagonal (parallel) preconditioner modules provided with
SUNDIALS.

Usage:

vdata = N_VGetArrayPointer(v);

sunrealtype *N_VGetDeviceArrayPointer(N_Vector v)
Returns a device pointer to a sunrealtype array from the N_Vector v. Note that this assumes that the internal
data in N_Vector is a contiguous array of sunrealtype and is accessible from the device (e.g., GPU).

This operation is optional except when using the GPU-enabled direct linear solvers.

Usage:

vdata = N_VGetArrayPointer(v);

void N_VSetArrayPointer(sunrealtype *vdata, N_Vector v)
Replaces the data array pointer in an N_Vector with a given array of sunrealtype. Note that this assumes
that the internal data in the N_Vector is a contiguous array of sunrealtype. This routine is only used in the
interfaces to the dense (serial) linear solver, hence need not exist in a user-supplied NVECTOR module.

Usage:

N_VSetArrayPointer(vdata,v);

SUNComm N_VGetCommunicator(N_Vector v)
Returns the SUNComm (which is just an MPI_Comm when SUNDIALS is built with MPI, otherwise it is an int)
associated with the vector (if applicable). For MPI-unaware vector implementations, this should return SUN_-
COMM_NULL.

94 Chapter 6. Vector Data Structures

User Documentation for KINSOL, v7.1.0

Usage:

MPI_Comm comm = N_VGetCommunicator(v); // Works if MPI is enabled
int comm = N_VGetCommunicator(v); // Works if MPI is disabled
SUNComm comm = N_VGetCommunicator(v); // Works with or without MPI

sunindextype N_VGetLength(N_Vector v)
Returns the global length (number of “active” entries) in the NVECTOR v. This value should be cumulative
across all processes if the vector is used in a parallel environment. If v contains additional storage, e.g., for
parallel communication, those entries should not be included.

Usage:

global_length = N_VGetLength(v);

sunindextype N_VGetLocalLength(N_Vector v)
Returns the local length (number of “active” entries) in the NVECTOR v. This value should be the length of the
array returned by N_VGetArrayPointer() or N_VGetDeviceArrayPointer().

Usage:

local_length = N_VGetLocalLength(v);

void N_VLinearSum(sunrealtype a, N_Vector x, sunrealtype b, N_Vector y, N_Vector z)
Performs the operation z = ax + by, where a and b are sunrealtype scalars and x and y are of type N_Vector:

zi = axi + byi, i = 0, . . . , n− 1.

The output vector z can be the same as either of the input vectors (x or y).

Usage:

N_VLinearSum(a, x, b, y, z);

void N_VConst(sunrealtype c, N_Vector z)
Sets all components of the N_Vector z to sunrealtype c:

zi = c, i = 0, . . . , n− 1.

Usage:

N_VConst(c, z);

void N_VProd(N_Vector x, N_Vector y, N_Vector z)
Sets the N_Vector z to be the component-wise product of the N_Vector inputs x and y:

zi = xiyi, i = 0, . . . , n− 1.

Usage:

N_VProd(x, y, z);

void N_VDiv(N_Vector x, N_Vector y, N_Vector z)
Sets the N_Vector z to be the component-wise ratio of the N_Vector inputs x and y:

zi =
xi
yi
, i = 0, . . . , n− 1.

6.2. Description of the NVECTOR operations 95

User Documentation for KINSOL, v7.1.0

The yi may not be tested for 0 values. It should only be called with a y that is guaranteed to have all nonzero
components.

Usage:

N_VDiv(x, y, z);

void N_VScale(sunrealtype c, N_Vector x, N_Vector z)
Scales the N_Vector x by the sunrealtype scalar c and returns the result in z:

zi = cxi, i = 0, . . . , n− 1.

Usage:

N_VScale(c, x, z);

void N_VAbs(N_Vector x, N_Vector z)
Sets the components of the N_Vector z to be the absolute values of the components of the N_Vector x:

zi = |xi|, i = 0, . . . , n− 1.

Usage:

N_VAbs(x, z);

void N_VInv(N_Vector x, N_Vector z)
Sets the components of the N_Vector z to be the inverses of the components of the N_Vector x:

zi =
1

xi
, i = 0, . . . , n− 1.

This routine may not check for division by 0. It should be called only with an x which is guaranteed to have all
nonzero components.

Usage:

N_VInv(x, z);

void N_VAddConst(N_Vector x, sunrealtype b, N_Vector z)
Adds the sunrealtype scalar b to all components of x and returns the result in the N_Vector z:

zi = xi + b, i = 0, . . . , n− 1.

Usage:

N_VAddConst(x, b, z);

sunrealtype N_VDotProd(N_Vector x, N_Vector z)
Returns the value of the dot-product of the vectors x and y:

d =

n−1∑
i=0

xiyi.

Usage:

96 Chapter 6. Vector Data Structures

User Documentation for KINSOL, v7.1.0

d = N_VDotProd(x, y);

sunrealtype N_VMaxNorm(N_Vector x)
Returns the value of the l∞ norm of the N_Vector x:

m = max
0≤i<n

|xi|.

Usage:

m = N_VMaxNorm(x);

sunrealtype N_VWrmsNorm(N_Vector x, N_Vector w)
Returns the weighted root-mean-square norm of the N_Vector x with (positive) sunrealtype weight vector w:

m =

√√√√(n−1∑
i=0

(xiwi)2

)
/n

Usage:

m = N_VWrmsNorm(x, w);

sunrealtype N_VWrmsNormMask(N_Vector x, N_Vector w, N_Vector id)
Returns the weighted root mean square norm of the N_Vector x with sunrealtype weight vector w built using
only the elements of x corresponding to positive elements of the N_Vector id:

m =

√√√√(n−1∑
i=0

(xiwiH(idi))2

)
/n,

where H(α) =

{
1 α > 0

0 α ≤ 0
.

Usage:

m = N_VWrmsNormMask(x, w, id);

sunrealtype N_VMin(N_Vector x)
Returns the smallest element of the N_Vector x:

m = min
0≤i<n

xi.

Usage:

m = N_VMin(x);

sunrealtype N_VWL2Norm(N_Vector x, N_Vector w)
Returns the weighted Euclidean l2 norm of the N_Vector x with sunrealtype weight vector w:

m =

√√√√n−1∑
i=0

(xiwi)
2
.

Usage:

6.2. Description of the NVECTOR operations 97

User Documentation for KINSOL, v7.1.0

m = N_VWL2Norm(x, w);

sunrealtype N_VL1Norm(N_Vector x)
Returns the l1 norm of the N_Vector x:

m =

n−1∑
i=0

|xi|.

Usage:

m = N_VL1Norm(x);

void N_VCompare(sunrealtype c, N_Vector x, N_Vector z)
Compares the components of the N_Vector x to the sunrealtype scalar c and returns an N_Vector z such that
for all 0 ≤ i < n,

zi =

{
1.0 if |xi| ≥ c,
0.0 otherwise

.

Usage:

N_VCompare(c, x, z);

sunbooleantype N_VInvTest(N_Vector x, N_Vector z)
Sets the components of the N_Vector z to be the inverses of the components of the N_Vector x, with prior
testing for zero values:

zi =
1

xi
, i = 0, . . . , n− 1.

This routine returns a boolean assigned to SUNTRUE if all components of x are nonzero (successful inversion)
and returns SUNFALSE otherwise.

Usage:

t = N_VInvTest(x, z);

sunbooleantype N_VConstrMask(N_Vector c, N_Vector x, N_Vector m)
Performs the following constraint tests based on the values in ci:

xi > 0 if ci = 2,
xi ≥ 0 if ci = 1,
xi < 0 if ci = −2,
xi ≤ 0 if ci = −1.

There is no constraint on xi if ci = 0. This routine returns a boolean assigned to SUNFALSE if any element failed
the constraint test and assigned to SUNTRUE if all passed. It also sets a mask vector m, with elements equal to 1.0
where the constraint test failed, and 0.0 where the test passed. This routine is used only for constraint checking.

Usage:

t = N_VConstrMask(c, x, m);

98 Chapter 6. Vector Data Structures

User Documentation for KINSOL, v7.1.0

sunrealtype N_VMinQuotient(N_Vector num, N_Vector denom)
This routine returns the minimum of the quotients obtained by termwise dividing the elements of n by the ele-
ments in d:

min
0≤i<n

numi

denomi
.

A zero element in denom will be skipped. If no such quotients are found, then the large value SUN_BIG_REAL
(defined in the header file sundials_types.h) is returned.

Usage:

minq = N_VMinQuotient(num, denom);

6.2.2 Fused operations

The following fused vector operations are optional. These operations are intended to increase data reuse, reduce parallel
communication on distributed memory systems, and lower the number of kernel launches on systems with accelerators.
If a particular NVECTOR implementation defines one of the fused vector operations as NULL, the NVECTOR interface
will call one of the above standard vector operations as necessary. As above, for each operation, we give the name,
usage of the function, and a description of its mathematical operations below.

SUNErrCode N_VLinearCombination(int nv, sunrealtype *c, N_Vector *X, N_Vector z)
This routine computes the linear combination of nv vectors with n elements:

zi =

nv−1∑
j=0

cjxj,i, i = 0, . . . , n− 1,

where c is an array of nv scalars, xj is a vector in the vector array X, and z is the output vector. If the output
vector z is one of the vectors in X, then it must be the first vector in the vector array. The operation returns a
SUNErrCode.

Usage:

retval = N_VLinearCombination(nv, c, X, z);

SUNErrCode N_VScaleAddMulti(int nv, sunrealtype *c, N_Vector x, N_Vector *Y, N_Vector *Z)
This routine scales and adds one vector to nv vectors with n elements:

zj,i = cjxi + yj,i, j = 0, . . . , nv − 1 i = 0, . . . , n− 1,

where c is an array of scalars, x is a vector, yj is a vector in the vector array Y, and zj is an output vector in the
vector array Z. The operation returns a SUNErrCode.

Usage:

retval = N_VScaleAddMulti(nv, c, x, Y, Z);

SUNErrCode N_VDotProdMulti(int nv, N_Vector x, N_Vector *Y, sunrealtype *d)
This routine computes the dot product of a vector with nv vectors having n elements:

dj =

n−1∑
i=0

xiyj,i, j = 0, . . . , nv − 1,

where d is an array of scalars containing the computed dot products, x is a vector, and yj is a vector the vector
array Y. The operation returns a SUNErrCode.

Usage:

6.2. Description of the NVECTOR operations 99

User Documentation for KINSOL, v7.1.0

retval = N_VDotProdMulti(nv, x, Y, d);

6.2.3 Vector array operations

The following vector array operations are also optional. As with the fused vector operations, these are intended to
increase data reuse, reduce parallel communication on distributed memory systems, and lower the number of kernel
launches on systems with accelerators. If a particular NVECTOR implementation defines one of the fused or vector
array operations as NULL, the NVECTOR interface will call one of the above standard vector operations as necessary.
As above, for each operation, we give the name, usage of the function, and a description of its mathematical operations
below.

SUNErrCode N_VLinearSumVectorArray(int nv, sunrealtype a, N_Vector X, sunrealtype b, N_Vector *Y,
N_Vector *Z)

This routine computes the linear sum of two vector arrays of nv vectors with n elements:

zj,i = axj,i + byj,i, i = 0, . . . , n− 1 j = 0, . . . , nv − 1,

where a and b are scalars, xj and yj are vectors in the vector arrays X and Y respectively, and zj is a vector in
the output vector array Z. The operation returns a SUNErrCode.

Usage:

retval = N_VLinearSumVectorArray(nv, a, X, b, Y, Z);

SUNErrCode N_VScaleVectorArray(int nv, sunrealtype *c, N_Vector *X, N_Vector *Z)
This routine scales each element in a vector of n elements in a vector array of nv vectors by a potentially different
constant:

zj,i = cjxj,i, i = 0, . . . , n− 1 j = 0, . . . , nv − 1,

where c is an array of scalars, xj is a vector in the vector array X, and zj is a vector in the output vector array Z.
The operation returns a SUNErrCode.

Usage:

retval = N_VScaleVectorArray(nv, c, X, Z);

SUNErrCode N_VConstVectorArray(int nv, sunrealtype c, N_Vector *Z)
This routine sets each element in a vector of n elements in a vector array of nv vectors to the same value:

zj,i = c, i = 0, . . . , n− 1 j = 0, . . . , nv − 1,

where c is a scalar and zj is a vector in the vector array Z. The operation returns a SUNErrCode.

Usage:

retval = N_VConstVectorArray(nv, c, Z);

SUNErrCode N_VWrmsNormVectorArray(int nv, N_Vector *X, N_Vector *W, sunrealtype *m)
This routine computes the weighted root mean square norm of each vector in a vector array:

mj =

(
1

n

n−1∑
i=0

(xj,iwj,i)
2

)1/2

, j = 0, . . . , nv − 1,

100 Chapter 6. Vector Data Structures

User Documentation for KINSOL, v7.1.0

where xj is a vector in the vector array X, wj is a weight vector in the vector array W, and m is the output array
of scalars containing the computed norms. The operation returns a SUNErrCode.

Usage:

retval = N_VWrmsNormVectorArray(nv, X, W, m);

SUNErrCode N_VWrmsNormMaskVectorArray(int nv, N_Vector *X, N_Vector *W, N_Vector id, sunrealtype *m)
This routine computes the masked weighted root mean square norm of each vector in a vector array:

mj =

(
1

n

n−1∑
i=0

(xj,iwj,iH(idi))
2

)1/2

, j = 0, . . . , nv − 1,

where H(idi) = 1 if idi > 0 and is zero otherwise, xj is a vector in the vector array X, wj is a weight vector
in the vector array W, id is the mask vector, and m is the output array of scalars containing the computed norms.
The operation returns a SUNErrCode.

Usage:

retval = N_VWrmsNormMaskVectorArray(nv, X, W, id, m);

SUNErrCode N_VScaleAddMultiVectorArray(int nv, int nsum, sunrealtype *c, N_Vector *X, N_Vector **YY,
N_Vector **ZZ)

This routine scales and adds a vector array of nv vectors to nsum other vector arrays:

zk,j,i = ckxj,i + yk,j,i, i = 0, . . . , n− 1 j = 0, . . . , nv − 1, k = 0, . . . , nsum− 1

where c is an array of scalars, xj is a vector in the vector array X, yk,j is a vector in the array of vector arrays YY,
and zk,j is an output vector in the array of vector arrays ZZ. The operation returns a SUNErrCode.

Usage:

retval = N_VScaleAddMultiVectorArray(nv, nsum, c, x, YY, ZZ);

SUNErrCode N_VLinearCombinationVectorArray(int nv, int nsum, sunrealtype *c, N_Vector **XX, N_Vector
*Z)

This routine computes the linear combination of nsum vector arrays containing nv vectors:

zj,i =

nsum−1∑
k=0

ckxk,j,i, i = 0, . . . , n− 1 j = 0, . . . , nv − 1,

where c is an array of scalars, xk,j is a vector in array of vector arrays XX, and zj,i is an output vector in the
vector array Z. If the output vector array is one of the vector arrays in XX, it must be the first vector array in XX.
The operation returns a SUNErrCode.

Usage:

retval = N_VLinearCombinationVectorArray(nv, nsum, c, XX, Z);

6.2. Description of the NVECTOR operations 101

User Documentation for KINSOL, v7.1.0

6.2.4 Local reduction operations

The following local reduction operations are also optional. As with the fused and vector array operations, these are
intended to reduce parallel communication on distributed memory systems. If a particular NVECTOR implementation
defines one of the local reduction operations as NULL, the NVECTOR interface will call one of the above standard vector
operations as necessary. As above, for each operation, we give the name, usage of the function, and a description of its
mathematical operations below.

sunrealtype N_VDotProdLocal(N_Vector x, N_Vector y)
This routine computes the MPI task-local portion of the ordinary dot product of x and y:

d =

nlocal−1∑
i=0

xiyi,

where nlocal corresponds to the number of components in the vector on this MPI task (or nlocal = n for MPI-
unaware applications).

Usage:

d = N_VDotProdLocal(x, y);

sunrealtype N_VMaxNormLocal(N_Vector x)
This routine computes the MPI task-local portion of the maximum norm of the NVECTOR x:

m = max
0≤i<nlocal

|xi|,

where nlocal corresponds to the number of components in the vector on this MPI task (or nlocal = n for MPI-
unaware applications).

Usage:

m = N_VMaxNormLocal(x);

sunrealtype N_VMinLocal(N_Vector x)
This routine computes the smallest element of the MPI task-local portion of the NVECTOR x:

m = min
0≤i<nlocal

xi,

where nlocal corresponds to the number of components in the vector on this MPI task (or nlocal = n for MPI-
unaware applications).

Usage:

m = N_VMinLocal(x);

sunrealtype N_VL1NormLocal(N_Vector x)
This routine computes the MPI task-local portion of the l1 norm of the N_Vector x:

n =

nlocal−1∑
i=0

|xi|,

where nlocal corresponds to the number of components in the vector on this MPI task (or nlocal = n for MPI-
unaware applications).

Usage:

102 Chapter 6. Vector Data Structures

User Documentation for KINSOL, v7.1.0

n = N_VL1NormLocal(x);

sunrealtype N_VWSqrSumLocal(N_Vector x, N_Vector w)
This routine computes the MPI task-local portion of the weighted squared sum of the NVECTOR x with weight
vector w:

s =

nlocal−1∑
i=0

(xiwi)
2,

where nlocal corresponds to the number of components in the vector on this MPI task (or nlocal = n for MPI-
unaware applications).

Usage:

s = N_VWSqrSumLocal(x, w);

sunrealtype N_VWSqrSumMaskLocal(N_Vector x, N_Vector w, N_Vector id)
This routine computes the MPI task-local portion of the weighted squared sum of the NVECTOR x with weight
vector w built using only the elements of x corresponding to positive elements of the NVECTOR id:

m =

nlocal−1∑
i=0

(xiwiH(idi))
2,

where

H(α) =

{
1 α > 0

0 α ≤ 0

and nlocal corresponds to the number of components in the vector on this MPI task (or nlocal = n for MPI-
unaware applications).

Usage:

s = N_VWSqrSumMaskLocal(x, w, id);

sunbooleantype N_VInvTestLocal(N_Vector x)
This routine sets the MPI task-local components of the NVECTOR z to be the inverses of the components of the
NVECTOR x, with prior testing for zero values:

zi =
1

xi
, i = 0, . . . , nlocal − 1

where nlocal corresponds to the number of components in the vector on this MPI task (or nlocal = n for MPI-
unaware applications). This routine returns a boolean assigned to SUNTRUE if all task-local components of x are
nonzero (successful inversion) and returns SUNFALSE otherwise.

Usage:

t = N_VInvTestLocal(x);

sunbooleantype N_VConstrMaskLocal(N_Vector c, N_Vector x, N_Vector m)
Performs the following constraint tests based on the values in ci:

xi > 0 if ci = 2,
xi ≥ 0 if ci = 1,
xi < 0 if ci = −2,
xi ≤ 0 if ci = −1.

6.2. Description of the NVECTOR operations 103

User Documentation for KINSOL, v7.1.0

for all MPI task-local components of the vectors. This routine returns a boolean assigned to SUNFALSE if any
task-local element failed the constraint test and assigned to SUNTRUE if all passed. It also sets a mask vector m,
with elements equal to 1.0 where the constraint test failed, and 0.0 where the test passed. This routine is used
only for constraint checking.

Usage:

t = N_VConstrMaskLocal(c, x, m);

sunrealtype N_VMinQuotientLocal(N_Vector num, N_Vector denom)
This routine returns the minimum of the quotients obtained by term-wise dividing numi by denomi, for all MPI
task-local components of the vectors. A zero element in denom will be skipped. If no such quotients are found,
then the large value SUN_BIG_REAL (defined in the header file sundials_types.h) is returned.

Usage:

minq = N_VMinQuotientLocal(num, denom);

6.2.5 Single Buffer Reduction Operations

The following optional operations are used to combine separate reductions into a single MPI call by splitting the local
computation and communication into separate functions. These operations are used in low-synchronization orthogo-
nalization methods to reduce the number of MPI Allreduce calls. If a particular NVECTOR implementation does
not define these operations additional communication will be required.

SUNErrCode N_VDotProdMultiLocal(int nv, N_Vector x, N_Vector *Y, sunrealtype *d)
This routine computes the MPI task-local portion of the dot product of a vector x with nv vectors yj :

dj =

nlocal−1∑
i=0

xiyj,i, j = 0, . . . , nv − 1,

where d is an array of scalars containing the computed dot products, x is a vector, yj is a vector in the vector array
Y, and nlocal corresponds to the number of components in the vector on this MPI task. The operation returns a
SUNErrCode.

Usage:

retval = N_VDotProdMultiLocal(nv, x, Y, d);

SUNErrCode N_VDotProdMultiAllReduce(int nv, N_Vector x, sunrealtype *d)
This routine combines the MPI task-local portions of the dot product of a vector x with nv vectors:

retval = MPI_Allreduce(MPI_IN_PLACE, d, nv, MPI_SUNREALTYPE, MPI_SUM, comm)

where d is an array of nv scalars containing the local contributions to the dot product and comm is the MPI
communicator associated with the vector x. The operation returns a SUNErrCode.

Usage:

retval = N_VDotProdMultiAllReduce(nv, x, d);

104 Chapter 6. Vector Data Structures

User Documentation for KINSOL, v7.1.0

6.2.6 Exchange operations

The following vector exchange operations are also optional and are intended only for use when interfacing with the
XBraid library for parallel-in-time integration. In that setting these operations are required but are otherwise unused
by SUNDIALS packages and may be set to NULL. For each operation, we give the function signature, a description of
the expected behavior, and an example of the function usage.

SUNErrCode N_VBufSize(N_Vector x, sunindextype *size)
This routine returns the buffer size need to exchange in the data in the vector x between computational nodes.

Usage:

flag = N_VBufSize(x, &buf_size)

SUNErrCode N_VBufPack(N_Vector x, void *buf)
This routine fills the exchange buffer buf with the vector data in x.

Usage:

flag = N_VBufPack(x, &buf)

SUNErrCode N_VBufUnpack(N_Vector x, void *buf)
This routine unpacks the data in the exchange buffer buf into the vector x.

Usage:

flag = N_VBufUnpack(x, buf)

6.2.7 Output operations

The following optional vector operations are for writing vector data either to stdout or to a given file.

void N_VPrint(N_Vector x)
This routine prints vector data to stdout

Usage:

N_VPrint(x);

void N_VPrintFile(N_Vector x, FILE *file)
This routine writes vector data to the given file pointer.

Usage:

FILE* fp = fopen("vector_data.txt", "w");
N_VPrintFile(x, fp);
fclose(fp);

6.2. Description of the NVECTOR operations 105

User Documentation for KINSOL, v7.1.0

6.3 NVECTOR functions used by KINSOL

In Table 6.2 below, we list the vector functions used in the N_Vectormodule used by the KINSOL package. The table
also shows, for each function, which of the code modules uses the function. The KINSOL column shows function
usage within the main integrator module, while the remaining columns show function usage within the KINLS linear
solvers interface, and the KINBBDPRE preconditioner module.

At this point, we should emphasize that the KINSOL user does not need to know anything about the usage of vector
functions by the KINSOL code modules in order to use KINSOL. The information is presented as an implementation
detail for the interested reader.

Table 6.2: List of vector functions usage by KINSOL code modules

Function name KINSOL KINLS KINBBDPRE
N_VGetVectorID()
N_VGetLength() 4
N_VClone() x x
N_VCloneEmpty()
N_VDestroy() x x
N_VSpace() x 2
N_VGetArrayPointer() 1 x
N_VSetArrayPointer() 1
N_VLinearSum() x x
N_VConst() x
N_VProd() x x
N_VDiv() x
N_VScale() x x x
N_VAbs() x
N_VInv() x
N_VDotProd() x x
N_VMaxNorm() x
N_VMin() x
N_VWL2Norm() x x
N_VL1Norm() 3
N_VConstrMask() x
N_VMinQuotient() x
N_VLinearCombination() x x
N_VDotProdMulti() x

Special cases (numbers match markings in table):

1. These routines are only required if an internal difference-quotient routine for constructing SUNMATRIX_DENSE
or SUNMATRIX_BAND Jacobian matrices is used.

2. This routine is optional, and is only used in estimating space requirements for IDA modules for user feedback.

3. These routines are only required if the internal difference-quotient routine for approximating the Jacobian-vector
product is used.

4. This routine is only used when an iterative SUNLinearSolver module that does not support the SUNLin-
SolSetScalingVectors() routine is supplied to KINSOL.

Each SUNLinearSolver object may require additional N_Vector routines not listed in the table above. Please see the
the relevant descriptions of these modules in §8 for additional detail on their N_Vector requirements.

106 Chapter 6. Vector Data Structures

User Documentation for KINSOL, v7.1.0

The vector functions listed in §6.2 that are not used by KINSOL are N_VAddConst(), N_VWrmsNorm(), N_VWrm-
sNormMask(), N_VCompare(), N_VInvTest(), and N_VGetCommunicator(). Therefore a user-supplied N_Vector
module for KINSOL could omit these functions.

The optional function N_VLinearCombination() is only used when Anderson acceleration is enabled or the SPBCG,
SPTFQMR, SPGMR, or SPFGMR linear solvers are used. N_VDotProd() is only used when Anderson acceleration
is enabled or Classical Gram-Schmidt is used with SPGMR or SPFGMR. The remaining operations from §6.2.2 and
§6.2.3 are unused and a user-supplied N_Vector module for KINSOL could omit these operations.

6.4 The NVECTOR_SERIAL Module

The serial implementation of the NVECTOR module provided with SUNDIALS, NVECTOR_SERIAL, defines the
content field of an N_Vector to be a structure containing the length of the vector, a pointer to the beginning of a
contiguous data array, and a boolean flag own_data which specifies the ownership of data.

struct _N_VectorContent_Serial {
sunindextype length;
sunbooleantype own_data;
sunrealtype *data;

};

The header file to be included when using this module is nvector_serial.h. The installed module library to link to
is libsundials_nvecserial.lib where .lib is typically .so for shared libraries and .a for static libraries.

6.4.1 NVECTOR_SERIAL accessor macros

The following five macros are provided to access the content of an NVECTOR_SERIAL vector. The suffix _S in the
names denotes the serial version.

NV_CONTENT_S(v)
This macro gives access to the contents of the serial vector N_Vector v.

The assignment v_cont = NV_CONTENT_S(v) sets v_cont to be a pointer to the serial N_Vector content
structure.

Implementation:

#define NV_CONTENT_S(v) ((N_VectorContent_Serial)(v->content))

NV_OWN_DATA_S(v)
Access the own_data component of the serial N_Vector v.

Implementation:

#define NV_OWN_DATA_S(v) (NV_CONTENT_S(v)->own_data)

NV_DATA_S(v)
The assignment v_data = NV_DATA_S(v) sets v_data to be a pointer to the first component of the data for
the N_Vector v.

Similarly, the assignment NV_DATA_S(v) = v_data sets the component array of v to be v_data by storing the
pointer v_data.

Implementation:

6.4. The NVECTOR_SERIAL Module 107

User Documentation for KINSOL, v7.1.0

#define NV_DATA_S(v) (NV_CONTENT_S(v)->data)

NV_LENGTH_S(v)
Access the length component of the serial N_Vector v.

The assignment v_len = NV_LENGTH_S(v) sets v_len to be the length of v. On the other hand, the call NV_-
LENGTH_S(v) = len_v sets the length of v to be len_v.

Implementation:

#define NV_LENGTH_S(v) (NV_CONTENT_S(v)->length)

NV_Ith_S(v, i)
This macro gives access to the individual components of the data array of an N_Vector, using standard 0-based
C indexing.

The assignment r = NV_Ith_S(v,i) sets r to be the value of the i-th component of v.

The assignment NV_Ith_S(v,i) = r sets the value of the i-th component of v to be r.

Here i ranges from 0 to n− 1 for a vector of length n.

Implementation:

#define NV_Ith_S(v,i) (NV_DATA_S(v)[i])

6.4.2 NVECTOR_SERIAL functions

The NVECTOR_SERIAL module defines serial implementations of all vector operations listed in §6.2.1, §6.2.2,
§6.2.3, and §6.2.4. Their names are obtained from those in those sections by appending the suffix _Serial (e.g. N_-
VDestroy_Serial). All the standard vector operations listed in §6.2.1 with the suffix _Serial appended are callable
via the Fortran 2003 interface by prepending an F (e.g. FN_VDestroy_Serial).

The module NVECTOR_SERIAL provides the following additional user-callable routines:

N_Vector N_VNew_Serial(sunindextype vec_length, SUNContext sunctx)
This function creates and allocates memory for a serial N_Vector. Its only argument is the vector length.

N_Vector N_VNewEmpty_Serial(sunindextype vec_length, SUNContext sunctx)
This function creates a new serial N_Vector with an empty (NULL) data array.

N_Vector N_VMake_Serial(sunindextype vec_length, sunrealtype *v_data, SUNContext sunctx)
This function creates and allocates memory for a serial vector with user-provided data array, v_data.

(This function does not allocate memory for v_data itself.)

void N_VPrint_Serial(N_Vector v)
This function prints the content of a serial vector to stdout.

void N_VPrintFile_Serial(N_Vector v, FILE *outfile)
This function prints the content of a serial vector to outfile.

By default all fused and vector array operations are disabled in the NVECTOR_SERIAL module. The following
additional user-callable routines are provided to enable or disable fused and vector array operations for a specific vector.
To ensure consistency across vectors it is recommended to first create a vector with N_VNew_Serial(), enable/disable
the desired operations for that vector with the functions below, and create any additional vectors from that vector
using N_VClone(). This guarantees that the new vectors will have the same operations enabled/disabled as cloned

108 Chapter 6. Vector Data Structures

User Documentation for KINSOL, v7.1.0

vectors inherit the same enable/disable options as the vector they are cloned, from while vectors created with N_-
VNew_Serial() will have the default settings for the NVECTOR_SERIAL module.

SUNErrCode N_VEnableFusedOps_Serial(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the serial vector.
The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombination_Serial(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the serial
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMulti_Serial(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the serial vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableDotProdMulti_Serial(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the serial
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearSumVectorArray_Serial(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the serial
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleVectorArray_Serial(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the serial vector.
The return value is a SUNErrCode.

SUNErrCode N_VEnableConstVectorArray_Serial(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the serial vector.
The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormVectorArray_Serial(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the
serial vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormMaskVectorArray_Serial(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector arrays
in the serial vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMultiVectorArray_Serial(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the serial vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombinationVectorArray_Serial(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays in
the serial vector. The return value is a SUNErrCode.

Notes

• When looping over the components of an N_Vector v, it is more efficient to first obtain the component array
via v_data = NV_DATA_S(v), or equivalently v_data = N_VGetArrayPointer(v), and then access v_-
data[i] within the loop than it is to use NV_Ith_S(v,i) within the loop.

• N_VNewEmpty_Serial() and N_VMake_Serial() set the field own_data to SUNFALSE. The implementation
of N_VDestroy() will not attempt to free the pointer data for any N_Vector with own_data set to SUNFALSE.
In such a case, it is the user’s responsibility to deallocate the data pointer.

6.4. The NVECTOR_SERIAL Module 109

User Documentation for KINSOL, v7.1.0

• To maximize efficiency, vector operations in the NVECTOR_SERIAL implementation that have more than one
N_Vector argument do not check for consistent internal representation of these vectors. It is the user’s respon-
sibility to ensure that such routines are called with N_Vector arguments that were all created with the same
length.

6.4.3 NVECTOR_SERIAL Fortran Interface

The NVECTOR_SERIAL module provides a Fortran 2003 module for use from Fortran applications.

The fnvector_serial_mod Fortran module defines interfaces to all NVECTOR_SERIAL C functions using the
intrinsic iso_c_bindingmodule which provides a standardized mechanism for interoperating with C. As noted in the
C function descriptions above, the interface functions are named after the corresponding C function, but with a leading
F. For example, the function N_VNew_Serial is interfaced as FN_VNew_Serial.

The Fortran 2003 NVECTOR_SERIAL interface module can be accessed with the use statement, i.e. use fnvec-
tor_serial_mod, and linking to the library libsundials_fnvectorserial_mod.lib in addition to the C library.
For details on where the library and module file fnvector_serial_mod.mod are installed see §10. We note that the
module is accessible from the Fortran 2003 SUNDIALS integrators without separately linking to the libsundials_-
fnvectorserial_mod library.

6.5 The NVECTOR_PARALLEL Module

The NVECTOR_PARALLEL implementation of the NVECTOR module provided with SUNDIALS is based on MPI.
It defines the content field of an N_Vector to be a structure containing the global and local lengths of the vector, a
pointer to the beginning of a contiguous local data array, an MPI communicator, an a boolean flag own_data indicating
ownership of the data array data.

struct _N_VectorContent_Parallel {
sunindextype local_length;
sunindextype global_length;
sunbooleantype own_data;
sunrealtype *data;
MPI_Comm comm;

};

The header file to be included when using this module is nvector_parallel.h. The installed module library to link
to is libsundials_nvecparallel.lib where .lib is typically .so for shared libraries and .a for static libraries.

6.5.1 NVECTOR_PARALLEL accessor macros

The following seven macros are provided to access the content of a NVECTOR_PARALLEL vector. The suffix _P in
the names denotes the distributed memory parallel version.

NV_CONTENT_P(v)
This macro gives access to the contents of the parallel N_Vector v.

The assignment v_cont = NV_CONTENT_P(v) sets v_cont to be a pointer to the N_Vector content structure
of type struct N_VectorContent_Parallel.

Implementation:

#define NV_CONTENT_P(v) ((N_VectorContent_Parallel)(v->content))

110 Chapter 6. Vector Data Structures

User Documentation for KINSOL, v7.1.0

NV_OWN_DATA_P(v)
Access the own_data component of the parallel N_Vector v.

Implementation:

#define NV_OWN_DATA_P(v) (NV_CONTENT_P(v)->own_data)

NV_DATA_P(v)
The assignment v_data = NV_DATA_P(v) sets v_data to be a pointer to the first component of the local_data
for the N_Vector v.

The assignment NV_DATA_P(v) = v_data sets the component array of v to be v_data by storing the pointer
v_data into data.

Implementation:

#define NV_DATA_P(v) (NV_CONTENT_P(v)->data)

NV_LOCLENGTH_P(v)
The assignment v_llen = NV_LOCLENGTH_P(v) sets v_llen to be the length of the local part of v.

The call NV_LOCLENGTH_P(v) = llen_v sets the local_length of v to be llen_v.

Implementation:

#define NV_LOCLENGTH_P(v) (NV_CONTENT_P(v)->local_length)

NV_GLOBLENGTH_P(v)
The assignment v_glen = NV_GLOBLENGTH_P(v) sets v_glen to be the global_length of the vector v.

The call NV_GLOBLENGTH_P(v) = glen_v sets the global_length of v to be glen_v.

Implementation:

#define NV_GLOBLENGTH_P(v) (NV_CONTENT_P(v)->global_length)

NV_COMM_P(v)
This macro provides access to the MPI communicator used by the parallel N_Vector v.

Implementation:

#define NV_COMM_P(v) (NV_CONTENT_P(v)->comm)

NV_Ith_P(v, i)
This macro gives access to the individual components of the local_data array of an N_Vector.

The assignment r = NV_Ith_P(v,i) sets r to be the value of the i-th component of the local part of v.

The assignment NV_Ith_P(v,i) = r sets the value of the i-th component of the local part of v to be r.

Here i ranges from 0 to n− 1, where n is the local_length.

Implementation:

#define NV_Ith_P(v,i) (NV_DATA_P(v)[i])

6.5. The NVECTOR_PARALLEL Module 111

User Documentation for KINSOL, v7.1.0

6.5.2 NVECTOR_PARALLEL functions

The NVECTOR_PARALLEL module defines parallel implementations of all vector operations listed in §6.2. Their
names are obtained from the generic names by appending the suffix _Parallel (e.g. N_VDestroy_Parallel). The
module NVECTOR_PARALLEL provides the following additional user-callable routines:

N_Vector N_VNew_Parallel(MPI_Comm comm, sunindextype local_length, sunindextype global_length,
SUNContext sunctx)

This function creates and allocates memory for a parallel vector having global length global_length, having
processor-local length local_length, and using the MPI communicator comm.

N_Vector N_VNewEmpty_Parallel(MPI_Comm comm, sunindextype local_length, sunindextype global_length,
SUNContext sunctx)

This function creates a new parallel N_Vector with an empty (NULL) data array.

N_Vector N_VMake_Parallel(MPI_Comm comm, sunindextype local_length, sunindextype global_length,
sunrealtype *v_data, SUNContext sunctx)

This function creates and allocates memory for a parallel vector with user-provided data array.

(This function does not allocate memory for v_data itself.)

sunindextype N_VGetLocalLength_Parallel(N_Vector v)
This function returns the local vector length.

void N_VPrint_Parallel(N_Vector v)
This function prints the local content of a parallel vector to stdout.

void N_VPrintFile_Parallel(N_Vector v, FILE *outfile)
This function prints the local content of a parallel vector to outfile.

By default all fused and vector array operations are disabled in the NVECTOR_PARALLEL module. The following
additional user-callable routines are provided to enable or disable fused and vector array operations for a specific
vector. To ensure consistency across vectors it is recommended to first create a vector with N_VNew_Parallel(),
enable/disable the desired operations for that vector with the functions below, and create any additional vectors from
that vector using N_VClone(). This guarantees that the new vectors will have the same operations enabled/disabled as
cloned vectors inherit the same enable/disable options as the vector they are cloned from, while vectors created with
N_VNew_Parallel() will have the default settings for the NVECTOR_PARALLEL module.

SUNErrCode N_VEnableFusedOps_Parallel(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the parallel
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombination_Parallel(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the parallel
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMulti_Parallel(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the parallel vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableDotProdMulti_Parallel(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the parallel
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearSumVectorArray_Parallel(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the parallel
vector. The return value is a SUNErrCode.

112 Chapter 6. Vector Data Structures

User Documentation for KINSOL, v7.1.0

SUNErrCode N_VEnableScaleVectorArray_Parallel(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the parallel
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableConstVectorArray_Parallel(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the parallel
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormVectorArray_Parallel(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the
parallel vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormMaskVectorArray_Parallel(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector arrays
in the parallel vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMultiVectorArray_Parallel(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the parallel vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombinationVectorArray_Parallel(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays in
the parallel vector. The return value is a SUNErrCode.

Notes

• When looping over the components of an N_Vector v, it is more efficient to first obtain the local component
array via v_data = N_VGetArrayPointer(v), or equivalently v_data = NV_DATA_P(v), and then access
v_data[i] within the loop than it is to use NV_Ith_P(v,i) within the loop.

• N_VNewEmpty_Parallel() and N_VMake_Parallel() set the field own_data to SUNFALSE. The implementa-
tion of N_VDestroy()will not attempt to free the pointer data for any N_Vectorwith own_data set to SUNFALSE.
In such a case, it is the user’s responsibility to deallocate the data pointer.

• To maximize efficiency, vector operations in the NVECTOR_PARALLEL implementation that have more than
one N_Vector argument do not check for consistent internal representation of these vectors. It is the user’s
responsibility to ensure that such routines are called with N_Vector arguments that were all created with the
same internal representations.

6.5.3 NVECTOR_PARALLEL Fortran Interface

The NVECTOR_PARALLEL module provides a Fortran 2003 module for use from Fortran applications.

The fnvector_parallel_mod Fortran module defines interfaces to all NVECTOR_PARALLEL C functions using
the intrinsic iso_c_binding module which provides a standardized mechanism for interoperating with C. As noted
in the C function descriptions above, the interface functions are named after the corresponding C function, but with a
leading F. For example, the function N_VNew_Parallel is interfaced as FN_VNew_Parallel.

The Fortran 2003 NVECTOR_PARALLEL interface module can be accessed with the use statement, i.e. use fn-
vector_parallel_mod, and linking to the library libsundials_fnvectorparallel_mod.lib in addition to the
C library. For details on where the library and module file fnvector_parallel_mod.mod are installed see §10. We
note that the module is accessible from the Fortran 2003 SUNDIALS integrators without separately linking to the
libsundials_fnvectorparallel_mod library.

6.5. The NVECTOR_PARALLEL Module 113

User Documentation for KINSOL, v7.1.0

6.6 The NVECTOR_OPENMP Module

In situations where a user has a multi-core processing unit capable of running multiple parallel threads with shared
memory, SUNDIALS provides an implementation of NVECTOR using OpenMP, called NVECTOR_OPENMP, and
an implementation using Pthreads, called NVECTOR_PTHREADS. Testing has shown that vectors should be of length
at least 100, 000 before the overhead associated with creating and using the threads is made up by the parallelism in
the vector calculations.

The OpenMP NVECTOR implementation provided with SUNDIALS, NVECTOR_OPENMP, defines the content field
of N_Vector to be a structure containing the length of the vector, a pointer to the beginning of a contiguous data array,
a boolean flag own_data which specifies the ownership of data, and the number of threads. Operations on the vector
are threaded using OpenMP, the number of threads used is based on the supplied argument in the vector constructor.

struct _N_VectorContent_OpenMP {
sunindextype length;
sunbooleantype own_data;
sunrealtype *data;
int num_threads;

};

The header file to be included when using this module is nvector_openmp.h. The installed module library to link to
is libsundials_nvecopenmp.lib where .lib is typically .so for shared libraries and .a for static libraries. The
Fortran module file to use when using the Fortran 2003 interface to this module is fnvector_openmp_mod.mod.

6.6.1 NVECTOR_OPENMP accessor macros

The following six macros are provided to access the content of an NVECTOR_OPENMP vector. The suffix _OMP in
the names denotes the OpenMP version.

NV_CONTENT_OMP(v)
This macro gives access to the contents of the OpenMP vector N_Vector v.

The assignment v_cont = NV_CONTENT_OMP(v) sets v_cont to be a pointer to the OpenMP N_Vector content
structure.

Implementation:

#define NV_CONTENT_OMP(v) ((N_VectorContent_OpenMP)(v->content))

NV_OWN_DATA_OMP(v)
Access the own_data component of the OpenMP N_Vector v.

Implementation:

#define NV_OWN_DATA_OMP(v) (NV_CONTENT_OMP(v)->own_data)

NV_DATA_OMP(v)
The assignment v_data = NV_DATA_OMP(v) sets v_data to be a pointer to the first component of the data for
the N_Vector v.

Similarly, the assignment NV_DATA_OMP(v) = v_data sets the component array of v to be v_data by storing
the pointer v_data.

Implementation:

114 Chapter 6. Vector Data Structures

User Documentation for KINSOL, v7.1.0

#define NV_DATA_OMP(v) (NV_CONTENT_OMP(v)->data)

NV_LENGTH_OMP(v)
Access the length component of the OpenMP N_Vector v.

The assignment v_len = NV_LENGTH_OMP(v) sets v_len to be the length of v. On the other hand, the call
NV_LENGTH_OMP(v) = len_v sets the length of v to be len_v.

Implementation:

#define NV_LENGTH_OMP(v) (NV_CONTENT_OMP(v)->length)

NV_NUM_THREADS_OMP(v)
Access the num_threads component of the OpenMP N_Vector v.

The assignment v_threads = NV_NUM_THREADS_OMP(v) sets v_threads to be the num_threads of v. On
the other hand, the call NV_NUM_THREADS_OMP(v) = num_threads_v sets the num_threads of v to be num_-
threads_v.

Implementation:

#define NV_NUM_THREADS_OMP(v) (NV_CONTENT_OMP(v)->num_threads)

NV_Ith_OMP(v, i)
This macro gives access to the individual components of the data array of an N_Vector, using standard 0-based
C indexing.

The assignment r = NV_Ith_OMP(v,i) sets r to be the value of the i-th component of v.

The assignment NV_Ith_OMP(v,i) = r sets the value of the i-th component of v to be r.

Here i ranges from 0 to n− 1 for a vector of length n.

Implementation:

#define NV_Ith_OMP(v,i) (NV_DATA_OMP(v)[i])

6.6.2 NVECTOR_OPENMP functions

The NVECTOR_OPENMP module defines OpenMP implementations of all vector operations listed in §6.2, §6.2.2,
§6.2.3, and §6.2.4. Their names are obtained from those in those sections by appending the suffix _OpenMP (e.g. N_-
VDestroy_OpenMP). All the standard vector operations listed in §6.2 with the suffix _OpenMP appended are callable
via the Fortran 2003 interface by prepending an F’ (e.g. ``FN_VDestroy_OpenMP`).

The module NVECTOR_OPENMP provides the following additional user-callable routines:

N_Vector N_VNew_OpenMP(sunindextype vec_length, int num_threads, SUNContext sunctx)
This function creates and allocates memory for a OpenMP N_Vector. Arguments are the vector length and
number of threads.

N_Vector N_VNewEmpty_OpenMP(sunindextype vec_length, int num_threads, SUNContext sunctx)
This function creates a new OpenMP N_Vector with an empty (NULL) data array.

N_Vector N_VMake_OpenMP(sunindextype vec_length, sunrealtype *v_data, int num_threads, SUNContext sunctx)
This function creates and allocates memory for a OpenMP vector with user-provided data array, v_data.

(This function does not allocate memory for v_data itself.)

6.6. The NVECTOR_OPENMP Module 115

User Documentation for KINSOL, v7.1.0

void N_VPrint_OpenMP(N_Vector v)
This function prints the content of an OpenMP vector to stdout.

void N_VPrintFile_OpenMP(N_Vector v, FILE *outfile)
This function prints the content of an OpenMP vector to outfile.

By default all fused and vector array operations are disabled in the NVECTOR_OPENMP module. The following
additional user-callable routines are provided to enable or disable fused and vector array operations for a specific vector.
To ensure consistency across vectors it is recommended to first create a vector with N_VNew_OpenMP(), enable/disable
the desired operations for that vector with the functions below, and create any additional vectors from that vector using
N_VClone(). This guarantees the new vectors will have the same operations enabled/disabled as cloned vectors inherit
the same enable/disable options as the vector they are cloned from while vectors created with N_VNew_OpenMP() will
have the default settings for the NVECTOR_OPENMP module.

SUNErrCode N_VEnableFusedOps_OpenMP(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the OpenMP
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombination_OpenMP(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the OpenMP
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMulti_OpenMP(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the OpenMP vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableDotProdMulti_OpenMP(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the
OpenMP vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearSumVectorArray_OpenMP(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the
OpenMP vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleVectorArray_OpenMP(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the OpenMP
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableConstVectorArray_OpenMP(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the OpenMP
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormVectorArray_OpenMP(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the
OpenMP vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormMaskVectorArray_OpenMP(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector arrays
in the OpenMP vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMultiVectorArray_OpenMP(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the OpenMP vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombinationVectorArray_OpenMP(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays in
the OpenMP vector. The return value is a SUNErrCode.

116 Chapter 6. Vector Data Structures

User Documentation for KINSOL, v7.1.0

Notes

• When looping over the components of an N_Vector v, it is more efficient to first obtain the component array
via v_data = N_VGetArrayPointer(v), or equivalently v_data = NV_DATA_OMP(v) and then access v_-
data[i] within the loop than it is to use NV_Ith_OMP(v,i) within the loop.

• N_VNewEmpty_OpenMP() and N_VMake_OpenMP() set the field own_data to SUNFALSE. The implemenation of
N_VDestroy() will not attempt to free the pointer data for any N_Vector with own_data set to SUNFALSE. In
such a case, it is the user’s responsibility to deallocate the data pointer.

• To maximize efficiency, vector operations in the NVECTOR_OPENMP implementation that have more than
one N_Vector argument do not check for consistent internal representation of these vectors. It is the user’s
responsibility to ensure that such routines are called with N_Vector arguments that were all created with the
same internal representations.

6.6.3 NVECTOR_OPENMP Fortran Interface

The NVECTOR_OPENMP module provides a Fortran 2003 module for use from Fortran applications.

The fnvector_openmp_mod Fortran module defines interfaces to all NVECTOR_OPENMP C functions using the
intrinsic iso_c_bindingmodule which provides a standardized mechanism for interoperating with C. As noted in the
C function descriptions above, the interface functions are named after the corresponding C function, but with a leading
F. For example, the function N_VNew_OpenMP is interfaced as FN_VNew_OpenMP.

The Fortran 2003 NVECTOR_OPENMP interface module can be accessed with the use statement, i.e. use fnvec-
tor_openmp_mod, and linking to the library libsundials_fnvectoropenmp_mod.lib in addition to the C library.
For details on where the library and module file fnvector_openmp_mod.mod are installed see §10.

6.7 The NVECTOR_PTHREADS Module

In situations where a user has a multi-core processing unit capable of running multiple parallel threads with shared
memory, SUNDIALS provides an implementation of NVECTOR using OpenMP, called NVECTOR_OPENMP, and
an implementation using Pthreads, called NVECTOR_PTHREADS. Testing has shown that vectors should be of length
at least 100, 000 before the overhead associated with creating and using the threads is made up by the parallelism in
the vector calculations.

The Pthreads NVECTOR implementation provided with SUNDIALS, denoted NVECTOR_PTHREADS, defines the
content field of N_Vector to be a structure containing the length of the vector, a pointer to the beginning of a contiguous
data array, a boolean flag own_data which specifies the ownership of data, and the number of threads. Operations on
the vector are threaded using POSIX threads (Pthreads).

struct _N_VectorContent_Pthreads {
sunindextype length;
sunbooleantype own_data;
sunrealtype *data;
int num_threads;

};

The header file to be included when using this module is nvector_pthreads.h. The installed module library to link
to is libsundials_nvecpthreads.lib where .lib is typically .so for shared libraries and .a for static libraries.

6.7. The NVECTOR_PTHREADS Module 117

User Documentation for KINSOL, v7.1.0

6.7.1 NVECTOR_PTHREADS accessor macros

The following six macros are provided to access the content of an NVECTOR_PTHREADS vector. The suffix _PT in
the names denotes the Pthreads version.

NV_CONTENT_PT(v)
This macro gives access to the contents of the Pthreads vector N_Vector v.

The assignment v_cont = NV_CONTENT_PT(v) sets v_cont to be a pointer to the Pthreads N_Vector content
structure.

Implementation:

#define NV_CONTENT_PT(v) ((N_VectorContent_Pthreads)(v->content))

NV_OWN_DATA_PT(v)
Access the own_data component of the Pthreads N_Vector v.

Implementation:

#define NV_OWN_DATA_PT(v) (NV_CONTENT_PT(v)->own_data)

NV_DATA_PT(v)
The assignment v_data = NV_DATA_PT(v) sets v_data to be a pointer to the first component of the data for
the N_Vector v.

Similarly, the assignment NV_DATA_PT(v) = v_data sets the component array of v to be v_data by storing
the pointer v_data.

Implementation:

#define NV_DATA_PT(v) (NV_CONTENT_PT(v)->data)

NV_LENGTH_PT(v)
Access the length component of the Pthreads N_Vector v.

The assignment v_len = NV_LENGTH_PT(v) sets v_len to be the length of v. On the other hand, the call
NV_LENGTH_PT(v) = len_v sets the length of v to be len_v.

Implementation:

#define NV_LENGTH_PT(v) (NV_CONTENT_PT(v)->length)

NV_NUM_THREADS_PT(v)
Access the num_threads component of the Pthreads N_Vector v.

The assignment v_threads = NV_NUM_THREADS_PT(v) sets v_threads to be the num_threads of v. On
the other hand, the call NV_NUM_THREADS_PT(v) = num_threads_v sets the num_threads of v to be num_-
threads_v.

Implementation:

#define NV_NUM_THREADS_PT(v) (NV_CONTENT_PT(v)->num_threads)

NV_Ith_PT(v, i)
This macro gives access to the individual components of the data array of an N_Vector, using standard 0-based
C indexing.

The assignment r = NV_Ith_PT(v,i) sets r to be the value of the i-th component of v.

118 Chapter 6. Vector Data Structures

User Documentation for KINSOL, v7.1.0

The assignment NV_Ith_PT(v,i) = r sets the value of the i-th component of v to be r.

Here i ranges from 0 to n− 1 for a vector of length n.

Implementation:

#define NV_Ith_PT(v,i) (NV_DATA_PT(v)[i])

6.7.2 NVECTOR_PTHREADS functions

The NVECTOR_PTHREADS module defines Pthreads implementations of all vector operations listed in §6.2, §6.2.2,
§6.2.3, and §6.2.4. Their names are obtained from those in those sections by appending the suffix _Pthreads (e.g.
N_VDestroy_Pthreads). All the standard vector operations listed in §6.2 are callable via the Fortran 2003 interface
by prepending an F’ (e.g. ``FN_VDestroy_Pthreads`). The module NVECTOR_PTHREADS provides the following
additional user-callable routines:

N_Vector N_VNew_Pthreads(sunindextype vec_length, int num_threads, SUNContext sunctx)
This function creates and allocates memory for a Pthreads N_Vector. Arguments are the vector length and
number of threads.

N_Vector N_VNewEmpty_Pthreads(sunindextype vec_length, int num_threads, SUNContext sunctx)
This function creates a new Pthreads N_Vector with an empty (NULL) data array.

N_Vector N_VMake_Pthreads(sunindextype vec_length, sunrealtype *v_data, int num_threads, SUNContext
sunctx)

This function creates and allocates memory for a Pthreads vector with user-provided data array, v_data.

(This function does not allocate memory for v_data itself.)

void N_VPrint_Pthreads(N_Vector v)
This function prints the content of a Pthreads vector to stdout.

void N_VPrintFile_Pthreads(N_Vector v, FILE *outfile)
This function prints the content of a Pthreads vector to outfile.

By default all fused and vector array operations are disabled in the NVECTOR_PTHREADS module. The following
additional user-callable routines are provided to enable or disable fused and vector array operations for a specific
vector. To ensure consistency across vectors it is recommended to first create a vector with N_VNew_Pthreads(),
enable/disable the desired operations for that vector with the functions below, and create any additional vectors from
that vector using N_VClone(). This guarantees the new vectors will have the same operations enabled/disabled as
cloned vectors inherit the same enable/disable options as the vector they are cloned from while vectors created with
N_VNew_Pthreads() will have the default settings for the NVECTOR_PTHREADS module.

SUNErrCode N_VEnableFusedOps_Pthreads(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the Pthreads
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombination_Pthreads(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the Pthreads
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMulti_Pthreads(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the Pthreads vector. The return value is a SUNErrCode.

6.7. The NVECTOR_PTHREADS Module 119

User Documentation for KINSOL, v7.1.0

SUNErrCode N_VEnableDotProdMulti_Pthreads(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the
Pthreads vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearSumVectorArray_Pthreads(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the Pthreads
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleVectorArray_Pthreads(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the Pthreads
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableConstVectorArray_Pthreads(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the Pthreads
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormVectorArray_Pthreads(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the
Pthreads vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormMaskVectorArray_Pthreads(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector arrays
in the Pthreads vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMultiVectorArray_Pthreads(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the Pthreads vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombinationVectorArray_Pthreads(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays in
the Pthreads vector. The return value is a SUNErrCode.

Notes

• When looping over the components of an N_Vector v, it is more efficient to first obtain the component array
via v_data = N_VGetArrayPointer(v), or equivalently v_data = NV_DATA_PT(v) and then access v_-
data[i] within the loop than it is to use NV_Ith_S(v,i) within the loop.

• N_VNewEmpty_Pthreads() and N_VMake_Pthreads() set the field own_data to SUNFALSE. The implementa-
tion of N_VDestroy()will not attempt to free the pointer data for any N_Vectorwith own_data set to SUNFALSE.
In such a case, it is the user’s responsibility to deallocate the data pointer.

• To maximize efficiency, vector operations in the NVECTOR_PTHREADS implementation that have more than
one N_Vector argument do not check for consistent internal representation of these vectors. It is the user’s
responsibility to ensure that such routines are called with N_Vector arguments that were all created with the
same internal representations.

6.7.3 NVECTOR_PTHREADS Fortran Interface

The NVECTOR_PTHREADS module provides a Fortran 2003 module for use from Fortran applications.

The fnvector_pthreads_mod Fortran module defines interfaces to all NVECTOR_PTHREADS C functions using
the intrinsic iso_c_binding module which provides a standardized mechanism for interoperating with C. As noted
in the C function descriptions above, the interface functions are named after the corresponding C function, but with a
leading F. For example, the function N_VNew_Pthreads is interfaced as FN_VNew_Pthreads.

120 Chapter 6. Vector Data Structures

User Documentation for KINSOL, v7.1.0

The Fortran 2003 NVECTOR_PTHREADS interface module can be accessed with the use statement, i.e. use fn-
vector_pthreads_mod, and linking to the library libsundials_fnvectorpthreads_mod.lib in addition to the
C library. For details on where the library and module file fnvector_pthreads_mod.mod are installed see §10.

6.8 The NVECTOR_PARHYP Module

The NVECTOR_PARHYP implementation of the NVECTOR module provided with SUNDIALS is a wrapper around
HYPRE’s ParVector class. Most of the vector kernels simply call HYPRE vector operations. The implementation
defines the content field of N_Vector to be a structure containing the global and local lengths of the vector, a pointer
to an object of type hypre_ParVector, an MPI communicator, and a boolean flag own_parvector indicating ownership
of the HYPRE parallel vector object x.

struct _N_VectorContent_ParHyp {
sunindextype local_length;
sunindextype global_length;
sunbooleantype own_data;
sunbooleantype own_parvector;
sunrealtype *data;
MPI_Comm comm;
hypre_ParVector *x;

};

The header file to be included when using this module is nvector_parhyp.h. The installed module library to link to
is libsundials_nvecparhyp.lib where .lib is typically .so for shared libraries and .a for static libraries.

Unlike native SUNDIALS vector types, NVECTOR_PARHYP does not provide macros to access its member variables.
Note that NVECTOR_PARHYP requires SUNDIALS to be built with MPI support.

6.8.1 NVECTOR_PARHYP functions

The NVECTOR_PARHYP module defines implementations of all vector operations listed in §6.2 except for N_VSe-
tArrayPointer() and N_VGetArrayPointer() because accessing raw vector data is handled by low-level HYPRE
functions. As such, this vector is not available for use with SUNDIALS Fortran interfaces. When access to raw vector
data is needed, one should extract the HYPRE vector first, and then use HYPRE methods to access the data. Usage
examples of NVECTOR_PARHYP are provided in the cvAdvDiff_non_ph.c example programs for CVODE and the
ark_diurnal_kry_ph.c example program for ARKODE.

The names of parhyp methods are obtained from those in §6.2, §6.2.2, §6.2.3, and §6.2.4 by appending the suffix
_ParHyp (e.g. N_VDestroy_ParHyp). The module NVECTOR_PARHYP provides the following additional user-
callable routines:

N_Vector N_VNewEmpty_ParHyp(MPI_Comm comm, sunindextype local_length, sunindextype global_length,
SUNContext sunctx)

This function creates a new parhyp N_Vector with the pointer to the HYPRE vector set to NULL.

N_Vector N_VMake_ParHyp(hypre_ParVector *x, SUNContext sunctx)
This function creates an N_Vector wrapper around an existing HYPRE parallel vector. It does not allocate
memory for x itself.

hypre_ParVector *N_VGetVector_ParHyp(N_Vector v)
This function returns a pointer to the underlying HYPRE vector.

6.8. The NVECTOR_PARHYP Module 121

User Documentation for KINSOL, v7.1.0

void N_VPrint_ParHyp(N_Vector v)
This function prints the local content of a parhyp vector to stdout.

void N_VPrintFile_ParHyp(N_Vector v, FILE *outfile)
This function prints the local content of a parhyp vector to outfile.

By default all fused and vector array operations are disabled in the NVECTOR_PARHYP module. The following
additional user-callable routines are provided to enable or disable fused and vector array operations for a specific vector.
To ensure consistency across vectors it is recommended to first create a vector with N_VMake_ParHyp(), enable/disable
the desired operations for that vector with the functions below, and create any additional vectors from that vector using
N_VClone(). This guarantees the new vectors will have the same operations enabled/disabled as cloned vectors inherit
the same enable/disable options as the vector they are cloned from while vectors created with N_VMake_ParHyp()will
have the default settings for the NVECTOR_PARHYP module.

SUNErrCode N_VEnableFusedOps_ParHyp(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the parhyp
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombination_ParHyp(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the parhyp
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMulti_ParHyp(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the parhyp vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableDotProdMulti_ParHyp(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the parhyp
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearSumVectorArray_ParHyp(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the parhyp
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleVectorArray_ParHyp(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the parhyp
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableConstVectorArray_ParHyp(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the parhyp
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormVectorArray_ParHyp(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the
parhyp vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormMaskVectorArray_ParHyp(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector arrays
in the parhyp vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMultiVectorArray_ParHyp(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the parhyp vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombinationVectorArray_ParHyp(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays in
the parhyp vector. The return value is a SUNErrCode.

122 Chapter 6. Vector Data Structures

User Documentation for KINSOL, v7.1.0

Notes

• When there is a need to access components of an N_Vector_ParHyp v, it is recommended to extract the HYPRE
vector via x_vec = N_VGetVector_ParHyp(v) and then access components using appropriate HYPRE func-
tions.

• N_VNewEmpty_ParHyp(), and N_VMake_ParHyp() set the field
own_parvector to SUNFALSE. The implementation of N_VDestroy()will not attempt to delete an underly-
ing HYPRE vector for any N_Vector with own_parvector set to SUNFALSE. In such a case, it is the user’s
responsibility to delete the underlying vector.

• To maximize efficiency, vector operations in the NVECTOR_PARHYP implementation that have more than
one N_Vector argument do not check for consistent internal representations of these vectors. It is the user’s
responsibility to ensure that such routines are called with N_Vector arguments that were all created with the
same internal representations.

6.9 The NVECTOR_PETSC Module

The NVECTOR_PETSC module is an NVECTOR wrapper around the PETSc vector. It defines the content field of a
N_Vector to be a structure containing the global and local lengths of the vector, a pointer to the PETSc vector, an MPI
communicator, and a boolean flag own_data indicating ownership of the wrapped PETSc vector.

struct _N_VectorContent_Petsc {
sunindextype local_length;
sunindextype global_length;
sunbooleantype own_data;
Vec *pvec;
MPI_Comm comm;

};

The header file to be included when using this module is nvector_petsc.h. The installed module library to link to
is libsundials_nvecpetsc.lib where .lib is typically .so for shared libraries and .a for static libraries.

Unlike native SUNDIALS vector types, NVECTOR_PETSC does not provide macros to access its member variables.
Note that NVECTOR_PETSC requires SUNDIALS to be built with MPI support.

6.9.1 NVECTOR_PETSC functions

The NVECTOR_PETSC module defines implementations of all vector operations listed in §6.2 except for N_VGe-
tArrayPointer() and N_VSetArrayPointer(). As such, this vector cannot be used with SUNDIALS Fortran
interfaces. When access to raw vector data is needed, it is recommended to extract the PETSc vector first, and then use
PETSc methods to access the data. Usage examples of NVECTOR_PETSC is provided in example programs for IDA.

The names of vector operations are obtained from those in §6.2, §6.2.2, §6.2.3, and §6.2.4 by appending the suffice
_Petsc (e.g. N_VDestroy_Petsc). The module NVECTOR_PETSC provides the following additional user-callable
routines:

N_Vector N_VNewEmpty_Petsc(MPI_Comm comm, sunindextype local_length, sunindextype global_length,
SUNContext sunctx)

This function creates a new PETSC N_Vector with the pointer to the wrapped PETSc vector set to NULL. It is
used by the N_VMake_Petsc and N_VClone_Petsc implementations. It should be used only with great caution.

N_Vector N_VMake_Petsc(Vec *pvec, SUNContext sunctx)
This function creates and allocates memory for an NVECTOR_PETSC wrapper with a user-provided PETSc
vector. It does not allocate memory for the vector pvec itself.

6.9. The NVECTOR_PETSC Module 123

User Documentation for KINSOL, v7.1.0

Vec *N_VGetVector_Petsc(N_Vector v)
This function returns a pointer to the underlying PETSc vector.

void N_VPrint_Petsc(N_Vector v)
This function prints the global content of a wrapped PETSc vector to stdout.

void N_VPrintFile_Petsc(N_Vector v, const char fname[])
This function prints the global content of a wrapped PETSc vector to fname.

By default all fused and vector array operations are disabled in the NVECTOR_PETSC module. The following addi-
tional user-callable routines are provided to enable or disable fused and vector array operations for a specific vector. To
ensure consistency across vectors it is recommended to first create a vector with N_VMake_Petsc(), enable/disable
the desired operations for that vector with the functions below, and create any additional vectors from that vector using
N_VClone(). This guarantees the new vectors will have the same operations enabled/disabled as cloned vectors inherit
the same enable/disable options as the vector they are cloned from while vectors created with N_VMake_Petsc() will
have the default settings for the NVECTOR_PETSC module.

SUNErrCode N_VEnableFusedOps_Petsc(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the PETSc
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombination_Petsc(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the PETSc
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMulti_Petsc(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the PETSc vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableDotProdMulti_Petsc(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the PETSc
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearSumVectorArray_Petsc(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the PETSc
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleVectorArray_Petsc(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the PETSc
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableConstVectorArray_Petsc(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the PETSc
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormVectorArray_Petsc(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the
PETSc vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormMaskVectorArray_Petsc(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector arrays
in the PETSc vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMultiVectorArray_Petsc(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the PETSc vector. The return value is a SUNErrCode.

124 Chapter 6. Vector Data Structures

User Documentation for KINSOL, v7.1.0

SUNErrCode N_VEnableLinearCombinationVectorArray_Petsc(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays in
the PETSc vector. The return value is a SUNErrCode.

Notes

• When there is a need to access components of an N_Vector_Petsc v, it is recommeded to extract the PETSc
vector via x_vec = N_VGetVector_Petsc(v); and then access components using appropriate PETSc func-
tions.

• The functions N_VNewEmpty_Petsc() and N_VMake_Petsc(), set the field own_data to SUNFALSE. The im-
plementation of N_VDestroy() will not attempt to free the pointer pvec for any N_Vector with own_data set
to SUNFALSE. In such a case, it is the user’s responsibility to deallocate the pvec pointer.

• To maximize efficiency, vector operations in the NVECTOR_PETSC implementation that have more than one
N_Vector argument do not check for consistent internal representations of these vectors. It is the user’s respon-
sibility to ensure that such routines are called with N_Vector arguments that were all created with the same
internal representations.

6.10 The NVECTOR_CUDA Module

The NVECTOR_CUDA module is an NVECTOR implementation in the CUDA language. The module allows for
SUNDIALS vector kernels to run on NVIDIA GPU devices. It is intended for users who are already familiar with
CUDA and GPU programming. Building this vector module requires a CUDA compiler and, by extension, a C++
compiler. The vector content layout is as follows:

struct _N_VectorContent_Cuda
{
sunindextype length;
sunbooleantype own_helper;
SUNMemory host_data;
SUNMemory device_data;
SUNCudaExecPolicy* stream_exec_policy;
SUNCudaExecPolicy* reduce_exec_policy;
SUNMemoryHelper mem_helper;
void* priv; /* 'private' data */

};

typedef struct _N_VectorContent_Cuda *N_VectorContent_Cuda;

The content members are the vector length (size), boolean flags that indicate if the vector owns the execution policies
and memory helper objects (i.e., it is in change of freeing the objects), SUNMemory objects for the vector data on
the host and device, pointers to execution policies that control how streaming and reduction kernels are launched, a
SUNMemoryHelper for performing memory operations, and a private data structure which holds additonal members
that should not be accessed directly.

When instantiated with N_VNew_Cuda(), the underlying data will be allocated on both the host and the device. Al-
ternatively, a user can provide host and device data arrays by using the N_VMake_Cuda() constructor. To use CUDA
managed memory, the constructors N_VNewManaged_Cuda() and N_VMakeManaged_Cuda() are provided. Addition-
ally, a user-defined SUNMemoryHelper for allocating/freeing data can be provided with the constructor N_VNewWith-
MemHelp_Cuda(). Details on each of these constructors are provided below.

To use the NVECTOR_CUDA module, include nvector_cuda.h and link to the library libsundials_nveccuda.
lib. The extension, .lib, is typically .so for shared libraries and .a for static libraries.

6.10. The NVECTOR_CUDA Module 125

User Documentation for KINSOL, v7.1.0

6.10.1 NVECTOR_CUDA functions

Unlike other native SUNDIALS vector types, the NVECTOR_CUDA module does not provide macros to access its
member variables. Instead, user should use the accessor functions:

sunrealtype *N_VGetHostArrayPointer_Cuda(N_Vector v)
This function returns pointer to the vector data on the host.

sunrealtype *N_VGetDeviceArrayPointer_Cuda(N_Vector v)
This function returns pointer to the vector data on the device.

sunbooleantype N_VIsManagedMemory_Cuda(N_Vector v)
This function returns a boolean flag indiciating if the vector data array is in managed memory or not.

The NVECTOR_CUDA module defines implementations of all standard vector operations defined in §6.2, §6.2.2,
§6.2.3, and §6.2.4, except for N_VSetArrayPointer(), and, if using unmanaged memory, N_VGetArrayPointer().
As such, this vector can only be used with SUNDIALS direct solvers and preconditioners when using managed mem-
ory. The NVECTOR_CUDA module provides separate functions to access data on the host and on the device for the
unmanaged memory use case. It also provides methods for copying from the host to the device and vice versa. Usage
examples of NVECTOR_CUDA are provided in example programs for CVODE [34].

The names of vector operations are obtained from those in §6.2, §6.2.2, §6.2.3, and §6.2.4 by appending the suffix
_Cuda (e.g. N_VDestroy_Cuda). The module NVECTOR_CUDA provides the following additional user-callable
routines:

N_Vector N_VNew_Cuda(sunindextype length, SUNContext sunctx)
This function creates and allocates memory for a CUDA N_Vector. The vector data array is allocated on both
the host and device.

N_Vector N_VNewManaged_Cuda(sunindextype vec_length, SUNContext sunctx)
This function creates and allocates memory for a CUDA N_Vector. The vector data array is allocated in managed
memory.

N_Vector N_VNewWithMemHelp_Cuda(sunindextype length, sunbooleantype use_managed_mem,
SUNMemoryHelper helper, SUNContext sunctx)

This function creates a new CUDA N_Vector with a user-supplied SUNMemoryHelper for allocating/freeing
memory.

N_Vector N_VNewEmpty_Cuda(sunindextype vec_length, SUNContext sunctx)
This function creates a new CUDA N_Vectorwhere the members of the content structure have not been allocated.
This utility function is used by the other constructors to create a new vector.

N_Vector N_VMake_Cuda(sunindextype vec_length, sunrealtype *h_vdata, sunrealtype *d_vdata, SUNContext
sunctx)

This function creates a CUDA N_Vector with user-supplied vector data arrays for the host and the device.

N_Vector N_VMakeManaged_Cuda(sunindextype vec_length, sunrealtype *vdata, SUNContext sunctx)
This function creates a CUDA N_Vector with a user-supplied managed memory data array.

N_Vector N_VMakeWithManagedAllocator_Cuda(sunindextype length, void *(*allocfn)(size_t size), void
(*freefn)(void *ptr))

This function creates a CUDA N_Vector with a user-supplied memory allocator. It requires the user to provide
a corresponding free function as well. The memory allocated by the allocator function must behave like CUDA
managed memory.

The module NVECTOR_CUDA also provides the following user-callable routines:

126 Chapter 6. Vector Data Structures

User Documentation for KINSOL, v7.1.0

void N_VSetKernelExecPolicy_Cuda(N_Vector v, SUNCudaExecPolicy *stream_exec_policy,
SUNCudaExecPolicy *reduce_exec_policy)

This function sets the execution policies which control the kernel parameters utilized when launching the stream-
ing and reduction CUDA kernels. By default the vector is setup to use the SUNCudaThreadDirectExecPolicy
and SUNCudaBlockReduceAtomicExecPolicy. Any custom execution policy for reductions must ensure that
the grid dimensions (number of thread blocks) is a multiple of the CUDA warp size (32). See §6.10.2 below
for more information about the SUNCudaExecPolicy class. Providing NULL for an argument will result in the
default policy being restored.

The input execution policies are cloned and, as such, may be freed after being attached to the desired vectors. A
NULL input policy will reset the execution policy to the default setting.

Note: Note: All vectors used in a single instance of a SUNDIALS package must use the same execution
policy. It is strongly recommended that this function is called immediately after constructing the vector, and
any subsequent vector be created by cloning to ensure consistent execution policies across vectors

sunrealtype *N_VCopyToDevice_Cuda(N_Vector v)
This function copies host vector data to the device.

sunrealtype *N_VCopyFromDevice_Cuda(N_Vector v)
This function copies vector data from the device to the host.

void N_VPrint_Cuda(N_Vector v)
This function prints the content of a CUDA vector to stdout.

void N_VPrintFile_Cuda(N_Vector v, FILE *outfile)
This function prints the content of a CUDA vector to outfile.

By default all fused and vector array operations are disabled in the NVECTOR_CUDA module. The following addi-
tional user-callable routines are provided to enable or disable fused and vector array operations for a specific vector.
To ensure consistency across vectors it is recommended to first create a vector with N_VNew_Cuda(), enable/disable
the desired operations for that vector with the functions below, and create any additional vectors from that vector using
N_VClone(). This guarantees the new vectors will have the same operations enabled/disabled as cloned vectors inherit
the same enable/disable options as the vector they are cloned from while vectors created with N_VNew_Cuda() will
have the default settings for the NVECTOR_CUDA module.

SUNErrCode N_VEnableFusedOps_Cuda(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the CUDA
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombination_Cuda(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the CUDA
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMulti_Cuda(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the CUDA vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableDotProdMulti_Cuda(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the CUDA
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearSumVectorArray_Cuda(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the CUDA
vector. The return value is a SUNErrCode.

6.10. The NVECTOR_CUDA Module 127

User Documentation for KINSOL, v7.1.0

SUNErrCode N_VEnableScaleVectorArray_Cuda(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the CUDA
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableConstVectorArray_Cuda(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the CUDA
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormVectorArray_Cuda(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the
CUDA vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormMaskVectorArray_Cuda(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector arrays
in the CUDA vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMultiVectorArray_Cuda(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the CUDA vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombinationVectorArray_Cuda(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays in
the CUDA vector. The return value is a SUNErrCode.

Notes

• When there is a need to access components of an N_Vector_Cuda, v, it is recommeded to use functions N_-
VGetDeviceArrayPointer_Cuda() or N_VGetHostArrayPointer_Cuda(). However, when using managed
memory, the function N_VGetArrayPointer() may also be used.

• To maximize efficiency, vector operations in the NVECTOR_CUDA implementation that have more than one
N_Vector argument do not check for consistent internal representations of these vectors. It is the user’s respon-
sibility to ensure that such routines are called with N_Vector arguments that were all created with the same
internal representations.

6.10.2 The SUNCudaExecPolicy Class

In order to provide maximum flexibility to users, the CUDA kernel execution parameters used by kernels within SUN-
DIALS are defined by objects of the sundials::cuda::ExecPolicy abstract class type (this class can be accessed in
the global namespace as SUNCudaExecPolicy). Thus, users may provide custom execution policies that fit the needs
of their problem. The SUNCudaExecPolicy class is defined as

typedef sundials::cuda::ExecPolicy SUNCudaExecPolicy

where the sundials::cuda::ExecPolicy class is defined in the header file sundials_cuda_policies.hpp, as
follows:

class sundials::cuda::ExecPolicy

ExecPolicy(cudaStream_t stream = 0)

virtual size_t gridSize(size_t numWorkUnits = 0, size_t blockDim = 0)

virtual size_t blockSize(size_t numWorkUnits = 0, size_t gridDim = 0)

virtual const cudaStream_t *stream() const

128 Chapter 6. Vector Data Structures

User Documentation for KINSOL, v7.1.0

virtual ExecPolicy *clone() const

ExecPolicy *clone_new_stream(cudaStream_t stream) const

virtual bool atomic() const

virtual ~ExecPolicy()

To define a custom execution policy, a user simply needs to create a class that inherits from the abstract class and im-
plements the methods. The SUNDIALS provided sundials::cuda::ThreadDirectExecPolicy (aka in the global
namespace as SUNCudaThreadDirectExecPolicy) class is a good example of a what a custom execution policy may
look like:

class ThreadDirectExecPolicy : public ExecPolicy
{
public:
ThreadDirectExecPolicy(const size_t blockDim, cudaStream_t stream = 0)
: blockDim_(blockDim), ExecPolicy(stream)

{}

ThreadDirectExecPolicy(const ThreadDirectExecPolicy& ex)
: blockDim_(ex.blockDim_), ExecPolicy(ex.stream_)

{}

virtual size_t gridSize(size_t numWorkUnits = 0, size_t /*blockDim*/ = 0) const
{
/* ceil(n/m) = floor((n + m - 1) / m) */
return (numWorkUnits + blockSize() - 1) / blockSize();

}

virtual size_t blockSize(size_t /*numWorkUnits*/ = 0, size_t /*gridDim*/ = 0) const
{
return blockDim_;

}

virtual ExecPolicy* clone() const
{
return static_cast<ExecPolicy*>(new ThreadDirectExecPolicy(*this));

}

private:
const size_t blockDim_;

};

In total, SUNDIALS provides 3 execution policies:

SUNCudaThreadDirectExecPolicy(const size_t blockDim, const cudaStream_t stream = 0)
Maps each CUDA thread to a work unit. The number of threads per block (blockDim) can be set to
anything. The grid size will be calculated so that there are enough threads for one thread per element.
If a CUDA stream is provided, it will be used to execute the kernel.

SUNCudaGridStrideExecPolicy(const size_t blockDim, const size_t gridDim, const cudaStream_t
stream = 0)

Is for kernels that use grid stride loops. The number of threads per block (blockDim) can be set to
anything. The number of blocks (gridDim) can be set to anything. If a CUDA stream is provided, it
will be used to execute the kernel.

6.10. The NVECTOR_CUDA Module 129

User Documentation for KINSOL, v7.1.0

SUNCudaBlockReduceExecPolicy(const size_t blockDim, const cudaStream_t stream = 0)
Is for kernels performing a reduction across indvidual thread blocks. The number of threads per
block (blockDim) can be set to any valid multiple of the CUDA warp size. The grid size (gridDim)
can be set to any value greater than 0. If it is set to 0, then the grid size will be chosen so that there is
enough threads for one thread per work unit. If a CUDA stream is provided, it will be used to execute
the kernel.

SUNCudaBlockReduceAtomicExecPolicy(const size_t blockDim, const cudaStream_t stream = 0)
Is for kernels performing a reduction across indvidual thread blocks using atomic operations. The
number of threads per block (blockDim) can be set to any valid multiple of the CUDA warp size. The
grid size (gridDim) can be set to any value greater than 0. If it is set to 0, then the grid size will be
chosen so that there is enough threads for one thread per work unit. If a CUDA stream is provided,
it will be used to execute the kernel.

For example, a policy that uses 128 threads per block and a user provided stream can be created like so:

cudaStream_t stream;
cudaStreamCreate(&stream);
SUNCudaThreadDirectExecPolicy thread_direct(128, stream);

These default policy objects can be reused for multiple SUNDIALS data structures (e.g. a SUNMatrix and an N_-
Vector) since they do not hold any modifiable state information.

6.11 The NVECTOR_HIP Module

The NVECTOR_HIP module is an NVECTOR implementation using the AMD ROCm HIP library [2]. The module
allows for SUNDIALS vector kernels to run on AMD or NVIDIA GPU devices. It is intended for users who are already
familiar with HIP and GPU programming. Building this vector module requires the HIP-clang compiler. The vector
content layout is as follows:

struct _N_VectorContent_Hip
{
sunindextype length;
sunbooleantype own_helper;
SUNMemory host_data;
SUNMemory device_data;
SUNHipExecPolicy* stream_exec_policy;
SUNHipExecPolicy* reduce_exec_policy;
SUNMemoryHelper mem_helper;
void* priv; /* 'private' data */

};

typedef struct _N_VectorContent_Hip *N_VectorContent_Hip;

The content members are the vector length (size), a boolean flag that signals if the vector owns the data (i.e. it is in charge
of freeing the data), pointers to vector data on the host and the device, pointers to SUNHipExecPolicy implementations
that control how the HIP kernels are launched for streaming and reduction vector kernels, and a private data structure
which holds additonal members that should not be accessed directly.

When instantiated with N_VNew_Hip(), the underlying data will be allocated on both the host and the device. Alter-
natively, a user can provide host and device data arrays by using the N_VMake_Hip() constructor. To use managed
memory, the constructors N_VNewManaged_Hip() and N_VMakeManaged_Hip() are provided. Additionally, a user-
defined SUNMemoryHelper for allocating/freeing data can be provided with the constructor N_VNewWithMemHelp_-
Hip(). Details on each of these constructors are provided below.

130 Chapter 6. Vector Data Structures

User Documentation for KINSOL, v7.1.0

To use the NVECTOR_HIP module, include nvector_hip.h and link to the library libsundials_nvechip.lib.
The extension, .lib, is typically .so for shared libraries and .a for static libraries.

6.11.1 NVECTOR_HIP functions

Unlike other native SUNDIALS vector types, the NVECTOR_HIP module does not provide macros to access its mem-
ber variables. Instead, user should use the accessor functions:

sunrealtype *N_VGetHostArrayPointer_Hip(N_Vector v)
This function returns pointer to the vector data on the host.

sunrealtype *N_VGetDeviceArrayPointer_Hip(N_Vector v)
This function returns pointer to the vector data on the device.

sunbooleantype N_VIsManagedMemory_Hip(N_Vector v)
This function returns a boolean flag indiciating if the vector data array is in managed memory or not.

The NVECTOR_HIP module defines implementations of all standard vector operations defined in §6.2, §6.2.2, §6.2.3,
and §6.2.4, except for N_VSetArrayPointer(). The names of vector operations are obtained from those in §6.2,
§6.2.2, §6.2.3, and §6.2.4 by appending the suffix _Hip (e.g. N_VDestroy_Hip). The module NVECTOR_HIP pro-
vides the following additional user-callable routines:

N_Vector N_VNew_Hip(sunindextype length, SUNContext sunctx)
This function creates and allocates memory for a HIP N_Vector. The vector data array is allocated on both the
host and device.

N_Vector N_VNewManaged_Hip(sunindextype vec_length, SUNContext sunctx)
This function creates and allocates memory for a HIP N_Vector. The vector data array is allocated in managed
memory.

N_Vector N_VNewWithMemHelp_Hip(sunindextype length, sunbooleantype use_managed_mem,
SUNMemoryHelper helper, SUNContext sunctx)

This function creates a new HIP N_Vectorwith a user-supplied SUNMemoryHelper for allocating/freeing mem-
ory.

N_Vector N_VNewEmpty_Hip(sunindextype vec_length, SUNContext sunctx)
This function creates a new HIP N_Vector where the members of the content structure have not been allocated.
This utility function is used by the other constructors to create a new vector.

N_Vector N_VMake_Hip(sunindextype vec_length, sunrealtype *h_vdata, sunrealtype *d_vdata, SUNContext
sunctx)

This function creates a HIP N_Vector with user-supplied vector data arrays for the host and the device.

N_Vector N_VMakeManaged_Hip(sunindextype vec_length, sunrealtype *vdata, SUNContext sunctx)
This function creates a HIP N_Vector with a user-supplied managed memory data array.

The module NVECTOR_HIP also provides the following user-callable routines:

void N_VSetKernelExecPolicy_Hip(N_Vector v, SUNHipExecPolicy *stream_exec_policy, SUNHipExecPolicy
*reduce_exec_policy)

This function sets the execution policies which control the kernel parameters utilized when launching the stream-
ing and reduction HIP kernels. By default the vector is setup to use the SUNHipThreadDirectExecPolicy()
and SUNHipBlockReduceExecPolicy(). Any custom execution policy for reductions must ensure that the grid
dimensions (number of thread blocks) is a multiple of the HIP warp size (32 for NVIDIA GPUs, 64 for AMD
GPUs). See §6.11.2 below for more information about the SUNHipExecPolicy class. Providing NULL for an
argument will result in the default policy being restored.

6.11. The NVECTOR_HIP Module 131

User Documentation for KINSOL, v7.1.0

The input execution policies are cloned and, as such, may be freed after being attached to the desired vectors. A
NULL input policy will reset the execution policy to the default setting.

Note: Note: All vectors used in a single instance of a SUNDIALS package must use the same execution
policy. It is strongly recommended that this function is called immediately after constructing the vector, and
any subsequent vector be created by cloning to ensure consistent execution policies across vectors*

sunrealtype *N_VCopyToDevice_Hip(N_Vector v)
This function copies host vector data to the device.

sunrealtype *N_VCopyFromDevice_Hip(N_Vector v)
This function copies vector data from the device to the host.

void N_VPrint_Hip(N_Vector v)
This function prints the content of a HIP vector to stdout.

void N_VPrintFile_Hip(N_Vector v, FILE *outfile)
This function prints the content of a HIP vector to outfile.

By default all fused and vector array operations are disabled in the NVECTOR_HIP module. The following additional
user-callable routines are provided to enable or disable fused and vector array operations for a specific vector. To
ensure consistency across vectors it is recommended to first create a vector with N_VNew_Hip(), enable/disable the
desired operations for that vector with the functions below, and create any additional vectors from that vector using N_-
VClone(). This guarantees the new vectors will have the same operations enabled/disabled as cloned vectors inherit
the same enable/disable options as the vector they are cloned from while vectors created with N_VNew_Hip()will have
the default settings for the NVECTOR_HIP module.

SUNErrCode N_VEnableFusedOps_Hip(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the HIP vector.
The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombination_Hip(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the HIP
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMulti_Hip(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the HIP vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableDotProdMulti_Hip(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the HIP
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearSumVectorArray_Hip(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the HIP
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleVectorArray_Hip(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the HIP vector.
The return value is a SUNErrCode.

SUNErrCode N_VEnableConstVectorArray_Hip(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the HIP vector.
The return value is a SUNErrCode.

132 Chapter 6. Vector Data Structures

User Documentation for KINSOL, v7.1.0

SUNErrCode N_VEnableWrmsNormVectorArray_Hip(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the HIP
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormMaskVectorArray_Hip(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector arrays
in the HIP vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMultiVectorArray_Hip(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the HIP vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombinationVectorArray_Hip(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays in
the HIP vector. The return value is a SUNErrCode.

Notes

• When there is a need to access components of an N_Vector_Hip, v, it is recommeded to use functions N_-
VGetDeviceArrayPointer_Hip() or N_VGetHostArrayPointer_Hip(). However, when using managed
memory, the function N_VGetArrayPointer() may also be used.

• To maximize efficiency, vector operations in the NVECTOR_HIP implementation that have more than one N_-
Vector argument do not check for consistent internal representations of these vectors. It is the user’s respon-
sibility to ensure that such routines are called with N_Vector arguments that were all created with the same
internal representations.

6.11.2 The SUNHipExecPolicy Class

In order to provide maximum flexibility to users, the HIP kernel execution parameters used by kernels within SUN-
DIALS are defined by objects of the sundials::hip::ExecPolicy abstract class type (this class can be accessed in
the global namespace as SUNHipExecPolicy). Thus, users may provide custom execution policies that fit the needs
of their problem. The SUNHipExecPolicy class is defined as

typedef sundials::hip::ExecPolicy SUNHipExecPolicy

where the sundials::hip::ExecPolicy class is defined in the header file sundials_hip_policies.hpp, as fol-
lows:

class sundials::hip::ExecPolicy

ExecPolicy(hipStream_t stream = 0)

virtual size_t gridSize(size_t numWorkUnits = 0, size_t blockDim = 0)

virtual size_t blockSize(size_t numWorkUnits = 0, size_t gridDim = 0)

virtual const hipStream_t *stream() const

virtual ExecPolicy *clone() const

ExecPolicy *clone_new_stream(hipStream_t stream) const

virtual bool atomic() const

6.11. The NVECTOR_HIP Module 133

User Documentation for KINSOL, v7.1.0

virtual ~ExecPolicy()

To define a custom execution policy, a user simply needs to create a class that inherits from the abstract class and im-
plements the methods. The SUNDIALS provided sundials::hip::ThreadDirectExecPolicy (aka in the global
namespace as SUNHipThreadDirectExecPolicy) class is a good example of a what a custom execution policy may
look like:

class ThreadDirectExecPolicy : public ExecPolicy
{
public:
ThreadDirectExecPolicy(const size_t blockDim, hipStream_t stream = 0)
: blockDim_(blockDim), ExecPolicy(stream)

{}

ThreadDirectExecPolicy(const ThreadDirectExecPolicy& ex)
: blockDim_(ex.blockDim_), ExecPolicy(ex.stream_)

{}

virtual size_t gridSize(size_t numWorkUnits = 0, size_t /*blockDim*/ = 0) const
{
/* ceil(n/m) = floor((n + m - 1) / m) */
return (numWorkUnits + blockSize() - 1) / blockSize();

}

virtual size_t blockSize(size_t /*numWorkUnits*/ = 0, size_t /*gridDim*/ = 0) const
{
return blockDim_;

}

virtual ExecPolicy* clone() const
{
return static_cast<ExecPolicy*>(new ThreadDirectExecPolicy(*this));

}

private:
const size_t blockDim_;

};

In total, SUNDIALS provides 4 execution policies:

SUNHipThreadDirectExecPolicy(const size_t blockDim, const hipStream_t stream = 0)
Maps each HIP thread to a work unit. The number of threads per block (blockDim) can be set to
anything. The grid size will be calculated so that there are enough threads for one thread per element.
If a HIP stream is provided, it will be used to execute the kernel.

SUNHipGridStrideExecPolicy(const size_t blockDim, const size_t gridDim, const hipStream_t
stream = 0)

Is for kernels that use grid stride loops. The number of threads per block (blockDim) can be set to
anything. The number of blocks (gridDim) can be set to anything. If a HIP stream is provided, it will
be used to execute the kernel.

SUNHipBlockReduceExecPolicy(const size_t blockDim, const hipStream_t stream = 0)
Is for kernels performing a reduction across indvidual thread blocks. The number of threads per
block (blockDim) can be set to any valid multiple of the HIP warp size. The grid size (gridDim) can
be set to any value greater than 0. If it is set to 0, then the grid size will be chosen so that there is

134 Chapter 6. Vector Data Structures

User Documentation for KINSOL, v7.1.0

enough threads for one thread per work unit. If a HIP stream is provided, it will be used to execute
the kernel.

SUNHipBlockReduceAtomicExecPolicy(const size_t blockDim, const hipStream_t stream = 0)
Is for kernels performing a reduction across indvidual thread blocks using atomic operations. The
number of threads per block (blockDim) can be set to any valid multiple of the HIP warp size. The
grid size (gridDim) can be set to any value greater than 0. If it is set to 0, then the grid size will be
chosen so that there is enough threads for one thread per work unit. If a HIP stream is provided, it
will be used to execute the kernel.

For example, a policy that uses 128 threads per block and a user provided stream can be created like so:

hipStream_t stream;
hipStreamCreate(&stream);
SUNHipThreadDirectExecPolicy thread_direct(128, stream);

These default policy objects can be reused for multiple SUNDIALS data structures (e.g. a SUNMatrix and an N_-
Vector) since they do not hold any modifiable state information.

6.12 The NVECTOR_SYCL Module

The NVECTOR_SYCL module is an experimental NVECTOR implementation using the SYCL abstraction layer. At
present the only supported SYCL compiler is the DPC++ (Intel oneAPI) compiler. This module allows for SUNDIALS
vector kernels to run on Intel GPU devices. The module is intended for users who are already familiar with SYCL and
GPU programming.

The vector content layout is as follows:

struct _N_VectorContent_Sycl
{
sunindextype length;
sunbooleantype own_helper;
SUNMemory host_data;
SUNMemory device_data;
SUNSyclExecPolicy* stream_exec_policy;
SUNSyclExecPolicy* reduce_exec_policy;
SUNMemoryHelper mem_helper;
sycl::queue* queue;
void* priv; /* 'private' data */

};

typedef struct _N_VectorContent_Sycl *N_VectorContent_Sycl;

The content members are the vector length (size), boolean flags that indicate if the vector owns the execution policies
and memory helper objects (i.e., it is in charge of freeing the objects), SUNMemory objects for the vector data on
the host and device, pointers to execution policies that control how streaming and reduction kernels are launched, a
SUNMemoryHelper for performing memory operations, the SYCL queue, and a private data structure which holds
additional members that should not be accessed directly.

When instantiated with N_VNew_Sycl(), the underlying data will be allocated on both the host and the device. Alter-
natively, a user can provide host and device data arrays by using the N_VMake_Sycl() constructor. To use managed
(shared) memory, the constructors N_VNewManaged_Sycl() and N_VMakeManaged_Sycl() are provided. Addition-
ally, a user-defined SUNMemoryHelper for allocating/freeing data can be provided with the constructor N_VNewWith-
MemHelp_Sycl(). Details on each of these constructors are provided below.

6.12. The NVECTOR_SYCL Module 135

https://www.khronos.org/sycl/

User Documentation for KINSOL, v7.1.0

The header file to include when using this is nvector_sycl.h. The installed module library to link to is libsundi-
als_nvecsycl.lib. The extension .lib is typically .so for shared libraries .a for static libraries.

6.12.1 NVECTOR_SYCL functions

The NVECTOR_SYCL module implementations of all vector operations listed in §6.2, §6.2.2, §6.2.3, and §6.2.4,
except for N_VDotProdMulti(), N_VWrmsNormVectorArray(), N_VWrmsNormMaskVectorArray() as support for
arrays of reduction vectors is not yet supported. These functions will be added to the NVECTOR_SYCL implementa-
tion in the future. The names of vector operations are obtained from those in the aforementioned sections by appending
the suffix _Sycl (e.g., N_VDestroy_Sycl).

Additionally, the NVECTOR_SYCL module provides the following user-callable constructors for creating a new
NVECTOR_SYCL:

N_Vector N_VNew_Sycl(sunindextype vec_length, sycl::queue *Q, SUNContext sunctx)
This function creates and allocates memory for an NVECTOR_SYCL. Vector data arrays are allocated on both
the host and the device associated with the input queue. All operation are launched in the provided queue.

N_Vector N_VNewManaged_Sycl(sunindextype vec_length, sycl::queue *Q, SUNContext sunctx)
This function creates and allocates memory for a NVECTOR_SYCL. The vector data array is allocated in man-
aged (shared) memory using the input queue. All operation are launched in the provided queue.

N_Vector N_VMake_Sycl(sunindextype length, sunrealtype *h_vdata, sunrealtype *d_vdata, sycl::queue *Q,
SUNContext sunctx)

This function creates an NVECTOR_SYCL with user-supplied host and device data arrays. This function does
not allocate memory for data itself. All operation are launched in the provided queue.

N_Vector N_VMakeManaged_Sycl(sunindextype length, sunrealtype *vdata, sycl::queue *Q, SUNContext sunctx)
This function creates an NVECTOR_SYCL with a user-supplied managed (shared) data array. This function
does not allocate memory for data itself. All operation are launched in the provided queue.

N_Vector N_VNewWithMemHelp_Sycl(sunindextype length, sunbooleantype use_managed_mem,
SUNMemoryHelper helper, sycl::queue *Q, SUNContext sunctx)

This function creates an NVECTOR_SYCL with a user-supplied SUNMemoryHelper for allocating/freeing
memory. All operation are launched in the provided queue.

N_Vector N_VNewEmpty_Sycl()
This function creates a new N_Vector where the members of the content structure have not been allocated. This
utility function is used by the other constructors to create a new vector.

The following user-callable functions are provided for accessing the vector data arrays on the host and device and
copying data between the two memory spaces. Note the generic NVECTOR operations N_VGetArrayPointer() and
N_VSetArrayPointer() are mapped to the corresponding HostArray functions given below. To ensure memory
coherency, a user will need to call the CopyTo or CopyFrom functions as necessary to transfer data between the host
and device, unless managed (shared) memory is used.

sunrealtype *N_VGetHostArrayPointer_Sycl(N_Vector v)
This function returns a pointer to the vector host data array.

sunrealtype *N_VGetDeviceArrayPointer_Sycl(N_Vector v)
This function returns a pointer to the vector device data array.

void N_VSetHostArrayPointer_Sycl(sunrealtype *h_vdata, N_Vector v)
This function sets the host array pointer in the vector v.

136 Chapter 6. Vector Data Structures

User Documentation for KINSOL, v7.1.0

void N_VSetDeviceArrayPointer_Sycl(sunrealtype *d_vdata, N_Vector v)
This function sets the device array pointer in the vector v.

void N_VCopyToDevice_Sycl(N_Vector v)
This function copies host vector data to the device.

void N_VCopyFromDevice_Sycl(N_Vector v)
This function copies vector data from the device to the host.

sunbooleantype N_VIsManagedMemory_Sycl(N_Vector v)
This function returns SUNTRUE if the vector data is allocated as managed (shared) memory otherwise it returns
SUNFALSE.

The following user-callable function is provided to set the execution policies for how SYCL kernels are launched on a
device.

SUNErrCode N_VSetKernelExecPolicy_Sycl(N_Vector v, SUNSyclExecPolicy *stream_exec_policy,
SUNSyclExecPolicy *reduce_exec_policy)

This function sets the execution policies which control the kernel parameters utilized when launching the stream-
ing and reduction kernels. By default the vector is setup to use the SUNSyclThreadDirectExecPolicy() and
SUNSyclBlockReduceExecPolicy(). See §6.12.2 below for more information about the SUNSyclExecPol-
icy class.

The input execution policies are cloned and, as such, may be freed after being attached to the desired vectors. A
NULL input policy will reset the execution policy to the default setting.

Note: All vectors used in a single instance of a SUNDIALS package must use the same execution policy. It is
strongly recommended that this function is called immediately after constructing the vector, and any subsequent
vector be created by cloning to ensure consistent execution policies across vectors.

The following user-callable functions are provided to print the host vector data array. Unless managed memory is used,
a user may need to call N_VCopyFromDevice_Sycl() to ensure consistency between the host and device array.

void N_VPrint_Sycl(N_Vector v)
This function prints the host data array to stdout.

void N_VPrintFile_Sycl(N_Vector v, FILE *outfile)
This function prints the host data array to outfile.

By default all fused and vector array operations are disabled in the NVECTOR_SYCL module. The following additional
user-callable routines are provided to enable or disable fused and vector array operations for a specific vector. To ensure
consistency across vectors it is recommended to first create a vector with one of the above constructors, enable/disable
the desired operations on that vector with the functions below, and then use this vector in conjunction with N_VClone()
to create any additional vectors. This guarantees the new vectors will have the same operations enabled/disabled as
cloned vectors inherit the same enable/disable options as the vector they are cloned from while vectors created by any
of the constructors above will have the default settings for the NVECTOR_SYCL module.

SUNErrCode N_VEnableFusedOps_Sycl(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the SYCL
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombination_Sycl(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the SYCL
vector. The return value is a SUNErrCode.

6.12. The NVECTOR_SYCL Module 137

User Documentation for KINSOL, v7.1.0

SUNErrCode N_VEnableScaleAddMulti_Sycl(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the SYCL vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearSumVectorArray_Sycl(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the SYCL
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleVectorArray_Sycl(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the SYCL vector.
The return value is a SUNErrCode.

SUNErrCode N_VEnableConstVectorArray_Sycl(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the SYCL vector.
The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMultiVectorArray_Sycl(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the SYCL vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombinationVectorArray_Sycl(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays in
the SYCL vector. The return value is a SUNErrCode.

Notes

• When there is a need to access components of an NVECTOR_SYCL, v, it is recommended to use N_VGetDe-
viceArrayPointer() to access the device array or N_VGetArrayPointer() for the host array. When using
managed (shared) memory, either function may be used. To ensure memory coherency, a user may need to call
the CopyTo or CopyFrom functions as necessary to transfer data between the host and device, unless managed
(shared) memory is used.

• To maximize efficiency, vector operations in the NVECTOR_SYCL implementation that have more than one
N_Vector argument do not check for consistent internal representations of these vectors. It is the user’s respon-
sibility to ensure that such routines are called with N_Vector arguments that were all created with the same
internal representations.

6.12.2 The SUNSyclExecPolicy Class

In order to provide maximum flexibility to users, the SYCL kernel execution parameters used by kernels within SUN-
DIALS are defined by objects of the sundials::sycl::ExecPolicy abstract class type (this class can be accessed in
the global namespace as SUNSyclExecPolicy). Thus, users may provide custom execution policies that fit the needs
of their problem. The SUNSyclExecPolicy class is defined as

typedef sundials::sycl::ExecPolicy SUNSyclExecPolicy

where the sundials::sycl::ExecPolicy class is defined in the header file sundials_sycl_policies.hpp, as
follows:

class sundials::sycl::ExecPolicy

virtual size_t gridSize(size_t numWorkUnits = 0, size_t blockDim = 0)

virtual size_t blockSize(size_t numWorkUnits = 0, size_t gridDim = 0)

virtual ExecPolicy *clone() const

138 Chapter 6. Vector Data Structures

User Documentation for KINSOL, v7.1.0

virtual ~ExecPolicy()

For consistency the function names and behavior mirror the execution policies for the CUDA and HIP vectors. In
the SYCL case the blockSize is the local work-group range in a one-dimensional nd_range (threads per group).
The gridSize is the number of local work groups so the global work-group range in a one-dimensional nd_range is
blockSize * gridSize (total number of threads). All vector kernels are written with a many-to-one mapping where
work units (vector elements) are mapped in a round-robin manner across the global range. As such, the blockSize
and gridSize can be set to any positive value.

To define a custom execution policy, a user simply needs to create a class that inherits from the abstract class and im-
plements the methods. The SUNDIALS provided sundials::sycl::ThreadDirectExecPolicy (aka in the global
namespace as SUNSyclThreadDirectExecPolicy) class is a good example of a what a custom execution policy may
look like:

class ThreadDirectExecPolicy : public ExecPolicy
{
public:
ThreadDirectExecPolicy(const size_t blockDim)
: blockDim_(blockDim)

{}

ThreadDirectExecPolicy(const ThreadDirectExecPolicy& ex)
: blockDim_(ex.blockDim_)

{}

virtual size_t gridSize(size_t numWorkUnits = 0, size_t blockDim = 0) const
{
return (numWorkUnits + blockSize() - 1) / blockSize();

}

virtual size_t blockSize(size_t numWorkUnits = 0, size_t gridDim = 0) const
{
return blockDim_;

}

virtual ExecPolicy* clone() const
{
return static_cast<ExecPolicy*>(new ThreadDirectExecPolicy(*this));

}

private:
const size_t blockDim_;

};

SUNDIALS provides the following execution policies:

SUNSyclThreadDirectExecPolicy(const size_t blockDim)
Is for kernels performing streaming operations and maps each work unit (vector element) to a work-
item (thread). Based on the local work-group range (number of threads per group, blockSize) the
number of local work-groups (gridSize) is computed so there are enough work-items in the global
work-group range (total number of threads, blockSize * gridSize) for one work unit per work-
item (thread).

SUNSyclGridStrideExecPolicy(const size_t blockDim, const size_t gridDim)
Is for kernels performing streaming operations and maps each work unit (vector element) to a work-
item (thread) in a round-robin manner so the local work-group range (number of threads per group,

6.12. The NVECTOR_SYCL Module 139

User Documentation for KINSOL, v7.1.0

blockSize) and the number of local work-groups (gridSize) can be set to any positive value. In
this case the global work-group range (total number of threads, blockSize * gridSize) may be
less than the number of work units (vector elements).

SUNSyclBlockReduceExecPolicy(const size_t blockDim)
Is for kernels performing a reduction, the local work-group range (number of threads per group,
blockSize) and the number of local work-groups (gridSize) can be set to any positive value or the
gridSize may be set to 0 in which case the global range is chosen so that there are enough threads
for at most two work units per work-item.

By default the NVECTOR_SYCL module uses the SUNSyclThreadDirectExecPolicy and SUNSyclBlockReduce-
ExecPolicywhere the default blockDim is determined by querying the device for the max_work_group_size. User
may specify different policies by constructing a new SyclExecPolicy and attaching it with N_VSetKernelExecPol-
icy_Sycl(). For example, a policy that uses 128 work-items (threads) per group can be created and attached like so:

N_Vector v = N_VNew_Sycl(length, SUNContext sunctx);
SUNSyclThreadDirectExecPolicy thread_direct(128);
SUNSyclBlockReduceExecPolicy block_reduce(128);
flag = N_VSetKernelExecPolicy_Sycl(v, &thread_direct, &block_reduce);

These default policy objects can be reused for multiple SUNDIALS data structures (e.g. a SUNMatrix and an N_-
Vector) since they do not hold any modifiable state information.

6.13 The NVECTOR_RAJA Module

The NVECTOR_RAJA module is an experimental NVECTOR implementation using the RAJA hardware abstraction
layer. In this implementation, RAJA allows for SUNDIALS vector kernels to run on AMD, NVIDIA, or Intel GPU
devices. The module is intended for users who are already familiar with RAJA and GPU programming. Building this
vector module requires a C++11 compliant compiler and either the NVIDIA CUDA programming environment, the
AMD ROCm HIP programming environment, or a compiler that supports the SYCL abstraction layer. When using the
AMD ROCm HIP environment, the HIP-clang compiler must be utilized. Users can select which backend to compile
with by setting the SUNDIALS_RAJA_BACKENDS CMake variable to either CUDA, HIP, or SYCL. Besides the CUDA,
HIP, and SYCL backends, RAJA has other backends such as serial, OpenMP, and OpenACC. These backends are not
used in this SUNDIALS release.

The vector content layout is as follows:

struct _N_VectorContent_Raja
{
sunindextype length;
sunbooleantype own_data;
sunrealtype* host_data;
sunrealtype* device_data;
void* priv; /* 'private' data */

};

The content members are the vector length (size), a boolean flag that signals if the vector owns the data (i.e., it is in
charge of freeing the data), pointers to vector data on the host and the device, and a private data structure which holds
the memory management type, which should not be accessed directly.

When instantiated with N_VNew_Raja(), the underlying data will be allocated on both the host and the device. Alter-
natively, a user can provide host and device data arrays by using the N_VMake_Raja() constructor. To use managed
memory, the constructors N_VNewManaged_Raja() and N_VMakeManaged_Raja() are provided. Details on each of
these constructors are provided below.

140 Chapter 6. Vector Data Structures

https://software.llnl.gov/RAJA/

User Documentation for KINSOL, v7.1.0

The header file to include when using this is nvector_raja.h. The installed module library to link to is libsun-
dials_nveccudaraja.lib when using the CUDA backend, libsundials_nvechipraja.lib when using the HIP
backend, and libsundials_nvecsyclraja.lib when using the SYCL backend. The extension .lib is typically
.so for shared libraries .a for static libraries.

6.13.1 NVECTOR_RAJA functions

Unlike other native SUNDIALS vector types, the NVECTOR_RAJA module does not provide macros to access its
member variables. Instead, user should use the accessor functions:

sunrealtype *N_VGetHostArrayPointer_Raja(N_Vector v)
This function returns pointer to the vector data on the host.

sunrealtype *N_VGetDeviceArrayPointer_Raja(N_Vector v)
This function returns pointer to the vector data on the device.

sunbooleantype N_VIsManagedMemory_Raja(N_Vector v)
This function returns a boolean flag indicating if the vector data is allocated in managed memory or not.

The NVECTOR_RAJA module defines the implementations of all vector operations listed in §6.2, §6.2.2, §6.2.3, and
§6.2.4, except for N_VDotProdMulti(), N_VWrmsNormVectorArray(), and N_VWrmsNormMaskVectorArray() as
support for arrays of reduction vectors is not yet supported in RAJA. These functions will be added to the NVEC-
TOR_RAJA implementation in the future. Additionally, the operations N_VGetArrayPointer() and N_VSetArray-
Pointer() are not implemented by the RAJA vector. As such, this vector cannot be used with SUNDIALS direct
solvers and preconditioners. The NVECTOR_RAJA module provides separate functions to access data on the host and
on the device. It also provides methods for copying from the host to the device and vice versa. Usage examples of
NVECTOR_RAJA are provided in some example programs for CVODE [34].

The names of vector operations are obtained from those in §6.2, §6.2.2, §6.2.3, and §6.2.4 by appending the suffix _Raja
(e.g. N_VDestroy_Raja). The module NVECTOR_RAJA provides the following additional user-callable routines:

N_Vector N_VNew_Raja(sunindextype vec_length, SUNContext sunctx)
This function creates and allocates memory for a RAJA N_Vector. The memory is allocated on both the host
and the device. Its only argument is the vector length.

N_Vector N_VNewManaged_Raja(sunindextype vec_length, SUNContext sunctx)
This function creates and allocates memory for a RAJA N_Vector. The vector data array is allocated in managed
memory.

N_Vector N_VMake_Raja(sunindextype length, sunrealtype *h_data, sunrealtype *v_data, SUNContext sunctx)
This function creates an NVECTOR_RAJA with user-supplied host and device data arrays. This function does
not allocate memory for data itself.

N_Vector N_VMakeManaged_Raja(sunindextype length, sunrealtype *vdata, SUNContext sunctx)
This function creates an NVECTOR_RAJA with a user-supplied managed memory data array. This function
does not allocate memory for data itself.

N_Vector N_VNewWithMemHelp_Raja(sunindextype length, sunbooleantype use_managed_mem,
SUNMemoryHelper helper, SUNContext sunctx)

This function creates an NVECTOR_RAJA with a user-supplied SUNMemoryHelper for allocating/freeing
memory.

N_Vector N_VNewEmpty_Raja()
This function creates a new N_Vector where the members of the content structure have not been allocated. This
utility function is used by the other constructors to create a new vector.

6.13. The NVECTOR_RAJA Module 141

User Documentation for KINSOL, v7.1.0

void N_VCopyToDevice_Raja(N_Vector v)
This function copies host vector data to the device.

void N_VCopyFromDevice_Raja(N_Vector v)
This function copies vector data from the device to the host.

void N_VPrint_Raja(N_Vector v)
This function prints the content of a RAJA vector to stdout.

void N_VPrintFile_Raja(N_Vector v, FILE *outfile)
This function prints the content of a RAJA vector to outfile.

By default all fused and vector array operations are disabled in the NVECTOR_RAJA module. The following additional
user-callable routines are provided to enable or disable fused and vector array operations for a specific vector. To
ensure consistency across vectors it is recommended to first create a vector with N_VNew_Raja(), enable/disable the
desired operations for that vector with the functions below, and create any additional vectors from that vector using N_-
VClone(). This guarantees the new vectors will have the same operations enabled/disabled as cloned vectors inherit
the same enable/disable options as the vector they are cloned from while vectors created with N_VNew_Raja() will
have the default settings for the NVECTOR_RAJA module.

SUNErrCode N_VEnableFusedOps_Raja(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the RAJA
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombination_Raja(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the RAJA
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMulti_Raja(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the RAJA vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearSumVectorArray_Raja(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the RAJA
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleVectorArray_Raja(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the RAJA vector.
The return value is a SUNErrCode.

SUNErrCode N_VEnableConstVectorArray_Raja(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the RAJA vector.
The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMultiVectorArray_Raja(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the RAJA vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombinationVectorArray_Raja(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays in
the RAJA vector. The return value is a SUNErrCode.

Notes

• When there is a need to access components of an NVECTOR_RAJA vector, it is recommended to use func-
tions N_VGetDeviceArrayPointer_Raja() or N_VGetHostArrayPointer_Raja(). However, when using
managed memory, the function N_VGetArrayPointer() may also be used.

142 Chapter 6. Vector Data Structures

User Documentation for KINSOL, v7.1.0

• To maximize efficiency, vector operations in the NVECTOR_RAJA implementation that have more than one
N_Vector argument do not check for consistent internal representations of these vectors. It is the user’s respon-
sibility to ensure that such routines are called with N_Vector arguments that were all created with the same
internal representations.

6.14 The NVECTOR_KOKKOS Module

New in version 6.4.0.

The NVECTOR_KOKKOS N_Vector implementation provides a vector data structure using Kokkos [25, 50] to sup-
port a variety of backends including serial, OpenMP, CUDA, HIP, and SYCL. Since Kokkos is a modern C++ library,
the module is also written in modern C++ (it requires C++14) as a header only library. To utilize this N_Vector
users will need to include nvector/nvector_kokkos.hpp. More instructions on building SUNDIALS with Kokkos
enabled are given in §11.4. For instructions on building and using Kokkos, refer to the Kokkos documentation.

6.14.1 Using NVECTOR_KOKKOS

The NVECTOR_KOKKOS module is defined by the Vector templated class in the sundials::kokkos namespace:

template<class ExecutionSpace = Kokkos::DefaultExecutionSpace,
class MemorySpace = typename ExecutionSpace::memory_space>

class Vector : public sundials::impl::BaseNVector,
public sundials::ConvertibleTo<N_Vector>

To use the NVECTOR_KOKKOS module, we construct an instance of the Vector class e.g.,

// Vector with extent length using the default execution space
sundials::kokkos::Vector<> x{length, sunctx};

// Vector with extent length using the Cuda execution space
sundials::kokkos::Vector<Kokkos::Cuda> x{length, sunctx};

// Vector based on an existing Kokkos::View
Kokkos::View<> view{"a view", length};
sundials::kokkos::Vector<> x{view, sunctx};

// Vector based on an existing Kokkos::View for device and host
Kokkos::View<Kokkos::Cuda> device_view{"a view", length};
Kokkos::View<Kokkos::HostMirror> host_view{Kokkos::create_mirror_view(device_view)};
sundials::kokkos::Vector<> x{device_view, host_view, sunctx};

Instances of the Vector class are implicitly or explicitly (using the Convert() method) convertible to a N_Vector
e.g.,

sundials::kokkos::Vector<> x{length, sunctx};
N_Vector x2 = x; // implicit conversion to N_Vector
N_Vector x3 = x.Convert(); // explicit conversion to N_Vector

No further interaction with a Vector is required from this point, and it is possible to use the N_Vector API to operate
on x2 or x3.

6.14. The NVECTOR_KOKKOS Module 143

https://kokkos.github.io/kokkos-core-wiki/index.html

User Documentation for KINSOL, v7.1.0

Warning: N_VDestroy() should never be called on a N_Vector that was created via conversion from a sundi-
als::kokkos::Vector. Doing so may result in a double free.

The underlying Vector can be extracted from a N_Vector using GetVec() e.g.,

auto x_vec = GetVec<>(x3);

6.14.2 NVECTOR_KOKKOS API

In this section we list the public API of the sundials::kokkos::Vector class.

template<class ExecutionSpace = Kokkos::DefaultExecutionSpace, class MemorySpace = class
ExecutionSpace::memory_space>
class Vector : public sundials::impl::BaseNVector, public sundials::ConvertibleTo<N_Vector>

using view_type = Kokkos::View<sunrealtype*, MemorySpace>;

using size_type = typename view_type::size_type;

using host_view_type = typename view_type::HostMirror;

using memory_space = MemorySpace;

using exec_space = typename MemorySpace::execution_space;

using range_policy = Kokkos::RangePolicy<exec_space>;

Vector() = default
Default constructor – the vector must be copied or moved to.

Vector(size_type length, SUNContext sunctx)
Constructs a single Vector which is based on a 1D Kokkos::View with the ExecutionSpace and Memo-
rySpace provided as template arguments.

Parameters

• length – length of the vector (i.e., the extent of the View)

• sunctx – the SUNDIALS simulation context object (SUNContext)

Vector(view_type view, SUNContext sunctx)
Constructs a single Vector from an existing Kokkos::View. The View ExecutionSpace and MemoryS-
pace must match the ExecutionSpace and MemorySpace provided as template arguments.

Parameters

• view – A 1D Kokkos::View

• sunctx – the SUNDIALS simulation context object (SUNContext)

Vector(view_type view, host_view_type host_view, SUNContext sunctx)
Constructs a single Vector from an existing Kokkos::View for the device and the host. The Execution-
Space and MemorySpace of the device View must match the ExecutionSpace and MemorySpace provided
as template arguments.

Parameters

• view – A 1D Kokkos::View for the device

144 Chapter 6. Vector Data Structures

User Documentation for KINSOL, v7.1.0

• host_view – A 1D Kokkos::View that is a Kokkos::HostMirrror for the device view

• sunctx – the SUNDIALS simulation context object (SUNContext)

Vector(Vector &&that_vector) noexcept
Move constructor.

Vector(const Vector &that_vector)
Copy constructor. This creates a clone of the Vector, i.e., it creates a new Vector with the same properties,
such as length, but it does not copy the data.

Vector &operator=(Vector &&rhs) noexcept
Move assignment.

Vector &operator=(const Vector &rhs)
Copy assignment. This creates a clone of the Vector, i.e., it creates a new Vector with the same properties,
such as length, but it does not copy the data.

virtual ~Vector() = default;
Default destructor.

size_type Length()
Get the vector length i.e., extent(0).

view_type View()
Get the underlying Kokkos:View for the device.

host_view_type HostView()
Get the underlying Kokkos:View for the host.

operator N_Vector() override
Implicit conversion to a N_Vector.

operator N_Vector() const override
Implicit conversion to a N_Vector.

N_Vector Convert() override
Explicit conversion to a N_Vector.

N_Vector Convert() const override
Explicit conversion to a N_Vector.

template<class VectorType>
inline VectorType *GetVec(N_Vector v)

Get the Vector wrapped by a N_Vector.

void CopyToDevice(N_Vector v)
Copy the data from the host view to the device view with Kokkos::deep_copy.

void CopyFromDevice(N_Vector v)
Copy the data to the host view from the device view with Kokkos::deep_copy.

template<class VectorType>
void CopyToDevice(VectorType &v)

Copy the data from the host view to the device view with Kokkos::deep_copy.

template<class VectorType>
void CopyFromDevice(VectorType &v)

Copy the data to the host view from the device view with Kokkos::deep_copy.

6.14. The NVECTOR_KOKKOS Module 145

User Documentation for KINSOL, v7.1.0

6.15 The NVECTOR_OPENMPDEV Module

In situations where a user has access to a device such as a GPU for offloading computation, SUNDIALS provides an
NVECTOR implementation using OpenMP device offloading, called NVECTOR_OPENMPDEV.

The NVECTOR_OPENMPDEV implementation defines the content field of the N_Vector to be a structure containing
the length of the vector, a pointer to the beginning of a contiguousdata array on the host, a pointer to the beginning of
a contiguous data array on the device, and a boolean flag own_data which specifies the ownership of host and device
data arrays.

struct _N_VectorContent_OpenMPDEV
{
sunindextype length;
sunbooleantype own_data;
sunrealtype *host_data;
sunrealtype *dev_data;

};

The header file to include when using this module is nvector_openmpdev.h. The installed module library to link to
is libsundials_nvecopenmpdev.lib where .lib is typically .so for shared libraries and .a for static libraries.

6.15.1 NVECTOR_OPENMPDEV accessor macros

The following macros are provided to access the content of an NVECTOR_OPENMPDEV vector.

NV_CONTENT_OMPDEV(v)
This macro gives access to the contents of the NVECTOR_OPENMPDEV N_Vector v.

The assignment v_cont = NV_CONTENT_S(v) sets v_cont to be a pointer to the NVECTOR_OPENMPDEV
content structure.

Implementation:

#define NV_CONTENT_OMPDEV(v) ((N_VectorContent_OpenMPDEV)(v->content))

NV_OWN_DATA_OMPDEV(v)
Access the own_data component of the OpenMPDEV N_Vector v.

The assignment v_data = NV_DATA_HOST_OMPDEV(v) sets v_data to be a pointer to the first component of
the data on the host for the N_Vector v.

Implementation:

#define NV_OWN_DATA_OMPDEV(v) (NV_CONTENT_OMPDEV(v)->own_data)

NV_DATA_HOST_OMPDEV(v)
The assignment NV_DATA_HOST_OMPDEV(v) = v_data sets the host component array of v to be v_data by
storing the pointer v_data.

Implementation:

#define NV_DATA_HOST_OMPDEV(v) (NV_CONTENT_OMPDEV(v)->host_data)

146 Chapter 6. Vector Data Structures

User Documentation for KINSOL, v7.1.0

NV_DATA_DEV_OMPDEV(v)
The assignment v_dev_data = NV_DATA_DEV_OMPDEV(v) sets v_dev_data to be a pointer to the first compo-
nent of the data on the device for the N_Vector v. The assignment NV_DATA_DEV_OMPDEV(v) = v_dev_data
sets the device component array of v to be v_dev_data by storing the pointer v_dev_data.

Implementation:

#define NV_DATA_DEV_OMPDEV(v) (NV_CONTENT_OMPDEV(v)->dev_data)

NV_LENGTH_OMPDEV(V)
Access the length component of the OpenMPDEV N_Vector v.

The assignment v_len = NV_LENGTH_OMPDEV(v) sets v_len to be the length of v. On the other hand, the call
NV_LENGTH_OMPDEV(v) = len_v sets the length of v to be len_v.

#define NV_LENGTH_OMPDEV(v) (NV_CONTENT_OMPDEV(v)->length)

6.15.2 NVECTOR_OPENMPDEV functions

The NVECTOR_OPENMPDEV module defines OpenMP device offloading implementations of all vector operations
listed in §6.2, §6.2.2, §6.2.3, and §6.2.4, except for N_VSetArrayPointer(). As such, this vector cannot be used with
the SUNDIALS direct solvers and preconditioners. It also provides methods for copying from the host to the device
and vice versa.

The names of the vector operations are obtained from those in §6.2, §6.2.2, §6.2.3, and §6.2.4 by appending the suf-
fix _OpenMPDEV (e.g. N_VDestroy_OpenMPDEV). The module NVECTOR_OPENMPDEV provides the following
additional user-callable routines:

N_Vector N_VNew_OpenMPDEV(sunindextype vec_length, SUNContext sunctx)
This function creates and allocates memory for an NVECTOR_OPENMPDEV N_Vector.

N_Vector N_VNewEmpty_OpenMPDEV(sunindextype vec_length, SUNContext sunctx)
This function creates a new NVECTOR_OPENMPDEV N_Vector with an empty (NULL) data array.

N_Vector N_VMake_OpenMPDEV(sunindextype vec_length, sunrealtype *h_vdata, sunrealtype *d_vdata, SUNContext
sunctx)

This function creates an NVECTOR_OPENMPDEV vector with user-supplied vector data arrays h_vdata and
d_vdata. This function does not allocate memory for data itself.

sunrealtype *N_VGetHostArrayPointer_OpenMPDEV(N_Vector v)
This function returns a pointer to the host data array.

sunrealtype *N_VGetDeviceArrayPointer_OpenMPDEV(N_Vector v)
This function returns a pointer to the device data array.

void N_VPrint_OpenMPDEV(N_Vector v)
This function prints the content of an NVECTOR_OPENMPDEV vector to stdout.

void N_VPrintFile_OpenMPDEV(N_Vector v, FILE *outfile)
This function prints the content of an NVECTOR_OPENMPDEV vector to outfile.

void N_VCopyToDevice_OpenMPDEV(N_Vector v)
This function copies the content of an NVECTOR_OPENMPDEV vector’s host data array to the device data
array.

6.15. The NVECTOR_OPENMPDEV Module 147

User Documentation for KINSOL, v7.1.0

void N_VCopyFromDevice_OpenMPDEV(N_Vector v)
This function copies the content of an NVECTOR_OPENMPDEV vector’s device data array to the host data
array.

By default all fused and vector array operations are disabled in the NVECTOR_OPENMPDEV module. The following
additional user-callable routines are provided to enable or disable fused and vector array operations for a specific vector.
To ensure consistency across vectors it is recommended to first create a vector with N_VNew_OpenMPDEV, enable/disable
the desired operations for that vector with the functions below, and create any additional vectors from that vector using
N_VClone. This guarantees the new vectors will have the same operations enabled/disabled as cloned vectors inherit
the same enable/disable options as the vector they are cloned from while vectors created with N_VNew_OpenMPDEVwill
have the default settings for the NVECTOR_OPENMPDEV module.

SUNErrCode N_VEnableFusedOps_OpenMPDEV(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the NVEC-
TOR_OPENMPDEV vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombination_OpenMPDEV(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the NVEC-
TOR_OPENMPDEV vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMulti_OpenMPDEV(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the NVECTOR_OPENMPDEV vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableDotProdMulti_OpenMPDEV(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the NVEC-
TOR_OPENMPDEV vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearSumVectorArray_OpenMPDEV(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the NVEC-
TOR_OPENMPDEV vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleVectorArray_OpenMPDEV(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the NVECTOR_-
OPENMPDEV vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableConstVectorArray_OpenMPDEV(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the NVEC-
TOR_OPENMPDEV vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormVectorArray_OpenMPDEV(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the
NVECTOR_OPENMPDEV vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormMaskVectorArray_OpenMPDEV(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector arrays
in the NVECTOR_OPENMPDEV vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMultiVectorArray_OpenMPDEV(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the NVECTOR_OPENMPDEV vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombinationVectorArray_OpenMPDEV(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays in
the NVECTOR_OPENMPDEV vector. The return value is a SUNErrCode.

Notes

148 Chapter 6. Vector Data Structures

User Documentation for KINSOL, v7.1.0

• When looping over the components of an N_Vector v, it is most efficient to first obtain the component array via
h_data = N_VGetArrayPointer(v) for the host array or v_data = N_VGetDeviceArrayPointer(v) for
the device array, or equivalently to use the macros h_data = NV_DATA_HOST_OMPDEV(v) for the host array or
v_data = NV_DATA_DEV_OMPDEV(v) for the device array, and then access h_data[i] or v_data[i] within
the loop.

• When accessing individual components of an N_Vector v on the host remember to first copy the array back
from the device with N_VCopyFromDevice_OpenMPDEV(v) to ensure the array is up to date.

• N_VNewEmpty_OpenMPDEV() and N_VMake_OpenMPDEV() set the field own_data to SUNFALSE. The imple-
mentation of N_VDestroy() will not attempt to free the pointer data for any N_Vector with own_data set to
SUNFALSE. In such a case, it is the user’s responsibility to deallocate the data pointers.

• To maximize efficiency, vector operations in the NVECTOR_OPENMPDEV implementation that have more
than one N_Vector argument do not check for consistent internal representation of these vectors. It is the user’s
responsibility to ensure that such routines are called with N_Vector arguments that were all created with the
same length.

6.16 The NVECTOR_TRILINOS Module

The NVECTOR_TRILINOS module is an NVECTOR wrapper around the Trilinos Tpetra vector. The interface to
Tpetra is implemented in the sundials::trilinos::nvector_tpetra::TpetraVectorInterface class. This
class simply stores a reference counting pointer to a Tpetra vector and inherits from an empty structure

struct _N_VectorContent_Trilinos {};

to interface the C++ class with the NVECTOR C code. A pointer to an instance of this class is kept in the content field
of the N_Vector object, to ensure that the Tpetra vector is not deleted for as long as the N_Vector object exists.

The Tpetra vector type in the sundials::trilinos::nvector_tpetra::TpetraVectorInterface class is de-
fined as:

typedef Tpetra::Vector<sunrealtype, int, sunindextype> vector_type;

The Tpetra vector will use the SUNDIALS-specified sunrealtype as its scalar type, int as the local ordinal type, and
sunindextype as the global ordinal type. This type definition will use Tpetra’s default node type. Available Kokkos
node types as of the Trilinos 12.14 release are serial (single thread), OpenMP, Pthread, and CUDA. The default node
type is selected when building the Kokkos package. For example, the Tpetra vector will use a CUDA node if Tpetra
was built with CUDA support and the CUDA node was selected as the default when Tpetra was built.

The header file to include when using this module is nvector_trilinos.h. The installed module library to link to
is libsundials_nvectrilinos.lib where .lib is typically .so for shared libraries and .a for static libraries.

6.16.1 NVECTOR_TRILINOS functions

The NVECTOR_TRILINOS module defines implementations of all vector operations listed in §6.2, §6.2.2, §6.2.3,
and §6.2.4, except for N_VGetArrayPointer() and N_VSetArrayPointer(). As such, this vector cannot be used
with the SUNDIALS direct solvers and preconditioners. When access to raw vector data is needed, it is recommended
to extract the Trilinos Tpetra vector first, and then use Tpetra vector methods to access the data. Usage examples of
NVECTOR_TRILINOS are provided in example programs for IDA.

The names of vector operations are obtained from those in §6.2 by appending the suffice _Trilinos (e.g. N_VDe-
stroy_Trilinos). Vector operations call existing Tpetra::Vectormethods when available. Vector operations spe-
cific to SUNDIALS are implemented as standalone functions in the namespace sundials::trilinos::nvector_-
tpetra::TpetraVector, located in the file SundialsTpetraVectorKernels.hpp. The module NVECTOR_-
TRILINOS provides the following additional user-callable routines:

6.16. The NVECTOR_TRILINOS Module 149

https://github.com/trilinos/Trilinos

User Documentation for KINSOL, v7.1.0

Teuchos::RCP<vector_type> N_VGetVector_Trilinos(N_Vector v)
This C++ function takes an N_Vector as the argument and returns a reference counting pointer to the underlying
Tpetra vector. This is a standalone function defined in the global namespace.

N_Vector N_VMake_Trilinos(Teuchos::RCP<vector_type> v)
This C++ function creates and allocates memory for an NVECTOR_TRILINOS wrapper around a user-provided
Tpetra vector. This is a standalone function defined in the global namespace.

Notes

• The template parameter vector_type should be set as:

typedef sundials::trilinos::nvector_tpetra::TpetraVectorInterface::vector_type vector_type

This will ensure that data types used in Tpetra vector match those in SUNDIALS.

• When there is a need to access components of an N_Vector_Trilinos v, it is recommeded to extract the
Trilinos vector object via x_vec = N_VGetVector_Trilinos(v) and then access components using the ap-
propriate Trilinos functions.

• The function N_VDestroy_Trilinos only deletes the N_Vector wrapper. The underlying Tpetra vector object
will exist for as long as there is at least one reference to it.

6.17 The NVECTOR_MANYVECTOR Module

The NVECTOR_MANYVECTOR module is designed to facilitate problems with an inherent data partitioning within a
computational node for the solution vector. These data partitions are entirely user-defined, through construction of dis-
tinct NVECTOR modules for each component, that are then combined together to form the NVECTOR_MANYVEC-
TOR. Two potential use cases for this flexibility include:

A. Heterogenous computational architectures: for data partitioning between different computing resources on a
node, architecture-specific subvectors may be created for each partition. For example, a user could create
one GPU-accelerated component based on NVECTOR_CUDA, and another CPU threaded component based
on NVECTOR_OPENMP.

B. Structure of arrays (SOA) data layouts: for problems that require separate subvectors for each solution compo-
nent. For example, in an incompressible Navier-Stokes simulation, separate subvectors may be used for velocities
and pressure, which are combined together into a single NVECTOR_MANYVECTOR for the overall “solution”.

The above use cases are neither exhaustive nor mutually exclusive, and the NVECTOR_MANYVECTOR implemen-
tation should support arbitrary combinations of these cases.

The NVECTOR_MANYVECTOR implementation is designed to work with any NVECTOR subvectors that imple-
ment the minimum “standard” set of operations in §6.2.1. Additionally, NVECTOR_MANYVECTOR sets no limit
on the number of subvectors that may be attached (aside from the limitations of using sunindextype for indexing,
and standard per-node memory limitations). However, while this ostensibly supports subvectors with one entry each
(i.e., one subvector for each solution entry), we anticipate that this extreme situation will hinder performance due to
non-stride-one memory accesses and increased function call overhead. We therefore recommend a relatively coarse
partitioning of the problem, although actual performance will likely be problem-dependent.

As a final note, in the coming years we plan to introduce additional algebraic solvers and time integration modules that
will leverage the problem partitioning enabled by NVECTOR_MANYVECTOR. However, even at present we antici-
pate that users will be able to leverage such data partitioning in their problem-defining ODE right-hand side function,
DAE or nonlinear solver residual function, preconditioners, or custom SUNLinearSolver or SUNNonlinearSolver
modules.

150 Chapter 6. Vector Data Structures

https://sundials.readthedocs.io/en/v7.1.0/sunnonlinsol/SUNNonlinSol_API_link.html#c.SUNNonlinearSolver

User Documentation for KINSOL, v7.1.0

6.17.1 NVECTOR_MANYVECTOR structure

The NVECTOR_MANYVECTOR implementation defines the content field of N_Vector to be a structure containing
the number of subvectors comprising the ManyVector, the global length of the ManyVector (including all subvectors), a
pointer to the beginning of the array of subvectors, and a boolean flag own_data indicating ownership of the subvectors
that populate subvec_array.

struct _N_VectorContent_ManyVector {
sunindextype num_subvectors; /* number of vectors attached */
sunindextype global_length; /* overall manyvector length */
N_Vector* subvec_array; /* pointer to N_Vector array */
sunbooleantype own_data; /* flag indicating data ownership */

};

The header file to include when using this module is nvector_manyvector.h. The installed module library to link
against is libsundials_nvecmanyvector.lib where .lib is typically .so for shared libraries and .a for static
libraries.

6.17.2 NVECTOR_MANYVECTOR functions

The NVECTOR_MANYVECTOR module implements all vector operations listed in §6.2 except for N_VGetArray-
Pointer(), N_VSetArrayPointer(), N_VScaleAddMultiVectorArray(), and N_VLinearCombinationVec-
torArray(). As such, this vector cannot be used with the SUNDIALS direct solvers and preconditioners. Instead, the
NVECTOR_MANYVECTOR module provides functions to access subvectors, whose data may in turn be accessed
according to their NVECTOR implementations.

The names of vector operations are obtained from those in §6.2 by appending the suffix _ManyVector (e.g. N_-
VDestroy_ManyVector). The module NVECTOR_MANYVECTOR provides the following additional user-callable
routines:

N_Vector N_VNew_ManyVector(sunindextype num_subvectors, N_Vector *vec_array, SUNContext sunctx)
This function creates a ManyVector from a set of existing NVECTOR objects.

This routine will copy all N_Vector pointers from the input vec_array, so the user may modify/free that pointer
array after calling this function. However, this routine does not allocate any new subvectors, so the underlying
NVECTOR objects themselves should not be destroyed before the ManyVector that contains them.

Upon successful completion, the new ManyVector is returned; otherwise this routine returns NULL (e.g., a mem-
ory allocation failure occurred).

Users of the Fortran 2003 interface to this function will first need to use the generic N_Vector utility functions
N_VNewVectorArray(), and N_VSetVecAtIndexVectorArray() to create the N_Vector* argument. This
is further explained in §4.7.2.5, and the functions are documented in §6.1.1.

N_Vector N_VGetSubvector_ManyVector(N_Vector v, sunindextype vec_num)
This function returns the vec_num subvector from the NVECTOR array.

sunindextype N_VGetSubvectorLocalLength_ManyVector(N_Vector v, sunindextype vec_num)
This function returns the local length of the vec_num subvector from the NVECTOR array.

Usage:

local_length = N_VGetSubvectorLocalLength_ManyVector(v, 0);

sunrealtype *N_VGetSubvectorArrayPointer_ManyVector(N_Vector v, sunindextype vec_num)
This function returns the data array pointer for the vec_num subvector from the NVECTOR array.

6.17. The NVECTOR_MANYVECTOR Module 151

User Documentation for KINSOL, v7.1.0

If the input vec_num is invalid, or if the subvector does not support the N_VGetArrayPointer operation, then
NULL is returned.

SUNErrCode N_VSetSubvectorArrayPointer_ManyVector(sunrealtype *v_data, N_Vector v, sunindextype
vec_num)

This function sets the data array pointer for the vec_num subvector from the NVECTOR array.

The function returns a SUNErrCode.

sunindextype N_VGetNumSubvectors_ManyVector(N_Vector v)
This function returns the overall number of subvectors in the ManyVector object.

By default all fused and vector array operations are disabled in the NVECTOR_MANYVECTOR module, except for
N_VWrmsNormVectorArray() and N_VWrmsNormMaskVectorArray(), that are enabled by default. The following
additional user-callable routines are provided to enable or disable fused and vector array operations for a specific
vector. To ensure consistency across vectors it is recommended to first create a vector with N_VNew_ManyVector(),
enable/disable the desired operations for that vector with the functions below, and create any additional vectors from
that vector using N_VClone(). This guarantees that the new vectors will have the same operations enabled/disabled,
since cloned vectors inherit those configuration options from the vector they are cloned from, while vectors created
with N_VNew_ManyVector() will have the default settings for the NVECTOR_MANYVECTOR module. We note
that these routines do not call the corresponding routines on subvectors, so those should be set up as desired before
attaching them to the ManyVector in N_VNew_ManyVector().

SUNErrCode N_VEnableFusedOps_ManyVector(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the manyvector
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombination_ManyVector(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the manyvec-
tor vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMulti_ManyVector(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the manyvector vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableDotProdMulti_ManyVector(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the
manyvector vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearSumVectorArray_ManyVector(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the
manyvector vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleVectorArray_ManyVector(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the manyvector
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableConstVectorArray_ManyVector(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the manyvector
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormVectorArray_ManyVector(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the
manyvector vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormMaskVectorArray_ManyVector(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector arrays
in the manyvector vector. The return value is a SUNErrCode.

152 Chapter 6. Vector Data Structures

User Documentation for KINSOL, v7.1.0

Notes

• N_VNew_ManyVector() sets the field own_data = SUNFALSE. The ManyVector implementation of N_VDe-
stroy() will not attempt to call N_VDestroy() on any subvectors contained in the subvector array for any
N_Vector with own_data set to SUNFALSE. In such a case, it is the user’s responsibility to deallocate the sub-
vectors.

• To maximize efficiency, arithmetic vector operations in the NVECTOR_MANYVECTOR implementation that
have more than one N_Vector argument do not check for consistent internal representation of these vectors. It
is the user’s responsibility to ensure that such routines are called with N_Vector arguments that were all created
with the same subvector representations.

6.18 The NVECTOR_MPIMANYVECTOR Module

The NVECTOR_MPIMANYVECTOR module is designed to facilitate problems with an inherent data partitioning
for the solution vector, and when using distributed-memory parallel architectures. As such, this implementation sup-
ports all use cases allowed by the MPI-unaware NVECTOR_MANYVECTOR implementation, as well as partitioning
data between nodes in a parallel environment. These data partitions are entirely user-defined, through construction
of distinct NVECTOR modules for each component, that are then combined together to form the NVECTOR_MPI-
MANYVECTOR. Three potential use cases for this module include:

A. Heterogenous computational architectures (single-node or multi-node): for data partitioning between different
computing resources on a node, architecture-specific subvectors may be created for each partition. For example,
a user could create one MPI-parallel component based on NVECTOR_PARALLEL, another GPU-accelerated
component based on NVECTOR_CUDA.

B. Process-based multiphysics decompositions (multi-node): for computations that combine separate MPI-based
simulations together, each subvector may reside on a different MPI communicator, and the MPIManyVector
combines these via an MPI intercommunicator that connects these distinct simulations together.

C. Structure of arrays (SOA) data layouts (single-node or multi-node): for problems that require separate subvectors
for each solution component. For example, in an incompressible Navier-Stokes simulation, separate subvectors
may be used for velocities and pressure, which are combined together into a single MPIManyVector for the overall
“solution”.

The above use cases are neither exhaustive nor mutually exclusive, and the NVECTOR_MANYVECTOR implemen-
tation should support arbitrary combinations of these cases.

The NVECTOR_MPIMANYVECTOR implementation is designed to work with any NVECTOR subvectors that im-
plement the minimum “standard” set of operations in §6.2.1, however significant performance benefits may be obtained
when subvectors additionally implement the optional local reduction operations listed in §6.2.4.

Additionally, NVECTOR_MPIMANYVECTOR sets no limit on the number of subvectors that may be attached (aside
from the limitations of using sunindextype for indexing, and standard per-node memory limitations). However, while
this ostensibly supports subvectors with one entry each (i.e., one subvector for each solution entry), we anticipate that
this extreme situation will hinder performance due to non-stride-one memory accesses and increased function call
overhead. We therefore recommend a relatively coarse partitioning of the problem, although actual performance will
likely be problem-dependent.

As a final note, in the coming years we plan to introduce additional algebraic solvers and time integration modules that
will leverage the problem partitioning enabled by NVECTOR_MPIMANYVECTOR. However, even at present we an-
ticipate that users will be able to leverage such data partitioning in their problem-defining ODE right-hand side function,
DAE or nonlinear solver residual function, preconditioners, or custom SUNLinearSolver or SUNNonlinearSolver
modules.

6.18. The NVECTOR_MPIMANYVECTOR Module 153

https://sundials.readthedocs.io/en/v7.1.0/sunnonlinsol/SUNNonlinSol_API_link.html#c.SUNNonlinearSolver

User Documentation for KINSOL, v7.1.0

6.18.1 NVECTOR_MPIMANYVECTOR structure

The NVECTOR_MPIMANYVECTOR implementation defines the content field of N_Vector to be a structure con-
taining the MPI communicator (or MPI_COMM_NULL if running on a single-node), the number of subvectors comprising
the MPIManyVector, the global length of the MPIManyVector (including all subvectors on all MPI ranks), a pointer
to the beginning of the array of subvectors, and a boolean flag own_data indicating ownership of the subvectors that
populate subvec_array.

struct _N_VectorContent_MPIManyVector {
MPI_Comm comm; /* overall MPI communicator */
sunindextype num_subvectors; /* number of vectors attached */
sunindextype global_length; /* overall mpimanyvector length */
N_Vector* subvec_array; /* pointer to N_Vector array */
sunbooleantype own_data; /* flag indicating data ownership */

};

The header file to include when using this module is nvector_mpimanyvector.h. The installed module library to
link against is libsundials_nvecmpimanyvector.lib where .lib is typically .so for shared libraries and .a for
static libraries.

Note: If SUNDIALS is configured with MPI disabled, then the MPIManyVector library will not be built. Furthermore,
any user codes that include nvector_mpimanyvector.h must be compiled using an MPI-aware compiler (whether
the specific user code utilizes MPI or not). We note that the NVECTOR_MANYVECTOR implementation is designed
for ManyVector use cases in an MPI-unaware environment.

6.18.2 NVECTOR_MPIMANYVECTOR functions

The NVECTOR_MPIMANYVECTOR module implements all vector operations listed in §6.2, except for N_VGetAr-
rayPointer(), N_VSetArrayPointer(), N_VScaleAddMultiVectorArray(), and N_VLinearCombination-
VectorArray(). As such, this vector cannot be used with the SUNDIALS direct solvers and preconditioners. In-
stead, the NVECTOR_MPIMANYVECTOR module provides functions to access subvectors, whose data may in turn
be accessed according to their NVECTOR implementations.

The names of vector operations are obtained from those in §6.2 by appending the suffix _MPIManyVector (e.g. N_-
VDestroy_MPIManyVector). The module NVECTOR_MPIMANYVECTOR provides the following additional user-
callable routines:

N_Vector N_VNew_MPIManyVector(sunindextype num_subvectors, N_Vector *vec_array, SUNContext sunctx)
This function creates a MPIManyVector from a set of existing NVECTOR objects, under the requirement that
all MPI-aware subvectors use the same MPI communicator (this is checked internally). If none of the subvectors
are MPI-aware, then this may equivalently be used to describe data partitioning within a single node. We note
that this routine is designed to support use cases A and C above.

This routine will copy all N_Vector pointers from the input vec_array, so the user may modify/free that pointer
array after calling this function. However, this routine does not allocate any new subvectors, so the underlying
NVECTOR objects themselves should not be destroyed before the MPIManyVector that contains them.

Upon successful completion, the new MPIManyVector is returned; otherwise this routine returns NULL (e.g., if
two MPI-aware subvectors use different MPI communicators).

Users of the Fortran 2003 interface to this function will first need to use the generic N_Vector utility functions
N_VNewVectorArray(), and N_VSetVecAtIndexVectorArray() to create the N_Vector* argument. This
is further explained in §4.7.2.5, and the functions are documented in §6.1.1.

154 Chapter 6. Vector Data Structures

User Documentation for KINSOL, v7.1.0

N_Vector N_VMake_MPIManyVector(MPI_Comm comm, sunindextype num_subvectors, N_Vector *vec_array,
SUNContext sunctx)

This function creates a MPIManyVector from a set of existing NVECTOR objects, and a user-created MPI com-
municator that “connects” these subvectors. Any MPI-aware subvectors may use different MPI communicators
than the input comm. We note that this routine is designed to support any combination of the use cases above.

The input comm should be this user-created MPI communicator. This routine will internally call MPI_Comm_dup
to create a copy of the input comm, so the user-supplied comm argument need not be retained after the call to
N_VMake_MPIManyVector().

If all subvectors are MPI-unaware, then the input comm argument should be MPI_COMM_NULL, although in this
case, it would be simpler to call N_VNew_MPIManyVector() instead, or to just use the NVECTOR_MANYVEC-
TOR module.

This routine will copy all N_Vector pointers from the input vec_array, so the user may modify/free that pointer
array after calling this function. However, this routine does not allocate any new subvectors, so the underlying
NVECTOR objects themselves should not be destroyed before the MPIManyVector that contains them.

Upon successful completion, the new MPIManyVector is returned; otherwise this routine returns NULL (e.g., if
the input vec_array is NULL).

N_Vector N_VGetSubvector_MPIManyVector(N_Vector v, sunindextype vec_num)
This function returns the vec_num subvector from the NVECTOR array.

sunindextype N_VGetSubvectorLocalLength_MPIManyVector(N_Vector v, sunindextype vec_num)
This function returns the local length of the vec_num subvector from the NVECTOR array.

Usage:

local_length = N_VGetSubvectorLocalLength_MPIManyVector(v, 0);

sunrealtype *N_VGetSubvectorArrayPointer_MPIManyVector(N_Vector v, sunindextype vec_num)
This function returns the data array pointer for the vec_num subvector from the NVECTOR array.

If the input vec_num is invalid, or if the subvector does not support the N_VGetArrayPointer operation, then
NULL is returned.

SUNErrCode N_VSetSubvectorArrayPointer_MPIManyVector(sunrealtype *v_data, N_Vector v, sunindextype
vec_num)

This function sets the data array pointer for the vec_num subvector from the NVECTOR array.

The function returns a SUNErrCode.

sunindextype N_VGetNumSubvectors_MPIManyVector(N_Vector v)
This function returns the overall number of subvectors in the MPIManyVector object.

By default all fused and vector array operations are disabled in the NVECTOR_MPIMANYVECTOR module, except
for N_VWrmsNormVectorArray() and N_VWrmsNormMaskVectorArray(), that are enabled by default. The follow-
ing additional user-callable routines are provided to enable or disable fused and vector array operations for a specific
vector. To ensure consistency across vectors it is recommended to first create a vector with N_VNew_MPIManyVec-
tor() or N_VMake_MPIManyVector(), enable/disable the desired operations for that vector with the functions below,
and create any additional vectors from that vector using N_VClone(). This guarantees that the new vectors will have
the same operations enabled/disabled, since cloned vectors inherit those configuration options from the vector they are
cloned from, while vectors created with N_VNew_MPIManyVector() and N_VMake_MPIManyVector() will have the
default settings for the NVECTOR_MPIMANYVECTOR module. We note that these routines do not call the corre-
sponding routines on subvectors, so those should be set up as desired before attaching them to the MPIManyVector in
N_VNew_MPIManyVector() or N_VMake_MPIManyVector().

6.18. The NVECTOR_MPIMANYVECTOR Module 155

User Documentation for KINSOL, v7.1.0

SUNErrCode N_VEnableFusedOps_MPIManyVector(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the MPI-
ManyVector vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombination_MPIManyVector(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the MPI-
ManyVector vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMulti_MPIManyVector(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the MPIManyVector vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableDotProdMulti_MPIManyVector(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the MPI-
ManyVector vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearSumVectorArray_MPIManyVector(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the MPI-
ManyVector vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleVectorArray_MPIManyVector(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the MPI-
ManyVector vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableConstVectorArray_MPIManyVector(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the MPI-
ManyVector vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormVectorArray_MPIManyVector(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the
MPIManyVector vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormMaskVectorArray_MPIManyVector(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector arrays
in the MPIManyVector vector. The return value is a SUNErrCode.

Notes

• N_VNew_MPIManyVector() and N_VMake_MPIManyVector() set the field own_data = SUNFALSE. The MPI-
ManyVector implementation of N_VDestroy() will not attempt to call N_VDestroy() on any subvectors con-
tained in the subvector array for any N_Vector with own_data set to SUNFALSE. In such a case, it is the user’s
responsibility to deallocate the subvectors.

• To maximize efficiency, arithmetic vector operations in the NVECTOR_MPIMANYVECTOR implementation
that have more than one N_Vector argument do not check for consistent internal representation of these vectors.
It is the user’s responsibility to ensure that such routines are called with N_Vector arguments that were all created
with the same subvector representations.

156 Chapter 6. Vector Data Structures

User Documentation for KINSOL, v7.1.0

6.19 The NVECTOR_MPIPLUSX Module

The NVECTOR_MPIPLUSX module is designed to facilitate the MPI+X paradigm, where X is some form of on-
node (local) parallelism (e.g. OpenMP, CUDA). This paradigm is becoming increasingly popular with the rise of
heterogeneous computing architectures.

The NVECTOR_MPIPLUSX implementation is designed to work with any NVECTOR that implements the minimum
“standard” set of operations in §6.2.1. However, it is not recommended to use the NVECTOR_PARALLEL, NVEC-
TOR_PARHYP, NVECTOR_PETSC, or NVECTOR_TRILINOS implementations underneath the NVECTOR_MPI-
PLUSX module since they already provide MPI capabilities.

6.19.1 NVECTOR_MPIPLUSX structure

The NVECTOR_MPIPLUSX implementation is a thin wrapper around the NVECTOR_MPIMANYVECTOR. Ac-
cordingly, it adopts the same content structure as defined in §6.18.1.

The header file to include when using this module is nvector_mpiplusx.h. The installed module library to link
against is libsundials_nvecmpiplusx.lib where .lib is typically .so for shared libraries and .a for static li-
braries.

Note: If SUNDIALS is configured with MPI disabled, then the mpiplusx library will not be built. Furthermore, any
user codes that include nvector_mpiplusx.h must be compiled using an MPI-aware compiler.

6.19.2 NVECTOR_MPIPLUSX functions

The NVECTOR_MPIPLUSX module adopts all vector operations listed in §6.2, from the NVECTOR_MPI-
MANYVECTOR (see §6.18) except for N_VGetArrayPointer(), and N_VSetArrayPointer(); the module pro-
vides its own implementation of these functions that call the local vector implementations. Therefore, the NVECTOR_-
MPIPLUSX module implements all of the operations listed in the referenced sections except for N_VScaleAddMul-
tiVectorArray(), and N_VLinearCombinationVectorArray(). Accordingly, it’s compatibility with the SUNDI-
ALS direct solvers and preconditioners depends on the local vector implementation.

The module NVECTOR_MPIPLUSX provides the following additional user-callable routines:

N_Vector N_VMake_MPIPlusX(MPI_Comm comm, N_Vector *local_vector, SUNContext sunctx)
This function creates a MPIPlusX vector from an exisiting local (i.e. on node) NVECTOR object, and a user-
created MPI communicator.

The input comm should be this user-created MPI communicator. This routine will internally call MPI_Comm_dup
to create a copy of the input comm, so the user-supplied comm argument need not be retained after the call to
N_VMake_MPIPlusX().

This routine will copy the NVECTOR pointer to the input local_vector, so the underlying local NVECTOR
object should not be destroyed before the mpiplusx that contains it.

Upon successful completion, the new MPIPlusX is returned; otherwise this routine returns NULL (e.g., if the
input local_vector is NULL).

N_Vector N_VGetLocalVector_MPIPlusX(N_Vector v)
This function returns the local vector underneath the MPIPlusX NVECTOR.

sunindextype N_VGetLocalLength_MPIPlusX(N_Vector v)
This function returns the local length of the vector underneath the MPIPlusX NVECTOR.

Usage:

6.19. The NVECTOR_MPIPLUSX Module 157

User Documentation for KINSOL, v7.1.0

local_length = N_VGetLocalLength_MPIPlusX(v);

sunrealtype *N_VGetArrayPointer_MPIPlusX(N_Vector v)
This function returns the data array pointer for the local vector.

If the local vector does not support the N_VGetArrayPointer() operation, then NULL is returned.

void N_VSetArrayPointer_MPIPlusX(sunrealtype *v_data, N_Vector v)
This function sets the data array pointer for the local vector if the local vector implements the N_VSetArray-
Pointer() operation.

The NVECTOR_MPIPLUSX module does not implement any fused or vector array operations. Instead users should
enable/disable fused operations on the local vector.

Notes

• N_VMake_MPIPlusX() sets the field own_data = SUNFALSE and the MPIPlusX implementation of N_VDe-
stroy()will not call N_VDestroy() on the local vector. In this a case, it is the user’s responsibility to deallocate
the local vector.

• To maximize efficiency, arithmetic vector operations in the NVECTOR_MPIPLUSX implementation that have
more than one N_Vector argument do not check for consistent internal representation of these vectors. It is the
user’s responsibility to ensure that such routines are called with N_Vector arguments that were all created with
the same subvector representations.

6.20 NVECTOR Examples

There are NVECTOR examples that may be installed for eac himplementation. Each implementation makes use of the
functions in test_nvector.c. These example functions show simple usage of the NVECTOR family of functions.
The input to the examples are the vector length, number of threads (if threaded implementation), and a print timing
flag.

The following is a list of the example functions in test_nvector.c:

• Test_N_VClone: Creates clone of vector and checks validity of clone.

• Test_N_VCloneEmpty: Creates clone of empty vector and checks validity of clone.

• Test_N_VCloneVectorArray: Creates clone of vector array and checks validity of cloned array.

• Test_N_VCloneVectorArray: Creates clone of empty vector array and checks validity of cloned array.

• Test_N_VGetArrayPointer: Get array pointer.

• Test_N_VSetArrayPointer: Allocate new vector, set pointer to new vector array, and check values.

• Test_N_VGetLength: Compares self-reported length to calculated length.

• Test_N_VGetCommunicator: Compares self-reported communicator to the one used in constructor; or for
MPI-unaware vectors it ensures that NULL is reported.

• Test_N_VLinearSum Case 1a: Test y = x + y

• Test_N_VLinearSum Case 1b: Test y = -x + y

• Test_N_VLinearSum Case 1c: Test y = ax + y

• Test_N_VLinearSum Case 2a: Test x = x + y

• Test_N_VLinearSum Case 2b: Test x = x - y

• Test_N_VLinearSum Case 2c: Test x = x + by

158 Chapter 6. Vector Data Structures

User Documentation for KINSOL, v7.1.0

• Test_N_VLinearSum Case 3: Test z = x + y

• Test_N_VLinearSum Case 4a: Test z = x - y

• Test_N_VLinearSum Case 4b: Test z = -x + y

• Test_N_VLinearSum Case 5a: Test z = x + by

• Test_N_VLinearSum Case 5b: Test z = ax + y

• Test_N_VLinearSum Case 6a: Test z = -x + by

• Test_N_VLinearSum Case 6b: Test z = ax - y

• Test_N_VLinearSum Case 7: Test z = a(x + y)

• Test_N_VLinearSum Case 8: Test z = a(x - y)

• Test_N_VLinearSum Case 9: Test z = ax + by

• Test_N_VConst: Fill vector with constant and check result.

• Test_N_VProd: Test vector multiply: z = x * y

• Test_N_VDiv: Test vector division: z = x / y

• Test_N_VScale: Case 1: scale: x = cx

• Test_N_VScale: Case 2: copy: z = x

• Test_N_VScale: Case 3: negate: z = -x

• Test_N_VScale: Case 4: combination: z = cx

• Test_N_VAbs: Create absolute value of vector.

• Test_N_VInv: Compute z[i] = 1 / x[i]

** Test_N_VAddConst: add constant vector: z = c + x

• Test_N_VDotProd: Calculate dot product of two vectors.

• Test_N_VMaxNorm: Create vector with known values, find and validate the max norm.

• Test_N_VWrmsNorm: Create vector of known values, find and validate the weighted root mean square.

• Test_N_VWrmsNormMask: Create vector of known values, find and validate the weighted root mean square using
all elements except one.

• Test_N_VMin: Create vector, find and validate the min.

• Test_N_VWL2Norm: Create vector, find and validate the weighted Euclidean L2 norm.

• Test_N_VL1Norm: Create vector, find and validate the L1 norm.

• Test_N_VCompare: Compare vector with constant returning and validating comparison vector.

• Test_N_VInvTest: Test z[i] = 1 / x[i]

• Test_N_VConstrMask: Test mask of vector x with vector c.

• Test_N_VMinQuotient: Fill two vectors with known values. Calculate and validate minimum quotient.

• Test_N_VLinearCombination: Case 1a: Test x = a x

• Test_N_VLinearCombination: Case 1b: Test z = a x

• Test_N_VLinearCombination: Case 2a: Test x = a x + b y

• Test_N_VLinearCombination: Case 2b: Test z = a x + b y

6.20. NVECTOR Examples 159

User Documentation for KINSOL, v7.1.0

• Test_N_VLinearCombination: Case 3a: Test x = x + a y + b z

• Test_N_VLinearCombination: Case 3b: Test x = a x + b y + c z

• Test_N_VLinearCombination: Case 3c: Test w = a x + b y + c z

• Test_N_VScaleAddMulti: Case 1a: y = a x + y

• Test_N_VScaleAddMulti: Case 1b: z = a x + y

• Test_N_VScaleAddMulti: Case 2a: Y[i] = c[i] x + Y[i], i = 1,2,3

• Test_N_VScaleAddMulti: Case 2b: Z[i] = c[i] x + Y[i], i = 1,2,3

• Test_N_VDotProdMulti: Case 1: Calculate the dot product of two vectors

• Test_N_VDotProdMulti: Case 2: Calculate the dot product of one vector with three other vectors in a vector
array.

• Test_N_VLinearSumVectorArray: Case 1: z = a x + b y

• Test_N_VLinearSumVectorArray: Case 2a: Z[i] = a X[i] + b Y[i]

• Test_N_VLinearSumVectorArray: Case 2b: X[i] = a X[i] + b Y[i]

• Test_N_VLinearSumVectorArray: Case 2c: Y[i] = a X[i] + b Y[i]

• Test_N_VScaleVectorArray: Case 1a: y = c y

• Test_N_VScaleVectorArray: Case 1b: z = c y

• Test_N_VScaleVectorArray: Case 2a: Y[i] = c[i] Y[i]

• Test_N_VScaleVectorArray: Case 2b: Z[i] = c[i] Y[i]

• Test_N_VConstVectorArray: Case 1a: z = c

• Test_N_VConstVectorArray: Case 1b: Z[i] = c

• Test_N_VWrmsNormVectorArray: Case 1a: Create a vector of know values, find and validate the weighted
root mean square norm.

• Test_N_VWrmsNormVectorArray: Case 1b: Create a vector array of three vectors of know values, find and
validate the weighted root mean square norm of each.

• Test_N_VWrmsNormMaskVectorArray: Case 1a: Create a vector of know values, find and validate the weighted
root mean square norm using all elements except one.

• Test_N_VWrmsNormMaskVectorArray: Case 1b: Create a vector array of three vectors of know values, find
and validate the weighted root mean square norm of each using all elements except one.

• Test_N_VScaleAddMultiVectorArray: Case 1a: y = a x + y

• Test_N_VScaleAddMultiVectorArray: Case 1b: z = a x + y

• Test_N_VScaleAddMultiVectorArray: Case 2a: Y[j][0] = a[j] X[0] + Y[j][0]

• Test_N_VScaleAddMultiVectorArray: Case 2b: Z[j][0] = a[j] X[0] + Y[j][0]

• Test_N_VScaleAddMultiVectorArray: Case 3a: Y[0][i] = a[0] X[i] + Y[0][i]

• Test_N_VScaleAddMultiVectorArray: Case 3b: Z[0][i] = a[0] X[i] + Y[0][i]

• Test_N_VScaleAddMultiVectorArray: Case 4a: Y[j][i] = a[j] X[i] + Y[j][i]

• Test_N_VScaleAddMultiVectorArray: Case 4b: Z[j][i] = a[j] X[i] + Y[j][i]

• Test_N_VLinearCombinationVectorArray: Case 1a: x = a x

• Test_N_VLinearCombinationVectorArray: Case 1b: z = a x

160 Chapter 6. Vector Data Structures

User Documentation for KINSOL, v7.1.0

• Test_N_VLinearCombinationVectorArray: Case 2a: x = a x + b y

• Test_N_VLinearCombinationVectorArray: Case 2b: z = a x + b y

• Test_N_VLinearCombinationVectorArray: Case 3a: x = a x + b y + c z

• Test_N_VLinearCombinationVectorArray: Case 3b: w = a x + b y + c z

• Test_N_VLinearCombinationVectorArray: Case 4a: X[0][i] = c[0] X[0][i]

• Test_N_VLinearCombinationVectorArray: Case 4b: Z[i] = c[0] X[0][i]

• Test_N_VLinearCombinationVectorArray: Case 5a: X[0][i] = c[0] X[0][i] + c[1] X[1][i]

• Test_N_VLinearCombinationVectorArray: Case 5b: Z[i] = c[0] X[0][i] + c[1] X[1][i]

• Test_N_VLinearCombinationVectorArray: Case 6a: X[0][i] = X[0][i] + c[1] X[1][i] + c[2] X[2][i]

• Test_N_VLinearCombinationVectorArray: Case 6b: X[0][i] = c[0] X[0][i] + c[1] X[1][i] + c[2] X[2][i]

• Test_N_VLinearCombinationVectorArray: Case 6c: Z[i] = c[0] X[0][i] + c[1] X[1][i] + c[2] X[2][i]

• Test_N_VDotProdLocal: Calculate MPI task-local portion of the dot product of two vectors.

• Test_N_VMaxNormLocal: Create vector with known values, find and validate the MPI task-local portion of the
max norm.

• Test_N_VMinLocal: Create vector, find and validate the MPI task-local min.

• Test_N_VL1NormLocal: Create vector, find and validate the MPI task-local portion of the L1 norm.

• Test_N_VWSqrSumLocal: Create vector of known values, find and validate the MPI task-local portion of the
weighted squared sum of two vectors.

• Test_N_VWSqrSumMaskLocal: Create vector of known values, find and validate the MPI task-local portion of
the weighted squared sum of two vectors, using all elements except one.

• Test_N_VInvTestLocal: Test the MPI task-local portion of z[i] = 1 / x[i]

• Test_N_VConstrMaskLocal: Test the MPI task-local portion of the mask of vector x with vector c.

• Test_N_VMinQuotientLocal: Fill two vectors with known values. Calculate and validate the MPI task-local
minimum quotient.

• Test_N_VMBufSize: Tests for accuracy in the reported buffer size.

• Test_N_VMBufPack: Tests for accuracy in the buffer packing routine.

• Test_N_VMBufUnpack: Tests for accuracy in the buffer unpacking routine.

6.20. NVECTOR Examples 161

User Documentation for KINSOL, v7.1.0

162 Chapter 6. Vector Data Structures

Chapter 7

Matrix Data Structures

The SUNDIALS library comes packaged with a variety of SUNMatrix implementations, designed for simulations
requiring direct linear solvers for problems in serial or shared-memory parallel environments. SUNDIALS additionally
provides a simple interface for generic matrices (akin to a C++ abstract base class). All of the major SUNDIALS
packages (CVODE(s), IDA(s), KINSOL, ARKODE), are constructed to only depend on these generic matrix operations,
making them immediately extensible to new user-defined matrix objects. For each of the SUNDIALS-provided matrix
types, SUNDIALS also provides at least two SUNLinearSolver implementations that factor these matrix objects and
use them in the solution of linear systems.

7.1 Description of the SUNMATRIX Modules

For problems that involve direct methods for solving linear systems, the SUNDIALS packages not only operate on
generic vectors, but also on generic matrices (of type SUNMatrix), through a set of operations defined by the particular
SUNMATRIX implementation. Users can provide their own specific implementation of the SUNMATRIX module,
particularly in cases where they provide their own N_Vector and/or linear solver modules, and require matrices that
are compatible with those implementations. The generic SUNMatrix operations are described below, and descriptions
of the SUNMATRIX implementations provided with SUNDIALS follow.

The generic SUNMatrix type has been modeled after the object-oriented style of the generic N_Vector type. Specif-
ically, a generic SUNMatrix is a pointer to a structure that has an implementation-dependent content field containing
the description and actual data of the matrix, and an ops field pointing to a structure with generic matrix operations.

A SUNMatrix is a pointer to the _generic_SUNMatrix structure:

typedef struct _generic_SUNMatrix *SUNMatrix

struct _generic_SUNMatrix
The structure defining the SUNDIALS matrix class.

void *content
Pointer to matrix-specific member data

struct _generic_SUNMatrix_Ops *ops
A virtual table of matrix operations provided by a specific implementation

SUNContext sunctx
The SUNDIALS simulation context

The virtual table structure is defined as

163

User Documentation for KINSOL, v7.1.0

struct _generic_SUNMatrix_Ops
The structure defining SUNMatrix operations.

SUNMatrix_ID (*getid)(SUNMatrix)
The function implementing SUNMatGetID()

SUNMatrix (*clone)(SUNMatrix)
The function implementing SUNMatClone()

void (*destroy)(SUNMatrix)
The function implementing SUNMatDestroy()

SUNErrCode (*zero)(SUNMatrix)
The function implementing SUNMatZero()

SUNErrCode (*copy)(SUNMatrix, SUNMatrix)
The function implementing SUNMatCopy()

SUNErrCode (*scaleadd)(sunrealtype, SUNMatrix, SUNMatrix)
The function implementing SUNMatScaleAdd()

SUNErrCode (*scaleaddi)(sunrealtype, SUNMatrix)
The function implementing SUNMatScaleAddI()

SUNErrCode (*matvecsetup)(SUNMatrix)
The function implementing SUNMatMatvecSetup()

SUNErrCode (*matvec)(SUNMatrix, N_Vector, N_Vector)
The function implementing SUNMatMatvec()

SUNErrCode (*space)(SUNMatrix, long int*, long int*)
The function implementing SUNMatSpace()

The generic SUNMATRIX module defines and implements the matrix operations acting on a SUNMatrix. These
routines are nothing but wrappers for the matrix operations defined by a particular SUNMATRIX implementation,
which are accessed through the ops field of the SUNMatrix structure. To illustrate this point we show below the
implementation of a typical matrix operation from the generic SUNMATRIX module, namely SUNMatZero, which
sets all values of a matrix A to zero, returning a flag denoting a successful/failed operation:

SUNErrCode SUNMatZero(SUNMatrix A)
{
return(A->ops->zero(A));

}

§7.2 contains a complete list of all matrix operations defined by the generic SUNMATRIX module. A particular
implementation of the SUNMATRIX module must:

• Specify the content field of the SUNMatrix object.

• Define and implement a minimal subset of the matrix operations. See the documentation for each SUNDIALS
package and/or linear solver to determine which SUNMATRIX operations they require.

Note that the names of these routines should be unique to that implementation in order to permit using more than
one SUNMATRIX module (each with different SUNMatrix internal data representations) in the same code.

• Define and implement user-callable constructor and destructor routines to create and free a SUNMatrix with the
new content field and with ops pointing to the new matrix operations.

• Optionally, define and implement additional user-callable routines acting on the newly defined SUNMatrix (e.g.,
a routine to print the content for debugging purposes).

164 Chapter 7. Matrix Data Structures

User Documentation for KINSOL, v7.1.0

• Optionally, provide accessor macros as needed for that particular implementation to be used to access different
parts in the content field of the newly defined SUNMatrix.

To aid in the creation of custom SUNMATRIX modules the generic SUNMATRIX module provides three utility func-
tions SUNMatNewEmpty(), SUNMatCopyOps(), and SUNMatFreeEmpty(). When used in custom SUNMATRIX con-
structors and clone routines these functions will ease the introduction of any new optional matrix operations to the
SUNMATRIX API by ensuring only required operations need to be set and all operations are copied when cloning a
matrix.

SUNMatrix SUNMatNewEmpty(SUNContext sunctx)
This function allocates a new generic SUNMatrix object and initializes its content pointer and the function
pointers in the operations structure to NULL.

Return value:
If successful, this function returns a SUNMatrix object. If an error occurs when allocating the object, then
this routine will return NULL.

SUNErrCode SUNMatCopyOps(SUNMatrix A, SUNMatrix B)
This function copies the function pointers in the ops structure of A into the ops structure of B.

Arguments:

• A – the matrix to copy operations from.

• B – the matrix to copy operations to.

Return value:

• A SUNErrCode

void SUNMatFreeEmpty(SUNMatrix A)
This routine frees the generic SUNMatrix object, under the assumption that any implementation-specific data
that was allocated within the underlying content structure has already been freed. It will additionally test whether
the ops pointer is NULL, and, if it is not, it will free it as well.

Arguments:

• A – the SUNMatrix object to free

type SUNMatrix_ID
Each SUNMATRIX implementation included in SUNDIALS has a unique identifier specified in enumeration and
shown in Table 7.1. It is recommended that a user-supplied SUNMATRIX implementation use the SUNMATRIX_-
CUSTOM identifier.

Table 7.1: Identifiers associated with matrix kernels supplied with SUN-
DIALS

Matrix ID Matrix type
SUNMATRIX_BAND Band M ×M matrix
SUNMATRIX_CUSPARSE CUDA sparse CSR matrix
SUNMATRIX_CUSTOM User-provided custom matrix
SUNMATRIX_DENSE Dense M ×N matrix
SUNMATRIX_GINKGO SUNMatrix wraper for Ginkgo matrices
SUNMATRIX_MAGMADENSE Dense M ×N matrix
SUNMATRIX_ONEMKLDENSE oneMKL dense M ×N matrix
SUNMATRIX_SLUNRLOC SUNMatrix wrapper for SuperLU_DIST SuperMatrix
SUNMATRIX_SPARSE Sparse (CSR or CSC) M ×N matrix

7.1. Description of the SUNMATRIX Modules 165

User Documentation for KINSOL, v7.1.0

7.2 Description of the SUNMATRIX operations

For each of the SUNMatrix operations, we give the name, usage of the function, and a description of its mathematical
operations below.

SUNMatrix_ID SUNMatGetID(SUNMatrix A)
Returns the type identifier for the matrix A. It is used to determine the matrix implementation type (e.g.
dense, banded, sparse,. . .) from the abstract SUNMatrix interface. This is used to assess compatibility with
SUNDIALS-provided linear solver implementations. Returned values are given in Table 7.1

Usage:

id = SUNMatGetID(A);

SUNMatrix SUNMatClone(SUNMatrix A)
Creates a new SUNMatrix of the same type as an existing matrix A and sets the ops field. It does not copy the
matrix values, but rather allocates storage for the new matrix.

Usage:

B = SUNMatClone(A);

void SUNMatDestroy(SUNMatrix A)
Destroys the SUNMatrix A and frees memory allocated for its internal data.

Usage:

SUNMatDestroy(A);

SUNErrCode SUNMatSpace(SUNMatrix A, long int *lrw, long int *liw)
Returns the storage requirements for the matrix A. lrw contains the number of sunrealtype words and liw contains
the number of integer words. The return value denotes success/failure of the operation.

This function is advisory only, for use in determining a user’s total space requirements; it could be a dummy
function in a user-supplied SUNMatrix module if that information is not of interest.

Usage:

retval = SUNMatSpace(A, &lrw, &liw);

SUNErrCode SUNMatZero(SUNMatrix A)
Zeros all entries of the SUNMatrix A. The return value denotes the success/failure of the operation:

Ai,j = 0, i = 1, . . . ,m, j = 1, . . . , n.

Usage:

retval = SUNMatZero(A);

SUNErrCode SUNMatCopy(SUNMatrix A, SUNMatrix B)
Performs the operation B gets A for all entries of the matrices A and B. The return value denotes the success/failure
of the operation:

Bi,j = Ai,j , i = 1, . . . ,m, j = 1, . . . , n.

Usage:

166 Chapter 7. Matrix Data Structures

User Documentation for KINSOL, v7.1.0

retval = SUNMatCopy(A,B);

SUNErrCode SUNMatScaleAdd(sunrealtype c, SUNMatrix A, SUNMatrix B)
Performs the operation A gets cA + B. The return value denotes the success/failure of the operation:

Ai,j = cAi,j +Bi,j , i = 1, . . . ,m, j = 1, . . . , n.

Usage:

retval = SUNMatScaleAdd(c, A, B);

SUNErrCode SUNMatScaleAddI(sunrealtype c, SUNMatrix A)
Performs the operation A gets cA + I. The return value denotes the success/failure of the operation:

Ai,j = cAi,j + δi,j , i, j = 1, . . . , n.

Usage:

retval = SUNMatScaleAddI(c, A);

SUNErrCode SUNMatMatvecSetup(SUNMatrix A)
Performs any setup necessary to perform a matrix-vector product. The return value denotes the success/failure
of the operation. It is useful for SUNMatrix implementations which need to prepare the matrix itself, or com-
munication structures before performing the matrix-vector product.

Usage:

retval = SUNMatMatvecSetup(A);

SUNErrCode SUNMatMatvec(SUNMatrix A, N_Vector x, N_Vector y)
Performs the matrix-vector product y gets Ax. It should only be called with vectors x and y that are compatible
with the matrix A – both in storage type and dimensions. The return value denotes the success/failure of the
operation:

yi =

n∑
j=1

Ai,jxj , i = 1, . . . ,m.

Usage:

retval = SUNMatMatvec(A, x, y);

7.3 The SUNMATRIX_DENSE Module

The dense implementation of the SUNMatrixmodule, SUNMATRIX_DENSE, defines the content field of SUNMatrix
to be the following structure:

struct _SUNMatrixContent_Dense {
sunindextype M;
sunindextype N;
sunrealtype *data;
sunindextype ldata;
sunrealtype **cols;

};

7.3. The SUNMATRIX_DENSE Module 167

User Documentation for KINSOL, v7.1.0

These entries of the content field contain the following information:

• M - number of rows

• N - number of columns

• data - pointer to a contiguous block of sunrealtype variables. The elements of the dense matrix are stored
columnwise, i.e. the (i, j) element of a dense SUNMatrix object (with 0 ≤ i < M and 0 ≤ j < N) may be
accessed via data[j*M+i].

• ldata - length of the data array (= M N).

• cols - array of pointers. cols[j] points to the first element of the j-th column of the matrix in the array data.
The (i, j) element of a dense SUNMatrix (with 0 ≤ i < M and 0 ≤ j < N) may be accessed may be accessed
via cols[j][i].

The header file to be included when using this module is sunmatrix/sunmatrix_dense.h.

The following macros are provided to access the content of a SUNMATRIX_DENSE matrix. The prefix SM_ in the
names denotes that these macros are for SUNMatrix implementations, and the suffix _D denotes that these are specific
to the dense version.

SM_CONTENT_D(A)
This macro gives access to the contents of the dense SUNMatrix A.

The assignment A_cont = SM_CONTENT_D(A) sets A_cont to be a pointer to the dense SUNMatrix content
structure.

Implementation:

#define SM_CONTENT_D(A) ((SUNMatrixContent_Dense)(A->content))

SM_ROWS_D(A)
Access the number of rows in the dense SUNMatrix A.

This may be used either to retrieve or to set the value. For example, the assignment A_rows = SM_ROWS_D(A)
sets A_rows to be the number of rows in the matrix A. Similarly, the assignment SM_ROWS_D(A) = A_rows sets
the number of columns in A to equal A_rows.

Implementation:

#define SM_ROWS_D(A) (SM_CONTENT_D(A)->M)

SM_COLUMNS_D(A)
Access the number of columns in the dense SUNMatrix A.

This may be used either to retrieve or to set the value. For example, the assignment A_columns = SM_-
COLUMNS_D(A) sets A_columns to be the number of columns in the matrix A. Similarly, the assignment SM_-
COLUMNS_D(A) = A_columns sets the number of columns in A to equal A_columns

Implementation:

#define SM_COLUMNS_D(A) (SM_CONTENT_D(A)->N)

SM_LDATA_D(A)
Access the total data length in the dense SUNMatrix A.

This may be used either to retrieve or to set the value. For example, the assignment A_ldata = SM_LDATA_-
D(A) sets A_ldata to be the length of the data array in the matrix A. Similarly, the assignment SM_LDATA_D(A)
= A_ldata sets the parameter for the length of the data array in A to equal A_ldata.

Implementation:

168 Chapter 7. Matrix Data Structures

User Documentation for KINSOL, v7.1.0

#define SM_LDATA_D(A) (SM_CONTENT_D(A)->ldata)

SM_DATA_D(A)
This macro gives access to the data pointer for the matrix entries.

The assignment A_data = SM_DATA_D(A) sets A_data to be a pointer to the first component of the data array
for the dense SUNMatrix A. The assignment SM_DATA_D(A) = A_data sets the data array of A to be A_data
by storing the pointer A_data.

Implementation:

#define SM_DATA_D(A) (SM_CONTENT_D(A)->data)

SM_COLS_D(A)
This macro gives access to the cols pointer for the matrix entries.

The assignment A_cols = SM_COLS_D(A) sets A_cols to be a pointer to the array of column pointers for the
dense SUNMatrix A. The assignment SM_COLS_D(A) = A_cols sets the column pointer array of A to be A_-
cols by storing the pointer A_cols.

Implementation:

#define SM_COLS_D(A) (SM_CONTENT_D(A)->cols)

SM_COLUMN_D(A)
This macros gives access to the individual columns of the data array of a dense SUNMatrix.

The assignment col_j = SM_COLUMN_D(A,j) sets col_j to be a pointer to the first entry of the j-th column of
theM ×N dense matrix A (with 0 ≤ j < N). The type of the expression SM_COLUMN_D(A,j) is sunrealtype
*. The pointer returned by the call SM_COLUMN_D(A,j) can be treated as an array which is indexed from 0 to
M-1.

Implementation:

#define SM_COLUMN_D(A,j) ((SM_CONTENT_D(A)->cols)[j])

SM_ELEMENT_D(A)
This macro gives access to the individual entries of the data array of a dense SUNMatrix.

The assignments SM_ELEMENT_D(A,i,j) = a_ij and a_ij = SM_ELEMENT_D(A,i,j) reference theAi,j el-
ement of the M ×N dense matrix A (with 0 ≤ i < M and 0 ≤ j < N).

Implementation:

#define SM_ELEMENT_D(A,i,j) ((SM_CONTENT_D(A)->cols)[j][i])

The SUNMATRIX_DENSE module defines dense implementations of all matrix operations listed in §7.2. Their names
are obtained from those in that section by appending the suffix _Dense (e.g. SUNMatCopy_Dense). The module
SUNMATRIX_DENSE provides the following additional user-callable routines:

SUNMatrix SUNDenseMatrix(sunindextype M, sunindextype N, SUNContext sunctx)
This constructor function creates and allocates memory for a dense SUNMatrix. Its arguments are the number
of rows, M, and columns, N, for the dense matrix.

void SUNDenseMatrix_Print(SUNMatrix A, FILE *outfile)
This function prints the content of a dense SUNMatrix to the output stream specified by outfile. Note: std-
out or stderr may be used as arguments for outfile to print directly to standard output or standard error,
respectively.

7.3. The SUNMATRIX_DENSE Module 169

User Documentation for KINSOL, v7.1.0

sunindextype SUNDenseMatrix_Rows(SUNMatrix A)
This function returns the number of rows in the dense SUNMatrix.

sunindextype SUNDenseMatrix_Columns(SUNMatrix A)
This function returns the number of columns in the dense SUNMatrix.

sunindextype SUNDenseMatrix_LData(SUNMatrix A)
This function returns the length of the data array for the dense SUNMatrix.

sunrealtype *SUNDenseMatrix_Data(SUNMatrix A)
This function returns a pointer to the data array for the dense SUNMatrix.

sunrealtype **SUNDenseMatrix_Cols(SUNMatrix A)
This function returns a pointer to the cols array for the dense SUNMatrix.

sunrealtype *SUNDenseMatrix_Column(SUNMatrix A, sunindextype j)
This function returns a pointer to the first entry of the jth column of the dense SUNMatrix. The resulting pointer
should be indexed over the range 0 to M-1.

Notes

• When looping over the components of a dense SUNMatrix A, the most efficient approaches are to:

– First obtain the component array via A_data = SUNDenseMatrix_Data(A), or equivalently A_data =
SM_DATA_D(A), and then access A_data[i] within the loop.

– First obtain the array of column pointers via A_cols = SUNDenseMatrix_Cols(A), or equivalently A_-
cols = SM_COLS_D(A), and then access A_cols[j][i] within the loop.

– Within a loop over the columns, access the column pointer via A_colj = SUNDenseMatrix_Column(A,
j) and then to access the entries within that column using A_colj[i] within the loop.

All three of these are more efficient than using SM_ELEMENT_D(A,i,j) within a double loop.

• Within the SUNMatMatvec_Dense routine, internal consistency checks are performed to ensure that the matrix
is called with consistent N_Vector implementations. These are currently limited to: NVECTOR_SERIAL,
NVECTOR_OPENMP, and NVECTOR_PTHREADS. As additional compatible vector implementations are
added to SUNDIALS, these will be included within this compatibility check.

7.4 The SUNMATRIX_MAGMADENSE Module

The SUNMATRIX_MAGMADENSE module interfaces to the MAGMA linear algebra library and can target
NVIDIA’s CUDA programming model or AMD’s HIP programming model [48]. All data stored by this matrix imple-
mentation resides on the GPU at all times. The implementation currently supports a standard LAPACK column-major
storage format as well as a low-storage format for block-diagonal matrices

A =


A0 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · An−1


This matrix implementation is best paired with the SUNLinearSolver_MagmaDense SUNLinearSolver.

The header file to include when using this module is sunmatrix/sunmatrix_magmadense.h. The installed library
to link to is libsundials_sunmatrixmagmadense.lib where lib is typically .so for shared libraries and .a for
static libraries.

170 Chapter 7. Matrix Data Structures

https://icl.utk.edu/magma/index.html

User Documentation for KINSOL, v7.1.0

Warning: The SUNMATRIX_MAGMADENSE module is experimental and subject to change.

7.4.1 SUNMATRIX_MAGMADENSE Functions

The SUNMATRIX_MAGMADENSE module defines GPU-enabled implementations of all matrix operations listed in
§7.2.

• SUNMatGetID_MagmaDense – returns SUNMATRIX_MAGMADENSE

• SUNMatClone_MagmaDense

• SUNMatDestroy_MagmaDense

• SUNMatZero_MagmaDense

• SUNMatCopy_MagmaDense

• SUNMatScaleAdd_MagmaDense

• SUNMatScaleAddI_MagmaDense

• SUNMatMatvecSetup_MagmaDense

• SUNMatMatvec_MagmaDense

• SUNMatSpace_MagmaDense

In addition, the SUNMATRIX_MAGMADENSE module defines the following implementation specific functions:

SUNMatrix SUNMatrix_MagmaDense(sunindextype M, sunindextype N, SUNMemoryType memtype,
SUNMemoryHelper memhelper, void *queue, SUNContext sunctx)

This constructor function creates and allocates memory for an M ×N SUNMATRIX_MAGMADENSE SUN-
Matrix.

Arguments:

• M – the number of matrix rows.

• N – the number of matrix columns.

• memtype – the type of memory to use for the matrix data; can be SUNMEMTYPE_UVM or SUNMEMTYPE_-
DEVICE.

• memhelper – the memory helper used for allocating data.

• queue – a cudaStream_t when using CUDA or a hipStream_t when using HIP.

• sunctx – the SUNContext object (see §4.2)

Return value:
If successful, a SUNMatrix object otherwise NULL.

SUNMatrix SUNMatrix_MagmaDenseBlock(sunindextype nblocks, sunindextype M_block, sunindextype N_block,
SUNMemoryType memtype, SUNMemoryHelper memhelper, void
*queue, SUNContext sunctx)

This constructor function creates and allocates memory for a block diagonal SUNMATRIX_MAGMADENSE
SUNMatrix with nblocks of size M ×N .

Arguments:

• nblocks – the number of matrix rows.

• M_block – the number of matrix rows in each block.

7.4. The SUNMATRIX_MAGMADENSE Module 171

User Documentation for KINSOL, v7.1.0

• N_block – the number of matrix columns in each block.

• memtype – the type of memory to use for the matrix data; can be SUNMEMTYPE_UVM or SUNMEMTYPE_-
DEVICE.

• memhelper – the memory helper used for allocating data.

• queue – a cudaStream_t when using CUDA or a hipStream_t when using HIP.

• sunctx – the SUNContext object (see §4.2)

Return value:
If successful, a SUNMatrix object otherwise NULL.

sunindextype SUNMatrix_MagmaDense_Rows(SUNMatrix A)
This function returns the number of rows in the SUNMatrix object. For block diagonal matrices, the number of
rows is computed as Mblock × nblocks.

Arguments:

• A – a SUNMatrix object.

Return value:
If successful, the number of rows in the SUNMatrix object otherwise SUNMATRIX_ILL_INPUT.

sunindextype SUNMatrix_MagmaDense_Columns(SUNMatrix A)
This function returns the number of columns in the SUNMatrix object. For block diagonal matrices, the number
of columns is computed as Nblock × nblocks.

Arguments:

• A – a SUNMatrix object.

Return value:
If successful, the number of columns in the SUNMatrix object otherwise SUNMATRIX_ILL_INPUT.

sunindextype SUNMatrix_MagmaDense_BlockRows(SUNMatrix A)
This function returns the number of rows in a block of the SUNMatrix object.

Arguments:

• A – a SUNMatrix object.

Return value:
If successful, the number of rows in a block of the SUNMatrix object otherwise SUNMATRIX_ILL_INPUT.

sunindextype SUNMatrix_MagmaDense_BlockColumns(SUNMatrix A)
This function returns the number of columns in a block of the SUNMatrix object.

Arguments:

• A – a SUNMatrix object.

Return value:
If successful, the number of columns in a block of the SUNMatrix object otherwise SUNMATRIX_ILL_-
INPUT.

sunindextype SUNMatrix_MagmaDense_LData(SUNMatrix A)
This function returns the length of the SUNMatrix data array.

Arguments:

• A – a SUNMatrix object.

172 Chapter 7. Matrix Data Structures

User Documentation for KINSOL, v7.1.0

Return value:
If successful, the length of the SUNMatrix data array otherwise SUNMATRIX_ILL_INPUT.

sunindextype SUNMatrix_MagmaDense_NumBlocks(SUNMatrix A)
This function returns the number of blocks in the SUNMatrix object.

Arguments:

• A – a SUNMatrix object.

Return value:
If successful, the number of blocks in the SUNMatrix object otherwise SUNMATRIX_ILL_INPUT.

sunrealtype *SUNMatrix_MagmaDense_Data(SUNMatrix A)
This function returns the SUNMatrix data array.

Arguments:

• A – a SUNMatrix object.

Return value:
If successful, the SUNMatrix data array otherwise NULL.

sunrealtype **SUNMatrix_MagmaDense_BlockData(SUNMatrix A)
This function returns an array of pointers that point to the start of the data array for each block in the SUNMatrix.

Arguments:

• A – a SUNMatrix object.

Return value:
If successful, an array of data pointers to each of the SUNMatrix blocks otherwise NULL.

sunrealtype *SUNMatrix_MagmaDense_Block(SUNMatrix A, sunindextype k)
This function returns a pointer to the data array for block k in the SUNMatrix.

Arguments:

• A – a SUNMatrix object.

• k – the block index.

Return value:
If successful, a pointer to the data array for the SUNMatrix block otherwise NULL.

Note: No bounds-checking is performed by this function, j should be strictly less than nblocks.

sunrealtype *SUNMatrix_MagmaDense_Column(SUNMatrix A, sunindextype j)
This function returns a pointer to the data array for column j in the SUNMatrix.

Arguments:

• A – a SUNMatrix object.

• j – the column index.

Return value:
If successful, a pointer to the data array for the SUNMatrix column otherwise NULL.

Note: No bounds-checking is performed by this function, j should be strictly less than nblocks ∗Nblock.

7.4. The SUNMATRIX_MAGMADENSE Module 173

User Documentation for KINSOL, v7.1.0

sunrealtype *SUNMatrix_MagmaDense_BlockColumn(SUNMatrix A, sunindextype k, sunindextype j)
This function returns a pointer to the data array for column j of block k in the SUNMatrix.

Arguments:

• A – a SUNMatrix object.

• k – the block index.

• j – the column index.

Return value:
If successful, a pointer to the data array for the SUNMatrix column otherwise NULL.

Note: No bounds-checking is performed by this function, k should be strictly less than nblocks and j should be
strictly less than Nblock.

SUNErrCode SUNMatrix_MagmaDense_CopyToDevice(SUNMatrix A, sunrealtype *h_data)
This function copies the matrix data to the GPU device from the provided host array.

Arguments:

• A – a SUNMatrix object

• h_data – a host array pointer to copy data from.

Return value:

• SUN_SUCCESS – if the copy is successful.

• SUN_ERR_ARG_INCOMPATIBLE – if the SUNMatrix is not a SUNMATRIX_MAGMADENSE matrix.

• SUN_ERR_MEM_FAIL – if the copy fails.

SUNErrCode SUNMatrix_MagmaDense_CopyFromDevice(SUNMatrix A, sunrealtype *h_data)
This function copies the matrix data from the GPU device to the provided host array.

Arguments:

• A – a SUNMatrix object

• h_data – a host array pointer to copy data to.

Return value:

• SUN_SUCCESS – if the copy is successful.

• SUN_ERR_ARG_INCOMPATIBLE – if the SUNMatrix is not a SUNMATRIX_MAGMADENSE matrix.

• SUN_ERR_MEM_FAIL – if the copy fails.

7.4.2 SUNMATRIX_MAGMADENSE Usage Notes

Warning: When using the SUNMATRIX_MAGMADENSE module with a SUNDIALS package (e.g. CVODE),
the stream given to matrix should be the same stream used for the NVECTOR object that is provided to the package,
and the NVECTOR object given to the SUNMatvec operation. If different streams are utilized, synchronization
issues may occur.

174 Chapter 7. Matrix Data Structures

User Documentation for KINSOL, v7.1.0

7.5 The SUNMATRIX_ONEMKLDENSE Module

The SUNMATRIX_ONEMKLDENSE module is intended for interfacing with direct linear solvers from the Intel
oneAPI Math Kernel Library (oneMKL) using the SYCL (DPC++) programming model. The implementation currently
supports a standard LAPACK column-major storage format as well as a low-storage format for block-diagonal matrices,

A =


A0 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · An−1


This matrix implementation is best paired with the SUNLinearSolver_OneMklDense linear solver.

The header file to include when using this class is sunmatrix/sunmatrix_onemkldense.h. The installed library
to link to is libsundials_sunmatrixonemkldense.lib where lib is typically .so for shared libraries and .a for
static libraries.

Warning: The SUNMATRIX_ONEMKLDENSE class is experimental and subject to change.

7.5.1 SUNMATRIX_ONEMKLDENSE Functions

The SUNMATRIX_ONEMKLDENSE class defines implementations of the following matrix operations listed in §7.2.

• SUNMatGetID_OneMklDense – returns SUNMATRIX_ONEMKLDENSE

• SUNMatClone_OneMklDense

• SUNMatDestroy_OneMklDense

• SUNMatZero_OneMklDense

• SUNMatCopy_OneMklDense

• SUNMatScaleAdd_OneMklDense

• SUNMatScaleAddI_OneMklDense

• SUNMatMatvec_OneMklDense

• SUNMatSpace_OneMklDense

In addition, the SUNMATRIX_ONEMKLDENSE class defines the following implementation specific functions.

7.5.1.1 Constructors

SUNMatrix SUNMatrix_OneMklDense(sunindextype M, sunindextype N, SUNMemoryType memtype,
SUNMemoryHelper memhelper, sycl::queue *queue, SUNContext sunctx)

This constructor function creates and allocates memory for an M ×N SUNMATRIX_ONEMKLDENSE SUN-
Matrix.

Arguments:

• M – the number of matrix rows.

• N – the number of matrix columns.

• memtype – the type of memory to use for the matrix data; can be SUNMEMTYPE_UVM or SUNMEMTYPE_-
DEVICE.

7.5. The SUNMATRIX_ONEMKLDENSE Module 175

https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl.html

User Documentation for KINSOL, v7.1.0

• memhelper – the memory helper used for allocating data.

• queue – the SYCL queue to which operations will be submitted.

• sunctx – the SUNContext object (see §4.2)

Return value:
If successful, a SUNMatrix object otherwise NULL.

SUNMatrix SUNMatrix_OneMklDenseBlock(sunindextype nblocks, sunindextype M_block, sunindextype
N_block, SUNMemoryType memtype, SUNMemoryHelper
memhelper, sycl::queue *queue, SUNContext sunctx)

This constructor function creates and allocates memory for a block diagonal SUNMATRIX_ONEMKLDENSE
SUNMatrix with nblocks of size Mblock ×Nblock.

Arguments:

• nblocks – the number of matrix rows.

• M_block – the number of matrix rows in each block.

• N_block – the number of matrix columns in each block.

• memtype – the type of memory to use for the matrix data; can be SUNMEMTYPE_UVM or SUNMEMTYPE_-
DEVICE.

• memhelper – the memory helper used for allocating data.

• queue – the SYCL queue to which operations will be submitted.

• sunctx – the SUNContext object (see §4.2)

Return value:
If successful, a SUNMatrix object otherwise NULL.

7.5.1.2 Access Matrix Dimensions

sunindextype SUNMatrix_OneMklDense_Rows(SUNMatrix A)
This function returns the number of rows in the SUNMatrix object. For block diagonal matrices, the number of
rows is computed as Mblock × nblocks.

Arguments:

• A – a SUNMatrix object.

Return value:
If successful, the number of rows in the SUNMatrix object otherwise SUNMATRIX_ILL_INPUT.

sunindextype SUNMatrix_OneMklDense_Columns(SUNMatrix A)
This function returns the number of columns in the SUNMatrix object. For block diagonal matrices, the number
of columns is computed as Nblock × nblocks.

Arguments:

• A – a SUNMatrix object.

Return value:
If successful, the number of columns in the SUNMatrix object otherwise SUNMATRIX_ILL_INPUT.

176 Chapter 7. Matrix Data Structures

User Documentation for KINSOL, v7.1.0

7.5.1.3 Access Matrix Block Dimensions

sunindextype SUNMatrix_OneMklDense_NumBlocks(SUNMatrix A)
This function returns the number of blocks in the SUNMatrix object.

Arguments:

• A – a SUNMatrix object.

Return value:
If successful, the number of blocks in the SUNMatrix object otherwise SUNMATRIX_ILL_INPUT.

sunindextype SUNMatrix_OneMklDense_BlockRows(SUNMatrix A)
This function returns the number of rows in a block of the SUNMatrix object.

Arguments:

• A – a SUNMatrix object.

Return value:
If successful, the number of rows in a block of the SUNMatrix object otherwise SUNMATRIX_ILL_INPUT.

sunindextype SUNMatrix_OneMklDense_BlockColumns(SUNMatrix A)
This function returns the number of columns in a block of the SUNMatrix object.

Arguments:

• A – a SUNMatrix object.

Return value:
If successful, the number of columns in a block of the SUNMatrix object otherwise SUNMATRIX_ILL_-
INPUT.

7.5.1.4 Access Matrix Data

sunindextype SUNMatrix_OneMklDense_LData(SUNMatrix A)
This function returns the length of the SUNMatrix data array.

Arguments:

• A – a SUNMatrix object.

Return value:
If successful, the length of the SUNMatrix data array otherwise SUNMATRIX_ILL_INPUT.

sunrealtype *SUNMatrix_OneMklDense_Data(SUNMatrix A)
This function returns the SUNMatrix data array.

Arguments:

• A – a SUNMatrix object.

Return value:
If successful, the SUNMatrix data array otherwise NULL.

sunrealtype *SUNMatrix_OneMklDense_Column(SUNMatrix A, sunindextype j)
This function returns a pointer to the data array for column j in the SUNMatrix.

Arguments:

• A – a SUNMatrix object.

• j – the column index.

7.5. The SUNMATRIX_ONEMKLDENSE Module 177

User Documentation for KINSOL, v7.1.0

Return value:
If successful, a pointer to the data array for the SUNMatrix column otherwise NULL.

Note: No bounds-checking is performed by this function, j should be strictly less than nblocks ∗Nblock.

7.5.1.5 Access Matrix Block Data

sunindextype SUNMatrix_OneMklDense_BlockLData(SUNMatrix A)
This function returns the length of the SUNMatrix data array for each block of the SUNMatrix object.

Arguments:

• A – a SUNMatrix object.

Return value:
If successful, the length of the SUNMatrix data array for each block otherwise SUNMATRIX_ILL_INPUT.

sunrealtype **SUNMatrix_OneMklDense_BlockData(SUNMatrix A)
This function returns an array of pointers that point to the start of the data array for each block in the SUNMatrix.

Arguments:

• A – a SUNMatrix object.

Return value:
If successful, an array of data pointers to each of the SUNMatrix blocks otherwise NULL.

sunrealtype *SUNMatrix_OneMklDense_Block(SUNMatrix A, sunindextype k)
This function returns a pointer to the data array for block k in the SUNMatrix.

Arguments:

• A – a SUNMatrix object.

• k – the block index.

Return value:
If successful, a pointer to the data array for the SUNMatrix block otherwise NULL.

Note: No bounds-checking is performed by this function, j should be strictly less than nblocks.

sunrealtype *SUNMatrix_OneMklDense_BlockColumn(SUNMatrix A, sunindextype k, sunindextype j)
This function returns a pointer to the data array for column j of block k in the SUNMatrix.

Arguments:

• A – a SUNMatrix object.

• k – the block index.

• j – the column index.

Return value:
If successful, a pointer to the data array for the SUNMatrix column otherwise NULL.

Note: No bounds-checking is performed by this function, k should be strictly less than nblocks and j should be
strictly less than Nblock.

178 Chapter 7. Matrix Data Structures

User Documentation for KINSOL, v7.1.0

7.5.1.6 Copy Data

SUNErrCode SUNMatrix_OneMklDense_CopyToDevice(SUNMatrix A, sunrealtype *h_data)
This function copies the matrix data to the GPU device from the provided host array.

Arguments:

• A – a SUNMatrix object

• h_data – a host array pointer to copy data from.

Return value:

• SUN_SUCCESS – if the copy is successful.

• SUN_ERR_ARG_INCOMPATIBLE – if the SUNMatrix is not a SUNMATRIX_ONEMKLDENSE matrix.

• SUN_ERR_MEM_FAIL – if the copy fails.

SUNErrCode SUNMatrix_OneMklDense_CopyFromDevice(SUNMatrix A, sunrealtype *h_data)
This function copies the matrix data from the GPU device to the provided host array.

Arguments:

• A – a SUNMatrix object

• h_data – a host array pointer to copy data to.

Return value:

• SUN_SUCCESS – if the copy is successful.

• SUN_ERR_ARG_INCOMPATIBLE – if the SUNMatrix is not a SUNMATRIX_ONEMKLDENSE matrix.

• SUN_ERR_MEM_FAIL – if the copy fails.

7.5.2 SUNMATRIX_ONEMKLDENSE Usage Notes

Warning: The SUNMATRIX_ONEMKLDENSE class only supports 64-bit indexing, thus SUNDIALS must be
built for 64-bit indexing to use this class.

When using the SUNMATRIX_ONEMKLDENSE class with a SUNDIALS package (e.g. CVODE), the queue
given to matrix should be the same stream used for the NVECTOR object that is provided to the package, and
the NVECTOR object given to the SUNMatMatvec() operation. If different streams are utilized, synchronization
issues may occur.

7.6 The SUNMATRIX_BAND Module

The banded implementation of the SUNMatrixmodule, SUNMATRIX_BAND, defines the content field of SUNMatrix
to be the following structure:

struct _SUNMatrixContent_Band {
sunindextype M;
sunindextype N;
sunindextype mu;
sunindextype ml;
sunindextype smu;

(continues on next page)

7.6. The SUNMATRIX_BAND Module 179

User Documentation for KINSOL, v7.1.0

(continued from previous page)

sunindextype ldim;
sunrealtype *data;
sunindextype ldata;
sunrealtype **cols;

};

A diagram of the underlying data representation in a banded matrix is shown in Fig. 7.1. A more complete description
of the parts of this content field is given below:

• M - number of rows

• N - number of columns (N = M)

• mu - upper half-bandwidth, 0 ≤ mu < N

• ml - lower half-bandwidth, 0 ≤ ml < N

• smu - storage upper bandwidth, mu ≤ smu < N . The LU decomposition routines in the associated SUN-
LINSOL_BAND and SUNLINSOL_LAPACKBAND modules write the LU factors into the existing storage for the
band matrix. The upper triangular factorU , however, may have an upper bandwidth as big as min(N-1, mu+ml)
because of partial pivoting. The smu field holds the upper half-bandwidth allocated for the band matrix.

• ldim - leading dimension (ldim ≥ smu+ml + 1)

• data - pointer to a contiguous block of sunrealtype variables. The elements of the banded matrix are stored
columnwise (i.e. columns are stored one on top of the other in memory). Only elements within the specified
half-bandwidths are stored. data is a pointer to ldata contiguous locations which hold the elements within the
banded matrix.

• ldata - length of the data array (= ldimN)

• cols - array of pointers. cols[j] is a pointer to the uppermost element within the band in the j-th column.
This pointer may be treated as an array indexed from smu-mu (to access the uppermost element within the
band in the j-th column) to smu+ml (to access the lowest element within the band in the j-th column). Indices
from 0 to smu-mu-1 give access to extra storage elements required by the LU decomposition function. Finally,
cols[j][i-j+smu] is the (i, j)-th element with j −mu ≤ i ≤ j + ml.

The header file to be included when using this module is sunmatrix/sunmatrix_band.h.

The following macros are provided to access the content of a SUNMATRIX_BAND matrix. The prefix SM_ in the
names denotes that these macros are for SUNMatrix implementations, and the suffix _B denotes that these are specific
to the banded version.

SM_CONTENT_B(A)
This macro gives access to the contents of the banded SUNMatrix A.

The assignment A_cont = SM_CONTENT_B(A) sets A_cont to be a pointer to the banded SUNMatrix content
structure.

Implementation:

#define SM_CONTENT_B(A) ((SUNMatrixContent_Band)(A->content))

SM_ROWS_B(A)
Access the number of rows in the banded SUNMatrix A.

This may be used either to retrieve or to set the value. For example, the assignment A_rows = SM_ROWS_B(A)
sets A_rows to be the number of rows in the matrix A. Similarly, the assignment SM_ROWS_B(A) = A_rows sets
the number of columns in A to equal A_rows.

Implementation:

180 Chapter 7. Matrix Data Structures

User Documentation for KINSOL, v7.1.0

Fig. 7.1: Diagram of the storage for the SUNMATRIX_BAND module. Here A is an N ×N band matrix with upper
and lower half-bandwidths mu and ml, respectively. The rows and columns of A are numbered from 0 to N-1 and the
(i, j)-th element of A is denoted A(i,j). The greyed out areas of the underlying component storage are used by the
associated SUNLINSOL_BAND or SUNLINSOL_LAPACKBAND linear solver.

7.6. The SUNMATRIX_BAND Module 181

User Documentation for KINSOL, v7.1.0

#define SM_ROWS_B(A) (SM_CONTENT_B(A)->M)

SM_COLUMNS_B(A)
Access the number of columns in the banded SUNMatrix A. As with SM_ROWS_B, this may be used either to
retrieve or to set the value.

Implementation:

#define SM_COLUMNS_B(A) (SM_CONTENT_B(A)->N)

SM_UBAND_B(A)
Access the mu parameter in the banded SUNMatrix A. As with SM_ROWS_B, this may be used either to retrieve
or to set the value.

Implementation:

#define SM_UBAND_B(A) (SM_CONTENT_B(A)->mu)

SM_LBAND_B(A)
Access the ml parameter in the banded SUNMatrix A. As with SM_ROWS_B, this may be used either to retrieve
or to set the value.

Implementation:

#define SM_LBAND_B(A) (SM_CONTENT_B(A)->ml)

SM_SUBAND_B(A)
Access the smu parameter in the banded SUNMatrix A. As with SM_ROWS_B, this may be used either to retrieve
or to set the value.

Implementation:

#define SM_SUBAND_B(A) (SM_CONTENT_B(A)->smu)

SM_LDIM_B(A)
Access the ldim parameter in the banded SUNMatrix A. As with SM_ROWS_B, this may be used either to retrieve
or to set the value.

Implementation:

#define SM_LDIM_B(A) (SM_CONTENT_B(A)->ldim)

SM_LDATA_B(A)
Access the ldata parameter in the banded SUNMatrix A. As with SM_ROWS_B, this may be used either to retrieve
or to set the value.

Implementation:

#define SM_LDATA_B(A) (SM_CONTENT_B(A)->ldata)

SM_DATA_B(A)
This macro gives access to the data pointer for the matrix entries.

The assignment A_data = SM_DATA_B(A) sets A_data to be a pointer to the first component of the data array
for the banded SUNMatrix A. The assignment SM_DATA_B(A) = A_data sets the data array of A to be A_data
by storing the pointer A_data.

Implementation:

182 Chapter 7. Matrix Data Structures

User Documentation for KINSOL, v7.1.0

#define SM_DATA_B(A) (SM_CONTENT_B(A)->data)

SM_COLS_B(A)
This macro gives access to the cols pointer for the matrix entries.

The assignment A_cols = SM_COLS_B(A) sets A_cols to be a pointer to the array of column pointers for the
banded SUNMatrix A. The assignment SM_COLS_B(A) = A_cols sets the column pointer array of A to be
A_cols by storing the pointer A_cols.

Implementation:

#define SM_COLS_B(A) (SM_CONTENT_B(A)->cols)

SM_COLUMN_B(A)
This macros gives access to the individual columns of the data array of a banded SUNMatrix.

The assignment col_j = SM_COLUMN_B(A,j) sets col_j to be a pointer to the diagonal element of the j-th
column of the N × N band matrix A, 0 ≤ j ≤ N − 1. The type of the expression SM_COLUMN_B(A,j) is
sunrealtype *. The pointer returned by the call SM_COLUMN_B(A,j) can be treated as an array which is
indexed from -mu to ml.

Implementation:

#define SM_COLUMN_B(A,j) (((SM_CONTENT_B(A)->cols)[j])+SM_SUBAND_B(A))

SM_ELEMENT_B(A)
This macro gives access to the individual entries of the data array of a banded SUNMatrix.

The assignments SM_ELEMENT_B(A,i,j) = a_ij and a_ij = SM_ELEMENT_B(A,i,j) reference the (i, j)-
th element of the N × N band matrix A, where 0 ≤ i, j ≤ N − 1. The location (i, j) should further satisfy
j −mu ≤ i ≤ j + ml.

Implementation:

#define SM_ELEMENT_B(A,i,j) ((SM_CONTENT_B(A)->cols)[j][(i)-(j)+SM_SUBAND_B(A)])

SM_COLUMN_ELEMENT_B(A)
This macro gives access to the individual entries of the data array of a banded SUNMatrix.

The assignments SM_COLUMN_ELEMENT_B(col_j,i,j) = a_ij and a_ij = SM_COLUMN_ELEMENT_-
B(col_j,i,j) reference the (i, j)-th entry of the band matrix A when used in conjunction with SM_COLUMN_B
to reference the j-th column through col_j. The index (i, j) should satisfy j −mu ≤ i ≤ j + ml.

Implementation:

#define SM_COLUMN_ELEMENT_B(col_j,i,j) (col_j[(i)-(j)])

The SUNMATRIX_BAND module defines banded implementations of all matrix operations listed in §7.2. Their
names are obtained from those in that section by appending the suffix _Band (e.g. SUNMatCopy_Band). The module
SUNMATRIX_BAND provides the following additional user-callable routines:

SUNMatrix SUNBandMatrix(sunindextype N, sunindextype mu, sunindextype ml, SUNContext sunctx)
This constructor function creates and allocates memory for a banded SUNMatrix. Its arguments are the matrix
size, N, and the upper and lower half-bandwidths of the matrix, mu and ml. The stored upper bandwidth is set
to mu+ml to accommodate subsequent factorization in the SUNLINSOL_BAND and SUNLINSOL_LAPACK-
BAND modules.

7.6. The SUNMATRIX_BAND Module 183

User Documentation for KINSOL, v7.1.0

SUNMatrix SUNBandMatrixStorage(sunindextype N, sunindextype mu, sunindextype ml, sunindextype smu,
SUNContext sunctx)

This constructor function creates and allocates memory for a banded SUNMatrix. Its arguments are the matrix
size, N, the upper and lower half-bandwidths of the matrix, mu and ml, and the stored upper bandwidth, smu.
When creating a band SUNMatrix, this value should be

• at least min(N-1,mu+ml) if the matrix will be used by the SUNLinSol_Band module;

• exactly equal to mu+ml if the matrix will be used by the SUNLinSol_LapackBand module;

• at least mu if used in some other manner.

Note: It is strongly recommended that users call the default constructor, SUNBandMatrix(), in all standard
use cases. This advanced constructor is used internally within SUNDIALS solvers, and is provided to users who
require banded matrices for non-default purposes.

void SUNBandMatrix_Print(SUNMatrix A, FILE *outfile)
This function prints the content of a banded SUNMatrix to the output stream specified by outfile. Note:
stdout or stderr may be used as arguments for outfile to print directly to standard output or standard error,
respectively.

sunindextype SUNBandMatrix_Rows(SUNMatrix A)
This function returns the number of rows in the banded SUNMatrix.

sunindextype SUNBandMatrix_Columns(SUNMatrix A)
This function returns the number of columns in the banded SUNMatrix.

sunindextype SUNBandMatrix_LowerBandwidth(SUNMatrix A)
This function returns the lower half-bandwidth for the banded SUNMatrix.

sunindextype SUNBandMatrix_UpperBandwidth(SUNMatrix A)
This function returns the upper half-bandwidth of the banded SUNMatrix.

sunindextype SUNBandMatrix_StoredUpperBandwidth(SUNMatrix A)
This function returns the stored upper half-bandwidth of the banded SUNMatrix.

sunindextype SUNBandMatrix_LDim(SUNMatrix A)
This function returns the length of the leading dimension of the banded SUNMatrix.

sunindextype SUNBandMatrix_LData(SUNMatrix A)
This function returns the length of the data array for the banded SUNMatrix.

sunrealtype *SUNBandMatrix_Data(SUNMatrix A)
This function returns a pointer to the data array for the banded SUNMatrix.

sunrealtype **SUNBandMatrix_Cols(SUNMatrix A)
This function returns a pointer to the cols array for the band SUNMatrix.

sunrealtype *SUNBandMatrix_Column(SUNMatrix A, sunindextype j)
This function returns a pointer to the diagonal entry of the j-th column of the banded SUNMatrix. The resulting
pointer should be indexed over the range -mu to ml.

Warning: When calling this function from the Fortran interfaces the shape of the array that is returned is
[1], and the only element you can (legally) access is the diagonal element. Fortran users should instead work
with the data array returned by SUNBandMatrix_Data() directly.

184 Chapter 7. Matrix Data Structures

User Documentation for KINSOL, v7.1.0

Notes

• When looping over the components of a banded SUNMatrix A, the most efficient approaches are to:

– First obtain the component array via A_data = SUNBandMatrix_Data(A), or equivalently A_data =
SM_DATA_B(A), and then access A_data[i] within the loop.

– First obtain the array of column pointers via A_cols = SUNBandMatrix_Cols(A), or equivalently A_-
cols = SM_COLS_B(A), and then access A_cols[j][i] within the loop.

– Within a loop over the columns, access the column pointer via A_colj = SUNBandMatrix_Column(A,j)
and then to access the entries within that column using SM_COLUMN_ELEMENT_B(A_colj,i,j).

All three of these are more efficient than using SM_ELEMENT_B(A,i,j) within a double loop.

• Within the SUNMatMatvec_Band routine, internal consistency checks are performed to ensure that the matrix
is called with consistent N_Vector implementations. These are currently limited to: NVECTOR_SERIAL,
NVECTOR_OPENMP, and NVECTOR_PTHREADS. As additional compatible vector implementations are
added to SUNDIALS, these will be included within this compatibility check.

7.7 The SUNMATRIX_CUSPARSE Module

The SUNMATRIX_CUSPARSE module is an interface to the NVIDIA cuSPARSE matrix for use on NVIDIA GPUs
[7]. All data stored by this matrix implementation resides on the GPU at all times.

The header file to be included when using this module is sunmatrix/sunmatrix_cusparse.h. The installed library
to link to is libsundials_sunmatrixcusparse.lib where .lib is typically .so for shared libraries and .a for
static libraries.

7.7.1 SUNMATRIX_CUSPARSE Description

The implementation currently supports the cuSPARSE CSR matrix format described in the cuSPARSE documentation,
as well as a unique low-storage format for block-diagonal matrices of the form

A =


A0 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · An−1

 ,
where all the block matrices Aj share the same sparsity pattern. We will refer to this format as BCSR (not to be
confused with the canonical BSR format where each block is stored as dense). In this format, the CSR column indices
and row pointers are only stored for the first block and are computed only as necessary for other blocks. This can
drastically reduce the amount of storage required compared to the regular CSR format when the number of blocks is
large. This format is well-suited for, and intended to be used with, the SUNLinearSolver_cuSolverSp_batchQR
linear solver (see §8.17).

The SUNMATRIX_CUSPARSE module is experimental and subject to change.

7.7. The SUNMATRIX_CUSPARSE Module 185

User Documentation for KINSOL, v7.1.0

7.7.2 SUNMATRIX_CUSPARSE Functions

The SUNMATRIX_CUSPARSE module defines GPU-enabled sparse implementations of all matrix operations listed
in §7.2 except for the SUNMatSpace() and SUNMatMatvecSetup() operations:

• SUNMatGetID_cuSparse – returns SUNMATRIX_CUSPARSE

• SUNMatClone_cuSparse

• SUNMatDestroy_cuSparse

• SUNMatZero_cuSparse

• SUNMatCopy_cuSparse

• SUNMatScaleAdd_cuSparse – performs A = cA+B, where A and B must have the same sparsity pattern

• SUNMatScaleAddI_cuSparse – performs A = cA+ I , where the diagonal of A must be present

• SUNMatMatvec_cuSparse

In addition, the SUNMATRIX_CUSPARSE module defines the following implementation specific functions:

SUNMatrix SUNMatrix_cuSparse_NewCSR(int M, int N, int NNZ, cusparseHandle_t cusp, SUNContext sunctx)
This constructor function creates and allocates memory for a SUNMATRIX_CUSPARSE SUNMatrix that uses
the CSR storage format. Its arguments are the number of rows and columns of the matrix, M and N, the number
of nonzeros to be stored in the matrix, NNZ, and a valid cusparseHandle_t.

SUNMatrix SUNMatrix_cuSparse_NewBlockCSR(int nblocks, int blockrows, int blockcols, int blocknnz,
cusparseHandle_t cusp, SUNContext sunctx)

This constructor function creates and allocates memory for a SUNMATRIX_CUSPARSE SUNMatrix object
that leverages the SUNMAT_CUSPARSE_BCSR storage format to store a block diagonal matrix where each block
shares the same sparsity pattern. The blocks must be square. The function arguments are the number of blocks,
nblocks, the number of rows, blockrows, the number of columns, blockcols, the number of nonzeros in each
each block, blocknnz, and a valid cusparseHandle_t.

Warning: The SUNMAT_CUSPARSE_BCSR format currently only supports square matrices, i.e., blockrows
== blockcols.

SUNMatrix SUNMatrix_cuSparse_MakeCSR(cusparseMatDescr_t mat_descr, int M, int N, int NNZ, int *rowptrs,
int *colind, sunrealtype *data, cusparseHandle_t cusp, SUNContext
sunctx)

This constructor function creates a SUNMATRIX_CUSPARSE SUNMatrix object from user provided pointers.
Its arguments are a cusparseMatDescr_t that must have index base CUSPARSE_INDEX_BASE_ZERO, the num-
ber of rows and columns of the matrix, M and N, the number of nonzeros to be stored in the matrix, NNZ, and a
valid cusparseHandle_t.

int SUNMatrix_cuSparse_Rows(SUNMatrix A)
This function returns the number of rows in the sparse SUNMatrix.

int SUNMatrix_cuSparse_Columns(SUNMatrix A)
This function returns the number of columns in the sparse SUNMatrix.

int SUNMatrix_cuSparse_NNZ(SUNMatrix A)
This function returns the number of entries allocated for nonzero storage for the sparse SUNMatrix.

186 Chapter 7. Matrix Data Structures

User Documentation for KINSOL, v7.1.0

int SUNMatrix_cuSparse_SparseType(SUNMatrix A)
This function returns the storage type (SUNMAT_CUSPARSE_CSR or SUNMAT_CUSPARSE_BCSR) for the sparse
SUNMatrix.

sunrealtype *SUNMatrix_cuSparse_Data(SUNMatrix A)
This function returns a pointer to the data array for the sparse SUNMatrix.

int *SUNMatrix_cuSparse_IndexValues(SUNMatrix A)
This function returns a pointer to the index value array for the sparse SUNMatrix – for the CSR format this is an
array of column indices for each nonzero entry. For the BCSR format this is an array of the column indices for
each nonzero entry in the first block only.

int *SUNMatrix_cuSparse_IndexPointers(SUNMatrix A)
This function returns a pointer to the index pointer array for the sparse SUNMatrix – for the CSR format this is
an array of the locations of the first entry of each row in the data and indexvalues arrays, for the BCSR format
this is an array of the locations of each row in the data and indexvalues arrays in the first block only.

int SUNMatrix_cuSparse_NumBlocks(SUNMatrix A)
This function returns the number of matrix blocks.

int SUNMatrix_cuSparse_BlockRows(SUNMatrix A)
This function returns the number of rows in a matrix block.

int SUNMatrix_cuSparse_BlockColumns(SUNMatrix A)
This function returns the number of columns in a matrix block.

int SUNMatrix_cuSparse_BlockNNZ(SUNMatrix A)
This function returns the number of nonzeros in each matrix block.

sunrealtype *SUNMatrix_cuSparse_BlockData(SUNMatrix A, int blockidx)
This function returns a pointer to the location in the data array where the data for the block, blockidx, begins.
Thus, blockidx must be less than SUNMatrix_cuSparse_NumBlocks(A). The first block in the SUNMatrix
is index 0, the second block is index 1, and so on.

cusparseMatDescr_t SUNMatrix_cuSparse_MatDescr(SUNMatrix A)
This function returns the cusparseMatDescr_t object associated with the matrix.

SUNErrCode SUNMatrix_cuSparse_CopyToDevice(SUNMatrix A, sunrealtype *h_data, int *h_idxptrs, int
*h_idxvals)

This functions copies the matrix information to the GPU device from the provided host arrays. A user may
provide NULL for any of h_data, h_idxptrs, or h_idxvals to avoid copying that information.

The function returns SUN_SUCCESS if the copy operation(s) were successful, or a nonzero error code otherwise.

SUNErrCode SUNMatrix_cuSparse_CopyFromDevice(SUNMatrix A, sunrealtype *h_data, int *h_idxptrs, int
*h_idxvals)

This functions copies the matrix information from the GPU device to the provided host arrays. A user may
provide NULL for any of h_data, h_idxptrs, or h_idxvals to avoid copying that information. Otherwise:

• The h_data array must be at least SUNMatrix_cuSparse_NNZ(A)*sizeof(sunrealtype) bytes.

• The h_idxptrs array must be at least (SUNMatrix_cuSparse_BlockDim(A)+1)*sizeof(int) bytes.

• The h_idxvals array must be at least (SUNMatrix_cuSparse_BlockNNZ(A))*sizeof(int) bytes.

The function returns SUN_SUCCESS if the copy operation(s) were successful, or a nonzero error code otherwise.

7.7. The SUNMATRIX_CUSPARSE Module 187

User Documentation for KINSOL, v7.1.0

SUNErrCode SUNMatrix_cuSparse_SetFixedPattern(SUNMatrix A, sunbooleantype yesno)
This function changes the behavior of the the SUNMatZero operation on the object A. By default the matrix
sparsity pattern is not considered to be fixed, thus, the SUNMatZero operation zeros out all data array as well
as the indexvalues and indexpointers arrays. Providing a value of 1 or SUNTRUE for the yesno argument
changes the behavior of SUNMatZero on A so that only the data is zeroed out, but not the indexvalues or
indexpointers arrays. Providing a value of 0 or SUNFALSE for the yesno argument is equivalent to the default
behavior.

SUNErrCode SUNMatrix_cuSparse_SetKernelExecPolicy(SUNMatrix A, SUNCudaExecPolicy *exec_policy)
This function sets the execution policies which control the kernel parameters utilized when launching the CUDA
kernels. By default the matrix is setup to use a policy which tries to leverage the structure of the matrix. See
§6.10.2 for more information about the SUNCudaExecPolicy class.

7.7.3 SUNMATRIX_CUSPARSE Usage Notes

The SUNMATRIX_CUSPARSE module only supports 32-bit indexing, thus SUNDIALS must be built for 32-bit in-
dexing to use this module.

The SUNMATRIX_CUSPARSE module can be used with CUDA streams by calling the cuSPARSE function cus-
parseSetStream on the cusparseHandle_t that is provided to the SUNMATRIX_CUSPARSE constructor.

Warning: When using the SUNMATRIX_CUSPARSE module with a SUNDIALS package (e.g. ARKODE), the
stream given to cuSPARSE should be the same stream used for the NVECTOR object that is provided to the package,
and the NVECTOR object given to the SUNMatvec operation. If different streams are utilized, synchronization
issues may occur.

7.8 The SUNMATRIX_SPARSE Module

The sparse implementation of the SUNMatrix module, SUNMATRIX_SPARSE, is designed to work with either
compressed-sparse-column (CSC) or compressed-sparse-row (CSR) sparse matrix formats. To this end, it defines
the content field of SUNMatrix to be the following structure:

struct _SUNMatrixContent_Sparse {
sunindextype M;
sunindextype N;
sunindextype NNZ;
sunindextype NP;
sunrealtype *data;
int sparsetype;
sunindextype *indexvals;
sunindextype *indexptrs;
/* CSC indices */
sunindextype **rowvals;
sunindextype **colptrs;
/* CSR indices */
sunindextype **colvals;
sunindextype **rowptrs;

};

A diagram of the underlying data representation in a sparse matrix is shown in Fig. 7.2. A more complete description
of the parts of this content field is given below:

188 Chapter 7. Matrix Data Structures

User Documentation for KINSOL, v7.1.0

• M - number of rows

• N - number of columns

• NNZ - maximum number of nonzero entries in the matrix (allocated length of data and indexvals arrays)

• NP - number of index pointers (e.g. number of column pointers for CSC matrix). For CSC matrices NP=N, and
for CSR matrices NP=M. This value is set automatically at construction based the input choice for sparsetype.

• data - pointer to a contiguous block of sunrealtype variables (of length NNZ), containing the values of the
nonzero entries in the matrix

• sparsetype - type of the sparse matrix (CSC_MAT or CSR_MAT)

• indexvals - pointer to a contiguous block of int variables (of length NNZ), containing the row indices (if CSC)
or column indices (if CSR) of each nonzero matrix entry held in data

• indexptrs - pointer to a contiguous block of int variables (of length NP+1). For CSC matrices each entry
provides the index of the first column entry into the data and indexvals arrays, e.g. if indexptr[3]=7,
then the first nonzero entry in the fourth column of the matrix is located in data[7], and is located in row
indexvals[7] of the matrix. The last entry contains the total number of nonzero values in the matrix and
hence points one past the end of the active data in the data and indexvals arrays. For CSR matrices, each
entry provides the index of the first row entry into the data and indexvals arrays.

The following pointers are added to the SUNMATRIX_SPARSE content structure for user convenience, to provide a
more intuitive interface to the CSC and CSR sparse matrix data structures. They are set automatically when creating a
sparse SUNMatrix, based on the sparse matrix storage type.

• rowvals - pointer to indexvals when sparsetype is CSC_MAT, otherwise set to NULL.

• colptrs - pointer to indexptrs when sparsetype is CSC_MAT, otherwise set to NULL.

• colvals - pointer to indexvals when sparsetype is CSR_MAT, otherwise set to NULL.

• rowptrs - pointer to indexptrs when sparsetype is CSR_MAT, otherwise set to NULL.

For example, the 5× 4 matrix 
0 3 1 0
3 0 0 2
0 7 0 0
1 0 0 9
0 0 0 5


could be stored as a CSC matrix in this structure as either

M = 5;
N = 4;
NNZ = 8;
NP = N;
data = {3.0, 1.0, 3.0, 7.0, 1.0, 2.0, 9.0, 5.0};
sparsetype = CSC_MAT;
indexvals = {1, 3, 0, 2, 0, 1, 3, 4};
indexptrs = {0, 2, 4, 5, 8};

or

M = 5;
N = 4;
NNZ = 10;
NP = N;

(continues on next page)

7.8. The SUNMATRIX_SPARSE Module 189

User Documentation for KINSOL, v7.1.0

(continued from previous page)

data = {3.0, 1.0, 3.0, 7.0, 1.0, 2.0, 9.0, 5.0, *, *};
sparsetype = CSC_MAT;
indexvals = {1, 3, 0, 2, 0, 1, 3, 4, *, *};
indexptrs = {0, 2, 4, 5, 8};

where the first has no unused space, and the second has additional storage (the entries marked with * may contain any
values). Note in both cases that the final value in indexptrs is 8, indicating the total number of nonzero entries in the
matrix.

Similarly, in CSR format, the same matrix could be stored as

M = 5;
N = 4;
NNZ = 8;
NP = M;
data = {3.0, 1.0, 3.0, 2.0, 7.0, 1.0, 9.0, 5.0};
sparsetype = CSR_MAT;
indexvals = {1, 2, 0, 3, 1, 0, 3, 3};
indexptrs = {0, 2, 4, 5, 7, 8};

The header file to be included when using this module is sunmatrix/sunmatrix_sparse.h.

The following macros are provided to access the content of a SUNMATRIX_SPARSE matrix. The prefix SM_ in the
names denotes that these macros are for SUNMatrix implementations, and the suffix _S denotes that these are specific
to the sparse version.

SM_CONTENT_S(A)
This macro gives access to the contents of the sparse SUNMatrix A.

The assignment A_cont = SM_CONTENT_S(A) sets A_cont to be a pointer to the sparse SUNMatrix content
structure.

Implementation:

#define SM_CONTENT_S(A) ((SUNMatrixContent_Sparse)(A->content))

SM_ROWS_S(A)
Access the number of rows in the sparse SUNMatrix A.

This may be used either to retrieve or to set the value. For example, the assignment A_rows = SM_ROWS_S(A)
sets A_rows to be the number of rows in the matrix A. Similarly, the assignment SM_ROWS_S(A) = A_rows sets
the number of columns in A to equal A_rows.

Implementation:

#define SM_ROWS_S(A) (SM_CONTENT_S(A)->M)

SM_COLUMNS_S(A)
Access the number of columns in the sparse SUNMatrix A. As with SM_ROWS_S, this may be used either to
retrieve or to set the value.

Implementation:

#define SM_COLUMNS_S(A) (SM_CONTENT_S(A)->N)

190 Chapter 7. Matrix Data Structures

User Documentation for KINSOL, v7.1.0

Fig. 7.2: Diagram of the storage for a compressed-sparse-column matrix of type SUNMATRIX_SPARSE: Here A
is an M × N sparse CSC matrix with storage for up to NNZ nonzero entries (the allocated length of both data and
indexvals). The entries in indexvals may assume values from 0 to M-1, corresponding to the row index (zero-
based) of each nonzero value. The entries in data contain the values of the nonzero entries, with the row i, column
j entry of A (again, zero-based) denoted as A(i,j). The indexptrs array contains N+1 entries; the first N denote the
starting index of each column within the indexvals and data arrays, while the final entry points one past the final
nonzero entry. Here, although NNZ values are allocated, only nz are actually filled in; the greyed-out portions of data
and indexvals indicate extra allocated space.

7.8. The SUNMATRIX_SPARSE Module 191

User Documentation for KINSOL, v7.1.0

SM_NNZ_S(A)
Access the allocated number of nonzeros in the sparse SUNMatrix A. As with SM_ROWS_S, this may be used
either to retrieve or to set the value.

Implementation:

#define SM_NNZ_S(A) (SM_CONTENT_S(A)->NNZ)

SM_NP_S(A)
Access the number of index pointers NP in the sparse SUNMatrix A. As with SM_ROWS_S, this may be used either
to retrieve or to set the value.

Implementation:

#define SM_NP_S(A) (SM_CONTENT_S(A)->NP)

SM_SPARSETYPE_S(A)
Access the sparsity type parameter in the sparse SUNMatrix A. As with SM_ROWS_S, this may be used either to
retrieve or to set the value.

Implementation:

#define SM_SPARSETYPE_S(A) (SM_CONTENT_S(A)->sparsetype)

SM_DATA_S(A)
This macro gives access to the data pointer for the matrix entries.

The assignment A_data = SM_DATA_S(A) sets A_data to be a pointer to the first component of the data array
for the sparse SUNMatrix A. The assignment SM_DATA_S(A) = A_data sets the data array of A to be A_data
by storing the pointer A_data.

Implementation:

#define SM_DATA_S(A) (SM_CONTENT_S(A)->data)

SM_INDEXVALS_S(A)
This macro gives access to the indexvals pointer for the matrix entries.

The assignment A_indexvals = SM_INDEXVALS_S(A) sets A_indexvals to be a pointer to the array of index
values (i.e. row indices for a CSC matrix, or column indices for a CSR matrix) for the sparse SUNMatrix A.

Implementation:

#define SM_INDEXVALS_S(A) (SM_CONTENT_S(A)->indexvals)

SM_INDEXPTRS_S(A)
This macro gives access to the indexptrs pointer for the matrix entries.

The assignment A_indexptrs = SM_INDEXPTRS_S(A) sets A_indexptrs to be a pointer to the array of index
pointers (i.e. the starting indices in the data/indexvals arrays for each row or column in CSR or CSC formats,
respectively).

Implementation:

#define SM_INDEXPTRS_S(A) (SM_CONTENT_S(A)->indexptrs)

The SUNMATRIX_SPARSE module defines sparse implementations of all matrix operations listed in §7.2. Their
names are obtained from those in that section by appending the suffix _Sparse (e.g. SUNMatCopy_Sparse). The
module SUNMATRIX_SPARSE provides the following additional user-callable routines:

192 Chapter 7. Matrix Data Structures

User Documentation for KINSOL, v7.1.0

SUNMatrix SUNSparseMatrix(sunindextype M, sunindextype N, sunindextype NNZ, int sparsetype, SUNContext
sunctx)

This constructor function creates and allocates memory for a sparse SUNMatrix. Its arguments are the number
of rows and columns of the matrix, M and N, the maximum number of nonzeros to be stored in the matrix, NNZ,
and a flag sparsetype indicating whether to use CSR or CSC format (valid choices are CSR_MAT or CSC_MAT).

SUNMatrix SUNSparseFromDenseMatrix(SUNMatrix A, sunrealtype droptol, int sparsetype)
This constructor function creates a new sparse matrix from an existing SUNMATRIX_DENSE object by copying
all values with magnitude larger than droptol into the sparse matrix structure.

Requirements:

• A must have type SUNMATRIX_DENSE

• droptol must be non-negative

• sparsetype must be either CSC_MAT or CSR_MAT

The function returns NULL if any requirements are violated, or if the matrix storage request cannot be satisfied.

SUNMatrix SUNSparseFromBandMatrix(SUNMatrix A, sunrealtype droptol, int sparsetype)
This constructor function creates a new sparse matrix from an existing SUNMATRIX_BAND object by copying
all values with magnitude larger than droptol into the sparse matrix structure.

Requirements:

• A must have type SUNMATRIX_BAND

• droptol must be non-negative

• sparsetype must be either CSC_MAT or CSR_MAT.

The function returns NULL if any requirements are violated, or if the matrix storage request cannot be satisfied.

SUNErrCode SUNSparseMatrix_Realloc(SUNMatrix A)
This function reallocates internal storage arrays in a sparse matrix so that the resulting sparse matrix has no wasted
space (i.e. the space allocated for nonzero entries equals the actual number of nonzeros, indexptrs[NP]).
Returns a SUNErrCode.

SUNErrCode SUNSparseMatrix_Reallocate(SUNMatrix A, sunindextype NNZ)
Function to reallocate internal sparse matrix storage arrays so that the resulting sparse matrix has storage for a
specified number of nonzeros. Returns a SUNErrCode.

void SUNSparseMatrix_Print(SUNMatrix A, FILE *outfile)
This function prints the content of a sparse SUNMatrix to the output stream specified by outfile. Note: std-
out or stderr may be used as arguments for outfile to print directly to standard output or standard error,
respectively.

sunindextype SUNSparseMatrix_Rows(SUNMatrix A)
This function returns the number of rows in the sparse SUNMatrix.

sunindextype SUNSparseMatrix_Columns(SUNMatrix A)
This function returns the number of columns in the sparse SUNMatrix.

sunindextype SUNSparseMatrix_NNZ(SUNMatrix A)
This function returns the number of entries allocated for nonzero storage for the sparse SUNMatrix.

sunindextype SUNSparseMatrix_NP(SUNMatrix A)
This function returns the number of index pointers for the sparse SUNMatrix (the indexptrs array has NP+1
entries).

7.8. The SUNMATRIX_SPARSE Module 193

User Documentation for KINSOL, v7.1.0

int SUNSparseMatrix_SparseType(SUNMatrix A)
This function returns the storage type (CSR_MAT or CSC_MAT) for the sparse SUNMatrix.

sunrealtype *SUNSparseMatrix_Data(SUNMatrix A)
This function returns a pointer to the data array for the sparse SUNMatrix.

sunindextype *SUNSparseMatrix_IndexValues(SUNMatrix A)
This function returns a pointer to index value array for the sparse SUNMatrix – for CSR format this is the column
index for each nonzero entry, for CSC format this is the row index for each nonzero entry.

sunindextype *SUNSparseMatrix_IndexPointers(SUNMatrix A)
This function returns a pointer to the index pointer array for the sparse SUNMatrix – for CSR format this is the
location of the first entry of each row in the data and indexvalues arrays, for CSC format this is the location
of the first entry of each column.

Note: Within the SUNMatMatvec_Sparse routine, internal consistency checks are performed to ensure that the matrix
is called with consistent N_Vector implementations. These are currently limited to: NVECTOR_SERIAL, NVEC-
TOR_OPENMP, NVECTOR_PTHREADS, and NVECTOR_CUDA when using managed memory. As additional
compatible vector implementations are added to SUNDIALS, these will be included within this compatibility check.

7.9 The SUNMATRIX_SLUNRLOC Module

The SUNMATRIX_SLUNRLOC module is an interface to the SuperMatrix structure provided by the SuperLU_-
DIST sparse matrix factorization and solver library written by X. Sherry Li and collaborators [8, 30, 41, 42]. It is
designed to be used with the SuperLU_DIST SUNLinearSolver module discussed in §8.15. To this end, it defines
the content field of SUNMatrix to be the following structure:

struct _SUNMatrixContent_SLUNRloc {
sunbooleantype own_data;
gridinfo_t *grid;
sunindextype *row_to_proc;
pdgsmv_comm_t *gsmv_comm;
SuperMatrix *A_super;
SuperMatrix *ACS_super;

};

A more complete description of the this content field is given below:

• own_data – a flag which indicates if the SUNMatrix is responsible for freeing A_super

• grid – pointer to the SuperLU_DIST structure that stores the 2D process grid

• row_to_proc – a mapping between the rows in the matrix and the process it resides on; will be NULL until the
SUNMatMatvecSetup routine is called

• gsmv_comm – pointer to the SuperLU_DIST structure that stores the communication information needed for
matrix-vector multiplication; will be NULL until the SUNMatMatvecSetup routine is called

• A_super – pointer to the underlying SuperLU_DIST SuperMatrix with Stype = SLU_NR_loc, Dtype =
SLU_D, Mtype = SLU_GE; must have the full diagonal present to be used with SUNMatScaleAddI routine

• ACS_super – a column-sorted version of the matrix needed to perform matrix-vector multiplication; will be
NULL until the routine SUNMatMatvecSetup routine is called

194 Chapter 7. Matrix Data Structures

User Documentation for KINSOL, v7.1.0

The header file to include when using this module is sunmatrix/sunmatrix_slunrloc.h. The installed module
library to link to is libsundials_sunmatrixslunrloc .lib where .lib is typically .so for shared libraries and .a for
static libraries.

7.9.1 SUNMATRIX_SLUNRLOC Functions

The SUNMATRIX_SLUNRLOC module provides the following user-callable routines:

SUNMatrix SUNMatrix_SLUNRloc(SuperMatrix *Asuper, gridinfo_t *grid, SUNContext sunctx)
This constructor function creates and allocates memory for a SUNMATRIX_SLUNRLOC object. Its arguments
are a fully-allocated SuperLU_DIST SuperMatrixwith Stype = SLU_NR_loc, Dtype = SLU_D, Mtype =
SLU_GE and an initialized SuperLU_DIST 2D process grid structure. It returns a SUNMatrix object if Asuper
is compatible else it returns NULL.

void SUNMatrix_SLUNRloc_Print(SUNMatrix A, FILE *fp)
This function prints the underlying SuperMatrix content. It is useful for debugging. Its arguments are the
SUNMatrix object and a FILE pointer to print to. It returns void.

SuperMatrix *SUNMatrix_SLUNRloc_SuperMatrix(SUNMatrix A)
This function returns the underlying SuperMatrix of A. Its only argument is the SUNMatrix object to access.

gridinfo_t *SUNMatrix_SLUNRloc_ProcessGrid(SUNMatrix A)
This function returns the SuperLU_DIST 2D process grid associated with A. Its only argument is the SUNMatrix
object to access.

sunbooleantype SUNMatrix_SLUNRloc_OwnData(SUNMatrix A)
This function returns true if the SUNMatrix object is responsible for freeing the underlying SuperMatrix, oth-
erwise it returns false. Its only argument is the SUNMatrix object to access.

The SUNMATRIX_SLUNRLOC module also defines implementations of all generic SUNMatrix operations listed in
§7.2:

• SUNMatGetID_SLUNRloc – returns SUNMATRIX_SLUNRLOC

• SUNMatClone_SLUNRloc

• SUNMatDestroy_SLUNRloc

• SUNMatSpace_SLUNRloc – this only returns information for the storage within the matrix interface, i.e. storage
for row_to_proc

• SUNMatZero_SLUNRloc

• SUNMatCopy_SLUNRloc

• SUNMatScaleAdd_SLUNRloc – performs A = cA+B, where A and B must have the same sparsity pattern

• SUNMatScaleAddI_SLUNRloc – performs A = cA+ I , where the diagonal of A must be present

• SUNMatMatvecSetup_SLUNRloc – initializes the SuperLU_DIST parallel communication structures needed to
perform a matrix-vector product; only needs to be called before the first call to SUNMatMatvec() or if the matrix
changed since the last setup

• SUNMatMatvec_SLUNRloc

7.9. The SUNMATRIX_SLUNRLOC Module 195

User Documentation for KINSOL, v7.1.0

7.10 The SUNMATRIX_GINKGO Module

New in version 6.4.0.

The SUNMATRIX_GINKGO implementation of the SUNMatrixAPI provides an interface to the matrix data structure
for the Ginkgo linear algebra library [12]. Ginkgo provides several different matrix formats and linear solvers which
can run on a variety of hardware, such as NVIDIA, AMD, and Intel GPUs as well as multicore CPUs. Since Ginkgo is
a modern C++ library, SUNMATRIX_GINKGO is also written in modern C++ (it requires C++14). Unlike most other
SUNDIALS modules, it is a header only library. To use the SUNMATRIX_GINKGO SUNMatrix, users will need to
include sunmatrix/sunmatrix_ginkgo.hpp. More instructions on building SUNDIALS with Ginkgo enabled are
given in §11.4. For instructions on building and using Ginkgo itself, refer to the Ginkgo website and documentation.

Note: It is assumed that users of this module are aware of how to use Ginkgo. This module does not try to encapsulate
Ginkgo matrices, rather it provides a lightweight iteroperability layer between Ginkgo and SUNDIALS.

The SUNMATRIX_GINKGO module is defined by the sundials::ginkgo::Matrix templated class:

template<typename GkoMatType>
class Matrix : public sundials::impl::BaseMatrix, public sundials::ConvertibleTo<SUNMatrix>;

7.10.1 Compatible Vectors

The N_Vector to use with the SUNLINEARSOLVER_GINKGO module depends on the gko::Executor uti-
lized. That is, when using the gko::CudaExecutor you should use a CUDA capable N_Vector (e.g., §6.10),
gko::HipExecutor goes with a HIP capable N_Vector (e.g., §6.11), gko::DpcppExecutor goes with a
DPC++/SYCL capable N_Vector (e.g., §6.12), and gko::OmpExecutor goes with a CPU based N_Vector (e.g., §6.6).
Specifically, what makes a N_Vector compatible with different Ginkgo executors is where they store the data. The GPU
enabled Ginkgo executors need the data to reside on the GPU, so the N_Vectormust implement N_VGetDeviceArray-
Pointer() and keep the data in GPU memory. The CPU-only enabled Ginkgo executors (e.g, gko::OmpExecutor
and gko::ReferenceExecutor) need data to reside on the CPU and will use N_VGetArrayPointer() to access the
N_Vector data.

7.10.2 Using SUNMATRIX_GINKGO

To use the SUNMATRIX_GINKGO module, we begin by creating an instance of a Ginkgo matrix using Ginkgo’s API.
For example, below we create a Ginkgo sparse matrix that uses the CSR storage format and then fill the diagonal of the
matrix with ones to make an identity matrix:

auto gko_matrix{gko::matrix::Csr<sunrealtype, sunindextype>::create(gko_exec, matrix_dim)};
gko_matrix->read(gko::matrix_data<sunrealtype, sunindextype>::diag(matrix_dim, 1.0));

After we have a Ginkgo matrix object, we wrap it in an instance of the sundials::ginkgo::Matrix class. This
object can be provided to other SUNDIALS functions that expect a SUNMatrix object via implicit conversion, or the
Convert() method:

sundials::ginkgo::Matrix<gko::matrix::Csr> matrix{gko_matrix, sunctx};
SUNMatrix I1 = matrix.Convert(); // explicit conversion to SUNMatrix
SUNMatrix I2 = matrix; // implicit conversion to SUNMatrix

No further interaction with matrix is required from this point, and it is possible to to use the SUNMatrixAPI operating
on I1 or I2 (or if needed, via Ginkgo operations on gko_matrix).

196 Chapter 7. Matrix Data Structures

https://ginkgo-project.github.io/

User Documentation for KINSOL, v7.1.0

Warning: SUNMatDestroy() should never be called on a SUNMatrix that was created via conversion from a
sundials::ginkgo::Matrix. Doing so may result in a double free.

7.10.3 SUNMATRIX_GINKGO API

In this section we list the public API of the sundials::ginkgo::Matrix class.

template<typename GkoMatType>
class Matrix : public sundials::impl::BaseMatrix, public sundials::ConvertibleTo<SUNMatrix>

Matrix() = default
Default constructor - means the matrix must be copied or moved to.

Matrix(std::shared_ptr<GkoMatType> gko_mat, SUNContext sunctx)
Constructs a Matrix from an existing Ginkgo matrix object.

Parameters

• gko_mat – A Ginkgo matrix object

• sunctx – The SUNDIALS simulation context object (SUNContext)

Matrix(Matrix &&that_matrix) noexcept
Move constructor.

Matrix(const Matrix &that_matrix)
Copy constructor (performs a deep copy).

Matrix &operator=(Matrix &&rhs) noexcept
Move assignment.

Matrix &operator=(const Matrix &rhs)
Copy assignment clones the gko::matrix and SUNMatrix. This is a deep copy (i.e. a new data array is
created).

virtual ~Matrix() = default;
Default destructor.

std::shared_ptr<GkoMatType> GkoMtx() const
Get the underlying Ginkgo matrix object.

std::shared_ptr<const gko::Executor> GkoExec() const
Get the gko::Executor associated with the Ginkgo matrix.

const gko::dim<2> &GkoSize() const
Get the size, i.e. gko::dim, for the Ginkgo matrix.

operator SUNMatrix() override
Implicit conversion to a SUNMatrix.

operator SUNMatrix() const override
Implicit conversion to a SUNMatrix.

SUNMatrix Convert() override
Explicit conversion to a SUNMatrix.

SUNMatrix Convert() const override
Explicit conversion to a SUNMatrix.

7.10. The SUNMATRIX_GINKGO Module 197

User Documentation for KINSOL, v7.1.0

7.11 The SUNMATRIX_KOKKOSDENSE Module

New in version 6.4.0.

The SUNMATRIX_KOKKOSDENSE SUNMatrix implementation provides a data structure for dense and dense
batched (block-diagonal) matrices using Kokkos [25, 50] and KokkosKernels [49] to support a variety of backends
including serial, OpenMP, CUDA, HIP, and SYCL. Since Kokkos is a modern C++ library, the module is also writ-
ten in modern C++ (it requires C++14) as a header only library. To utilize this SUNMatrix users will need to in-
clude sunmatrix/sunmatrix_kokkosdense.hpp. More instructions on building SUNDIALS with Kokkos and
KokkosKernels enabled are given in §11.4. For instructions on building and using Kokkos and KokkosKernels, re-
fer to the Kokkos and KokkosKernels. documentation.

7.11.1 Using SUNMATRIX_KOKKOSDENSE

The SUNMATRIX_KOKKOSDENSE module is defined by the DenseMatrix templated class in the sundi-
als::kokkos namespace:

template<class ExecutionSpace = Kokkos::DefaultExecutionSpace,
class MemorySpace = typename ExecutionSpace::memory_space>

class DenseMatrix : public sundials::impl::BaseMatrix,
public sundials::ConvertibleTo<SUNMatrix>

To use the SUNMATRIX_KOKKOSDENSE module, we begin by constructing an instance of the Kokkos dense matrix
e.g.,

// Single matrix using the default execution space
sundials::kokkos::DenseMatrix<> A{rows, cols, sunctx};

// Batched (block-diagonal) matrix using the default execution space
sundials::kokkos::DenseMatrix<> Abatch{blocks, rows, cols, sunctx};

// Batched (block-diagonal) matrix using the Cuda execution space
sundials::kokkos::DenseMatrix<Kokkos::Cuda> Abatch{blocks, rows, cols, sunctx};

// Batched (block-diagonal) matrix using the Cuda execution space and
// a non-default execution space instance
sundials::kokkos::DenseMatrix<Kokkos::Cuda> Abatch{blocks, rows, cols,

exec_space_instance,
sunctx};

Instances of the DenseMatrix class are implicitly or explicitly (using the Convert() method) convertible to a SUN-
Matrix e.g.,

sundials::kokkos::DenseMatrix<> A{rows, cols, sunctx};
SUNMatrix B = A; // implicit conversion to SUNMatrix
SUNMatrix C = A.Convert(); // explicit conversion to SUNMatrix

No further interaction with a DenseMatrix is required from this point, and it is possible to use the SUNMatrix API to
operate on B or C.

Warning: SUNMatDestroy() should never be called on a SUNMatrix that was created via conversion from a
sundials::kokkos::DenseMatrix. Doing so may result in a double free.

198 Chapter 7. Matrix Data Structures

https://kokkos.github.io/kokkos-core-wiki/index.html
https://github.com/kokkos/kokkos-kernels/wiki

User Documentation for KINSOL, v7.1.0

The underlying DenseMatrix can be extracted from a SUNMatrix using GetDenseMat() e.g.,

auto A_dense_mat = GetDenseMat<>(A_sunmat);

The SUNMATRIX_KOKKOSDENSE module is compatible with the NVECTOR_KOKKOS vector module (see
§6.14) and SUNLINEARSOLVER_KOKKOSDENSE linear solver module (see §8.19).

7.11.2 SUNMATRIX_KOKKOSDENSE API

In this section we list the public API of the sundials::kokkos::DenseMatrix class.

template<class ExeccutionSpace = Kokkos::DefaultExecutionSpace, class MemorySpace = typename
ExecutionSpace::memory_space>
class DenseMatrix : public sundials::impl::BaseMatrix, public sundials::ConvertibleTo<SUNMatrix>

using exec_space = ExecutionSpace;

using memory_space = MemorySpace;

using view_type = Kokkos::View<sunrealtype***, memory_space>;

using size_type = typename view_type::size_type;

using range_policy = Kokkos::MDRangePolicy<exec_space, Kokkos::Rank<3>>;

using team_policy = typename Kokkos::TeamPolicy<exec_space>;

using member_type = typename Kokkos::TeamPolicy<exec_space>::member_type;

DenseMatrix() = default
Default constructor – the matrix must be copied or moved to.

DenseMatrix(size_type rows, size_type cols, SUNContext sunctx)
Constructs a single DenseMatrix using the default execution space instance.

Parameters

• rows – number of matrix rows

• cols – number of matrix columns

• sunctx – the SUNDIALS simulation context object (SUNContext)

DenseMatrix(size_type rows, size_type cols, exec_space ex, SUNContext sunctx)
Constructs a single DenseMatrix using the provided execution space instance.

Parameters

• rows – number of matrix rows

• cols – number of matrix columns

• ex – an execuation space

• sunctx – the SUNDIALS simulation context object (SUNContext)

DenseMatrix(size_type blocks, size_type block_rows, size_type block_cols, SUNContext sunctx)
Constructs a batched (block-diagonal) DenseMatrix using the default execution space instance.

Parameters

• blocks – number of matrix blocks

7.11. The SUNMATRIX_KOKKOSDENSE Module 199

User Documentation for KINSOL, v7.1.0

• block_rows – number of rows in a block

• block_cols – number of columns in a block

• sunctx – the SUNDIALS simulation context object (SUNContext)

DenseMatrix(size_type blocks, size_type block_rows, size_type block_cols, exec_space ex, SUNContext
sunctx)

Constructs a batched (block-diagonal) DenseMatrix using the provided execution space instance.

Parameters

• blocks – number of matrix blocks

• block_rows – number of rows in a block

• block_cols – number of columns in a block

• ex – an execuation space

• sunctx – the SUNDIALS simulation context object (SUNContext)

DenseMatrix(DenseMatrix &&that_matrix) noexcept
Move constructor.

DenseMatrix(const DenseMatrix &that_matrix)
Copy constructor. This creates a shallow clone of the Matrix, i.e., it creates a new Matrix with the same
properties, such as size, but it does not copy the data.

DenseMatrix &operator=(DenseMatrix &&rhs) noexcept
Move assignment.

DenseMatrix &operator=(const DenseMatrix &rhs)
Copy assignment. This creates a shallow clone of the Matrix, i.e., it creates a new Matrix with the same
properties, such as size, but it does not copy the data.

virtual ~DenseMatrix() = default;
Default destructor.

exec_space ExecSpace()
Get the execution space instance used by the matrix.

view_type View()
Get the underlying Kokkos view with extents {blocks, block_rows, block_cols}.

size_type Blocks()
Get the number of blocks i.e., extent(0).

size_type BlockRows()
Get the number of rows in a block i.e., extent(1).

size_type BlockCols()
Get the number of columns in a block i.e., extent(2).

size_type Rows()
Get the number of rows in the block-diagonal matrix i.e., extent(0) * extent(1).

size_type Cols()
Get the number of columns in the block-diagonal matrix i.e., extent(0) * extent(2).

200 Chapter 7. Matrix Data Structures

User Documentation for KINSOL, v7.1.0

operator SUNMatrix() override
Implicit conversion to a SUNMatrix.

operator SUNMatrix() const override
Implicit conversion to a SUNMatrix.

SUNMatrix Convert() override
Explicit conversion to a SUNMatrix.

SUNMatrix Convert() const override
Explicit conversion to a SUNMatrix.

template<class ExecutionSpace = Kokkos::DefaultExecutionSpace, class MemorySpace = typename
ExecutionSpace::memory_space>
inline DenseMatrix<MatrixType> *GetDenseMat(SUNMatrix A)

Get the dense matrix wrapped by a SUNMatrix

7.12 SUNMATRIX Examples

There are SUNMatrix examples that may be installed for each implementation, that make use of the functions in test_-
sunmatrix.c. These example functions show simple usage of the SUNMatrix family of functions. The inputs to the
examples depend on the matrix type, and are output to stdout if the example is run without the appropriate number
of command-line arguments.

The following is a list of the example functions in test_sunmatrix.c:

• Test_SUNMatGetID: Verifies the returned matrix ID against the value that should be returned.

• Test_SUNMatClone: Creates clone of an existing matrix, copies the data, and checks that their values match.

• Test_SUNMatZero: Zeros out an existing matrix and checks that each entry equals 0.0.

• Test_SUNMatCopy: Clones an input matrix, copies its data to a clone, and verifies that all values match.

• Test_SUNMatScaleAdd: Given an input matrix A and an input identity matrix I , this test clones and copies A
to a new matrix B, computes B = −B +B, and verifies that the resulting matrix entries equal 0. Additionally,
if the matrix is square, this test clones and copies A to a new matrix D, clones and copies I to a new matrix C,
computes D = D + I and C = C +A using SUNMatScaleAdd(), and then verifies that C = D.

• Test_SUNMatScaleAddI: Given an input matrix A and an input identity matrix I , this clones and copies I to a
new matrixB, computesB = −B+I using SUNMatScaleAddI(), and verifies that the resulting matrix entries
equal 0.

• Test_SUNMatMatvecSetup: verifies that SUNMatMatvecSetup() can be called.

• Test_SUNMatMatvec Given an input matrix A and input vectors x and y such that y = Ax, this test has dif-
ferent behavior depending on whether A is square. If it is square, it clones and copies A to a new matrix B,
computes B = 3B + I using SUNMatScaleAddI(), clones y to new vectors w and z, computes z = Bx using
SUNMatMatvec(), computes w = 3y + x using N_VLinearSum, and verifies that w == z. If A is not square,
it just clones y to a new vector z, computes :math:`z=Ax using SUNMatMatvec(), and verifies that y = z.

• Test_SUNMatSpace: verifies that SUNMatSpace() can be called, and outputs the results to stdout.

7.12. SUNMATRIX Examples 201

User Documentation for KINSOL, v7.1.0

7.13 SUNMatrix functions used by KINSOL

In Table 7.2, we list the matrix functions in the SUNMatrix module used within the KINSOL package. The table also
shows, for each function, which of the code modules uses the function. The main KINSOL integrator does not call
any SUNMatrix functions directly, so the table columns are specific to the KINLS and KINBBDPRE preconditioner
modules. We further note that the KINLS interface only utilizes these routines when supplied with a matrix-based
linear solver, i.e., the SUNMatrix object passed to KINSetLinearSolver() was not NULL.

At this point, we should emphasize that the KINSOL user does not need to know anything about the usage of matrix
functions by the KINSOL code modules in order to use KINSOL. The information is presented as an implementation
detail for the interested reader.

Table 7.2: List of matrix functions usage by KINSOL code modules

KINLS KINBBDPRE
SUNMatGetID() x
SUNMatDestroy() x
SUNMatZero() x x
SUNMatSpace() †

The matrix functions listed with a † symbol are optionally used, in that these are only called if they are implemented in
the SUNMatrixmodule that is being used (i.e. their function pointers are non-NULL). The matrix functions listed in §7.1
that are not used by KINSOL are: SUNMatCopy(), SUNMatClone(), SUNMatScaleAdd(), SUNMatScaleAddI() and
SUNMatMatvec(). Therefore a user-supplied SUNMatrix module for KINSOL could omit these functions.

We note that the KINBBDPRE preconditioner module is hard-coded to use the SUNDIALS-supplied band SUNMatrix
type, so the most useful information above for user-supplied SUNMatrix implementations is the column relating the
KINLS requirements.

202 Chapter 7. Matrix Data Structures

Chapter 8

Linear Algebraic Solvers

For problems that require the solution of linear systems of equations, the SUNDIALS packages operate using generic
linear solver modules defined through the SUNLinearSolver, or “SUNLinSol”, API. This allows SUNDIALS pack-
ages to utilize any valid SUNLinSol implementation that provides a set of required functions. These functions can be
divided into three categories. The first are the core linear solver functions. The second group consists of “set” routines
to supply the linear solver object with functions provided by the SUNDIALS package, or for modification of solver
parameters. The last group consists of “get” routines for retrieving artifacts (statistics, residual vectors, etc.) from the
linear solver. All of these functions are defined in the header file sundials/sundials_linearsolver.h.

The implementations provided with SUNDIALS work in coordination with the SUNDIALS N_Vector, and optionally
SUNMatrix, modules to provide a set of compatible data structures and solvers for the solution of linear systems
using direct or iterative (matrix-based or matrix-free) methods. Moreover, advanced users can provide a customized
SUNLinearSolver implementation to any SUNDIALS package, particularly in cases where they provide their own
N_Vector and/or SUNMatrix modules.

Historically, the SUNDIALS packages have been designed to specifically leverage the use of either direct linear solvers
or matrix-free, scaled, preconditioned, iterative linear solvers. However, matrix-based iterative linear solvers are also
supported.

The iterative linear solvers packaged with SUNDIALS leverage scaling and preconditioning, as applicable, to balance
error between solution components and to accelerate convergence of the linear solver. To this end, instead of solving
the linear system Ax = b directly, these apply the underlying iterative algorithm to the transformed system

Ãx̃ = b̃ (8.1)

where

Ã = S1P
−1
1 AP−12 S−12 ,

b̃ = S1P
−1
1 b,

x̃ = S2P2x,

(8.2)

and where

• P1 is the left preconditioner,

• P2 is the right preconditioner,

• S1 is a diagonal matrix of scale factors for P−11 b,

• S2 is a diagonal matrix of scale factors for P2x.

203

User Documentation for KINSOL, v7.1.0

SUNDIALS solvers request that iterative linear solvers stop based on the 2-norm of the scaled preconditioned residual
meeting a prescribed tolerance, i.e., ∥∥∥b̃− Ãx̃∥∥∥

2
< tol.

When provided an iterative SUNLinSol implementation that does not support the scaling matrices S1 and S2, the
SUNDIALS packages will adjust the value of tol accordingly (see the iterative linear tolerance section that follows for
more details). In this case, they instead request that iterative linear solvers stop based on the criterion∥∥P−11 b− P−11 Ax

∥∥
2
< tol.

We note that the corresponding adjustments to tol in this case may not be optimal, in that they cannot balance error
between specific entries of the solution x, only the aggregate error in the overall solution vector.

We further note that not all of the SUNDIALS-provided iterative linear solvers support the full range of the above
options (e.g., separate left/right preconditioning), and that some of the SUNDIALS packages only utilize a subset of
these options. Further details on these exceptions are described in the documentation for each SUNLinearSolver
implementation, or for each SUNDIALS package.

For users interested in providing their own SUNLinSol module, the following section presents the SUNLinSol API
and its implementation beginning with the definition of SUNLinSol functions in §8.1.1 – §8.1.3. This is followed
by the definition of functions supplied to a linear solver implementation in §8.1.4. The linear solver return codes
are described in Table 8.1. The SUNLinearSolver type and the generic SUNLinSol module are defined in §8.1.6.
§8.1.8 lists the requirements for supplying a custom SUNLinSol module and discusses some intended use cases. Users
wishing to supply their own SUNLinSol module are encouraged to use the SUNLinSol implementations provided with
SUNDIALS as a template for supplying custom linear solver modules. The section that then follows describes the
SUNLinSol functions required by this SUNDIALS package, and provides additional package specific details. Then the
remaining sections of this chapter present the SUNLinSol modules provided with SUNDIALS.

8.1 The SUNLinearSolver API

The SUNLinSol API defines several linear solver operations that enable SUNDIALS packages to utilize this API.
These functions can be divided into three categories. The first are the core linear solver functions. The second consist
of “set” routines to supply the linear solver with functions provided by the SUNDIALS packages and to modify solver
parameters. The final group consists of “get” routines for retrieving linear solver statistics. All of these functions are
defined in the header file sundials/sundials_linearsolver.h.

8.1.1 SUNLinearSolver core functions

The core linear solver functions consist of two required functions: SUNLinSolGetType() returns the linear solver
type, and SUNLinSolSolve() solves the linear system Ax = b.

The remaining optional functions return the solver ID (SUNLinSolGetID()), initialize the linear solver object once all
solver-specific options have been set (SUNLinSolInitialize()), set up the linear solver object to utilize an updated
matrix A (SUNLinSolSetup()), and destroy a linear solver object (SUNLinSolFree()).

enum SUNLinearSolver_Type
An identifier indicating the type of linear solver.

Note: See §8.1.8.1 for more information on intended use cases corresponding to the linear solver type.

204 Chapter 8. Linear Algebraic Solvers

User Documentation for KINSOL, v7.1.0

enumerator SUNLINEARSOLVER_DIRECT
The linear solver requires a matrix, and computes an “exact” solution to the linear system defined by that
matrix.

enumerator SUNLINEARSOLVER_ITERATIVE
The linear solver does not require a matrix (though one may be provided), and computes an inexact solution
to the linear system using a matrix-free iterative algorithm. That is it solves the linear system defined by the
package-supplied ATimes routine (see SUNLinSolSetATimes() below), even if that linear system differs
from the one encoded in the matrix object (if one is provided). As the solver computes the solution only
inexactly (or may diverge), the linear solver should check for solution convergence/accuracy as appropriate.

enumerator SUNLINEARSOLVER_MATRIX_ITERATIVE
The linear solver module requires a matrix, and computes an inexact solution to the linear system defined
by that matrix using an iterative algorithm. That is it solves the linear system defined by the matrix ob-
ject even if that linear system differs from that encoded by the package-supplied ATimes routine. As the
solver computes the solution only inexactly (or may diverge), the linear solver should check for solution
convergence/accuracy as appropriate.

enumerator SUNLINEARSOLVER_MATRIX_EMBEDDED
The linear solver sets up and solves the specified linear system at each linear solve call. Any matrix-related
data structures are held internally to the linear solver itself, and are not provided by the SUNDIALS package.

SUNLinearSolver_Type SUNLinSolGetType(SUNLinearSolver LS)
Returns the SUNLinearSolver_Type type identifier for the linear solver.

Usage:

type = SUNLinSolGetType(LS);

SUNLinearSolver_ID SUNLinSolGetID(SUNLinearSolver LS)
Returns a non-negative linear solver identifier (of type int) for the linear solver LS.

Return value:

Non-negative linear solver identifier (of type int), defined by the enumeration SUNLinearSolver_-
ID, with values shown in Table 8.2 and defined in the sundials_linearsolver.h header file.

Usage:

id = SUNLinSolGetID(LS);

Note: It is recommended that a user-supplied SUNLinearSolver return the SUNLINEARSOLVER_CUSTOM iden-
tifier.

SUNErrCode SUNLinSolInitialize(SUNLinearSolver LS)
Performs linear solver initialization (assuming that all solver-specific options have been set).

Return value:

A SUNErrCode.

Usage:

retval = SUNLinSolInitialize(LS);

8.1. The SUNLinearSolver API 205

User Documentation for KINSOL, v7.1.0

int SUNLinSolSetup(SUNLinearSolver LS, SUNMatrix A)
Performs any linear solver setup needed, based on an updated system SUNMatrixA. This may be called frequently
(e.g., with a full Newton method) or infrequently (for a modified Newton method), based on the type of integrator
and/or nonlinear solver requesting the solves.

Return value:

Zero for a successful call, a positive value for a recoverable failure, and a negative value for an unre-
coverable failure. Ideally this should return one of the generic error codes listed in Table 8.1.

Usage:

retval = SUNLinSolSetup(LS, A);

int SUNLinSolSolve(SUNLinearSolver LS, SUNMatrix A, N_Vector x, N_Vector b, sunrealtype tol)
This required function solves a linear system Ax = b.

Arguments:

• LS – a SUNLinSol object.

• A – a SUNMatrix object.

• x – an N_Vector object containing the initial guess for the solution of the linear system on input, and the
solution to the linear system upon return.

• b – an N_Vector object containing the linear system right-hand side.

• tol – the desired linear solver tolerance.

Return value:

Zero for a successful call, a positive value for a recoverable failure, and a negative value for an unre-
coverable failure. Ideally this should return one of the generic error codes listed in Table 8.1.

Notes:

Direct solvers: can ignore the tol argument.

Matrix-free solvers: (those that identify as SUNLINEARSOLVER_ITERATIVE) can ignore the SUN-
Matrix input A, and should rely on the matrix-vector product function supplied through the routine
SUNLinSolSetATimes().

Iterative solvers: (those that identify as SUNLINEARSOLVER_ITERATIVE or SUNLINEARSOLVER_-
MATRIX_ITERATIVE) should attempt to solve to the specified tolerance tol in a weighted 2-norm. If
the solver does not support scaling then it should just use a 2-norm.

Matrix-embedded solvers: should ignore the SUNMatrix input A as this will be NULL. It is assumed
that within this function, the solver will call interface routines from the relevant SUNDIALS package
to directly form the linear system matrix A, and then solve Ax = b before returning with the solution
x.

Usage:

retval = SUNLinSolSolve(LS, A, x, b, tol);

SUNErrCode SUNLinSolFree(SUNLinearSolver LS)
Frees memory allocated by the linear solver.

Return value:

A SUNErrCode.

Usage:

206 Chapter 8. Linear Algebraic Solvers

User Documentation for KINSOL, v7.1.0

retval = SUNLinSolFree(LS);

8.1.2 SUNLinearSolver “set” functions

The following functions supply linear solver modules with functions defined by the SUNDIALS packages and modify
solver parameters. Only the routine for setting the matrix-vector product routine is required, and even then is only
required for matrix-free linear solver modules. Otherwise, all other set functions are optional. SUNLinSol implemen-
tations that do not provide the functionality for any optional routine should leave the corresponding function pointer
NULL instead of supplying a dummy routine.

SUNErrCode SUNLinSolSetATimes(SUNLinearSolver LS, void *A_data, SUNATimesFn ATimes)
Required for matrix-free linear solvers (otherwise optional).

Provides a SUNATimesFn function pointer, as well as a void* pointer to a data structure used by this routine, to
the linear solver object LS. SUNDIALS packages call this function to set the matrix-vector product function to
either a solver-provided difference-quotient via vector operations or a user-supplied solver-specific routine.

Return value:

A SUNErrCode.

Usage:

retval = SUNLinSolSetATimes(LS, A_data, ATimes);

SUNErrCode SUNLinSolSetPreconditioner(SUNLinearSolver LS, void *P_data, SUNPSetupFn Pset,
SUNPSolveFn Psol)

This optional routine provides SUNPSetupFn and SUNPSolveFn function pointers that implement the precon-
ditioner solves P−11 and P−12 from (8.2). This routine is called by a SUNDIALS package, which provides
translation between the generic Pset and Psol calls and the package- or user-supplied routines.

Return value:

A SUNErrCode.

Usage:

retval = SUNLinSolSetPreconditioner(LS, Pdata, Pset, Psol);

SUNErrCode SUNLinSolSetScalingVectors(SUNLinearSolver LS, N_Vector s1, N_Vector s2)
This optional routine provides left/right scaling vectors for the linear system solve. Here, s1 and s2 are vectors of
positive scale factors containing the diagonal of the matrices S1 and S2 from (8.2), respectively. Neither vector
needs to be tested for positivity, and a NULL argument for either indicates that the corresponding scaling matrix
is the identity.

Return value:

A SUNErrCode.

Usage:

retval = SUNLinSolSetScalingVectors(LS, s1, s2);

SUNErrCode SUNLinSolSetZeroGuess(SUNLinearSolver LS, sunbooleantype onoff)
This optional routine indicates if the upcoming SUNLinSolSolve() call will be made with a zero initial guess
(SUNTRUE) or a non-zero initial guess (SUNFALSE).

Return value:

8.1. The SUNLinearSolver API 207

User Documentation for KINSOL, v7.1.0

A SUNErrCode.

Usage:

retval = SUNLinSolSetZeroGuess(LS, onoff);

Notes:

It is assumed that the initial guess status is not retained across calls to SUNLinSolSolve(). As such,
the linear solver interfaces in each of the SUNDIALS packages call SUNLinSolSetZeroGuess()
prior to each call to SUNLinSolSolve().

8.1.3 SUNLinearSolver “get” functions

The following functions allow SUNDIALS packages to retrieve results from a linear solve. All routines are optional.

int SUNLinSolNumIters(SUNLinearSolver LS)
This optional routine should return the number of linear iterations performed in the most-recent “solve” call.

Usage:

its = SUNLinSolNumIters(LS);

sunrealtype SUNLinSolResNorm(SUNLinearSolver LS)
This optional routine should return the final residual norm from the most-recent “solve” call.

Usage:

rnorm = SUNLinSolResNorm(LS);

N_Vector SUNLinSolResid(SUNLinearSolver LS)
If an iterative method computes the preconditioned initial residual and returns with a successful solve without
performing any iterations (i.e., either the initial guess or the preconditioner is sufficiently accurate), then this
optional routine may be called by the SUNDIALS package. This routine should return the N_Vector containing
the preconditioned initial residual vector.

Usage:

rvec = SUNLinSolResid(LS);

Notes:

Since N_Vector is actually a pointer, and the results are not modified, this routine should not require
additional memory allocation. If the SUNLinSol object does not retain a vector for this purpose, then
this function pointer should be set to NULL in the implementation.

sunindextype SUNLinSolLastFlag(SUNLinearSolver LS)
This optional routine should return the last error flag encountered within the linear solver. Although not called
by the SUNDIALS packages directly, this may be called by the user to investigate linear solver issues after a
failed solve.

Usage:

lflag = SUNLinLastFlag(LS);

SUNErrCode SUNLinSolSpace(SUNLinearSolver LS, long int *lenrwLS, long int *leniwLS)
This optional routine should return the storage requirements for the linear solver LS:

208 Chapter 8. Linear Algebraic Solvers

User Documentation for KINSOL, v7.1.0

• lrw is a long int containing the number of sunrealtype words

• liw is a long int containing the number of integer words.

This function is advisory only, for use by users to help determine their total space requirements.

Return value:

A SUNErrCode.

Usage:

retval = SUNLinSolSpace(LS, &lrw, &liw);

8.1.4 Functions provided by SUNDIALS packages

To interface with SUNLinSol modules, the SUNDIALS packages supply a variety of routines for evaluating the matrix-
vector product, and setting up and applying the preconditioner. These package-provided routines translate between the
user-supplied ODE, DAE, or nonlinear systems and the generic linear solver API. The function types for these routines
are defined in the header file sundials/sundials_iterative.h, and are described below.

typedef int (*SUNATimesFn)(void *A_data, N_Vector v, N_Vector z)
Computes the action of a matrix on a vector, performing the operation z ← Av. Memory for z will already be
allocated prior to calling this function. The parameter A_data is a pointer to any information about A which the
function needs in order to do its job. The vector v should be left unchanged.

Return value:

Zero for a successful call, and non-zero upon failure.

typedef int (*SUNPSetupFn)(void *P_data)
Sets up any requisite problem data in preparation for calls to the corresponding SUNPSolveFn.

Return value:

Zero for a successful call, and non-zero upon failure.

typedef int (*SUNPSolveFn)(void *P_data, N_Vector r, N_Vector z, sunrealtype tol, int lr)
Solves the preconditioner equation Pz = r for the vector z. Memory for z will already be allocated prior to
calling this function. The parameter P_data is a pointer to any information about P which the function needs in
order to do its job (set up by the corresponding SUNPSetupFn). The parameter lr is input, and indicates whether
P is to be taken as the left or right preconditioner: lr = 1 for left and lr = 2 for right. If preconditioning is on
one side only, lr can be ignored. If the preconditioner is iterative, then it should strive to solve the preconditioner
equation so that

‖Pz − r‖wrms < tol

where the error weight vector for the WRMS norm may be accessed from the main package memory structure.
The vector r should not be modified by the SUNPSolveFn.

Return value:

Zero for a successful call, a negative value for an unrecoverable failure condition, or a positive value
for a recoverable failure condition (thus the calling routine may reattempt the solution after updating
preconditioner data).

8.1. The SUNLinearSolver API 209

User Documentation for KINSOL, v7.1.0

8.1.5 SUNLinearSolver return codes

The functions provided to SUNLinSol modules by each SUNDIALS package, and functions within the SUNDIALS-
provided SUNLinSol implementations, utilize a common set of return codes, listed in Table 8.1. These adhere to a
common pattern:

• 0 indicates success

• a positive value corresponds to a recoverable failure, and

• a negative value indicates a non-recoverable failure.

Aside from this pattern, the actual values of each error code provide additional information to the user in case of a
linear solver failure.

Table 8.1: SUNLinSol error codes

Error code Value Meaning
SUN_SUCCESS 0 successful call or converged solve
SUNLS_ATIMES_NULL -804 the Atimes function is NULL
SUNLS_ATIMES_FAIL_-
UNREC

-805 an unrecoverable failure occurred in the ATimes routine

SUNLS_PSET_FAIL_UN-
REC

-806 an unrecoverable failure occurred in the Pset routine

SUNLS_PSOLVE_NULL -807 the preconditioner solve function is NULL
SUNLS_PSOLVE_FAIL_-
UNREC

-808 an unrecoverable failure occurred in the Psolve routine

SUNLS_GS_FAIL -810 a failure occurred during Gram-Schmidt orthogonalization
(SPGMR/SPFGMR)

SUNLS_QRSOL_FAIL -811 a singular R matrix was encountered in a QR factorization
(SPGMR/SPFGMR)

SUNLS_RES_REDUCED 801 an iterative solver reduced the residual, but did not converge to the desired
tolerance

SUNLS_CONV_FAIL 802 an iterative solver did not converge (and the residual was not reduced)
SUNLS_ATIMES_FAIL_-
REC

803 a recoverable failure occurred in the ATimes routine

SUNLS_PSET_FAIL_REC 804 a recoverable failure occurred in the Pset routine
SUNLS_PSOLVE_FAIL_-
REC

805 a recoverable failure occurred in the Psolve routine

SUNLS_PACKAGE_FAIL_-
REC

806 a recoverable failure occurred in an external linear solver package

SUNLS_QRFACT_FAIL 807 a singular matrix was encountered during a QR factorization
(SPGMR/SPFGMR)

SUNLS_LUFACT_FAIL 808 a singular matrix was encountered during a LU factorization

210 Chapter 8. Linear Algebraic Solvers

User Documentation for KINSOL, v7.1.0

8.1.6 The generic SUNLinearSolver module

SUNDIALS packages interact with linear solver implementations through the SUNLinearSolver class. A SUNLin-
earSolver is a pointer to the _generic_SUNLinearSolver structure:

typedef struct _generic_SUNLinearSolver *SUNLinearSolver

struct _generic_SUNLinearSolver
The structure defining the SUNDIALS linear solver class.

void *content
Pointer to the linear solver-specific member data

SUNLinearSolver_Ops ops
A virtual table of linear solver operations provided by a specific implementation

SUNContext sunctx
The SUNDIALS simulation context

The virtual table structure is defined as

typedef struct _generic_SUNLinearSolver_Ops *SUNLinearSolver_Ops

struct _generic_SUNLinearSolver_Ops
The structure defining SUNLinearSolver operations.

SUNLinearSolver_Type (*gettype)(SUNLinearSolver)
The function implementing SUNLinSolGetType()

SUNLinearSolver_ID (*getid)(SUNLinearSolver)
The function implementing SUNLinSolGetID()

SUNErrCode (*setatimes)(SUNLinearSolver, void*, SUNATimesFn)
The function implementing SUNLinSolSetATimes()

SUNErrCode (*setpreconditioner)(SUNLinearSolver, void*, SUNPSetupFn, SUNPSolveFn)
The function implementing SUNLinSolSetPreconditioner()

SUNErrCode (*setscalingvectors)(SUNLinearSolver, N_Vector, N_Vector)
The function implementing SUNLinSolSetScalingVectors()

SUNErrCode (*setzeroguess)(SUNLinearSolver, sunbooleantype)
The function implementing SUNLinSolSetZeroGuess()

SUNErrCode (*initialize)(SUNLinearSolver)
The function implementing SUNLinSolInitialize()

int (*setup)(SUNLinearSolver, SUNMatrix)
The function implementing SUNLinSolSetup()

int (*solve)(SUNLinearSolver, SUNMatrix, N_Vector, N_Vector, sunrealtype)
The function implementing SUNLinSolSolve()

int (*numiters)(SUNLinearSolver)
The function implementing SUNLinSolNumIters()

sunrealtype (*resnorm)(SUNLinearSolver)
The function implementing SUNLinSolResNorm()

8.1. The SUNLinearSolver API 211

User Documentation for KINSOL, v7.1.0

sunindextype (*lastflag)(SUNLinearSolver)
The function implementing SUNLinSolLastFlag()

SUNErrCode (*space)(SUNLinearSolver, long int*, long int*)
The function implementing SUNLinSolSpace()

N_Vector (*resid)(SUNLinearSolver)
The function implementing SUNLinSolResid()

SUNErrCode (*free)(SUNLinearSolver)
The function implementing SUNLinSolFree()

The generic SUNLinSol class defines and implements the linear solver operations defined in §8.1.1 – §8.1.3. These
routines are in fact only wrappers to the linear solver operations defined by a particular SUNLinSol implementation,
which are accessed through the ops field of the SUNLinearSolver structure. To illustrate this point we show below the
implementation of a typical linear solver operation from the SUNLinearSolver base class, namely SUNLinSolIni-
tialize(), that initializes a SUNLinearSolver object for use after it has been created and configured, and returns a
flag denoting a successful or failed operation:

int SUNLinSolInitialize(SUNLinearSolver S)
{
return ((int) S->ops->initialize(S));

}

8.1.7 Compatibility of SUNLinearSolver modules

Not all SUNLinearSolver implementations are compatible with all SUNMatrix and N_Vector implementations pro-
vided in SUNDIALS. More specifically, all of the SUNDIALS iterative linear solvers (SPGMR, SPFGMR, SPBCGS,
SPTFQMR, and PCG) are compatible with all of the SUNDIALS N_Vector modules, but the matrix-based direct
SUNLinSol modules are specifically designed to work with distinct SUNMatrix and N_Vector modules. In the list
below, we summarize the compatibility of each matrix-based SUNLinearSolvermodule with the various SUNMatrix
and N_Vector modules. For a more thorough discussion of these compatibilities, we defer to the documentation for
each individual SUNLinSol module in the sections that follow.

• Dense

– SUNMatrix: Dense or user-supplied

– N_Vector: Serial, OpenMP, Pthreads, or user-supplied

• LapackDense

– SUNMatrix: Dense or user-supplied

– N_Vector: Serial, OpenMP, Pthreads, or user-supplied

• Band

– SUNMatrix: Band or user-supplied

– N_Vector: Serial, OpenMP, Pthreads, or user-supplied

• LapackBand

– SUNMatrix: Band or user-supplied

– N_Vector: Serial, OpenMP, Pthreads, or user-supplied

• KLU

– SUNMatrix: Sparse or user-supplied

212 Chapter 8. Linear Algebraic Solvers

User Documentation for KINSOL, v7.1.0

– N_Vector: Serial, OpenMP, Pthreads, or user-supplied

• SuperLU_MT

– SUNMatrix: Sparse or user-supplied

– N_Vector: Serial, OpenMP, Pthreads, or user-supplied

• SuperLU_Dist

– SUNMatrix: SLUNRLOC or user-supplied

– N_Vector: Serial, OpenMP, Pthreads, Parallel, *hypre*, PETSc, or user-supplied

• Magma Dense

– SUNMatrix: Magma Dense or user-supplied

– N_Vector: HIP, RAJA, or user-supplied

• OneMKL Dense

– SUNMatrix: One MKL Dense or user-supplied

– N_Vector: SYCL, RAJA, or user-supplied

• cuSolverSp batchQR

– SUNMatrix: cuSparse or user-supplied

– N_Vector: CUDA, RAJA, or user-supplied

8.1.8 Implementing a custom SUNLinearSolver module

A particular implementation of the SUNLinearSolver module must:

• Specify the content field of the SUNLinSol module.

• Define and implement the required linear solver operations.

Note: The names of these routines should be unique to that implementation in order to permit using more than
one SUNLinSol module (each with different SUNLinearSolver internal data representations) in the same code.

• Define and implement user-callable constructor and destructor routines to create and free a SUNLinearSolver
with the new content field and with ops pointing to the new linear solver operations.

We note that the function pointers for all unsupported optional routines should be set to NULL in the ops structure. This
allows the SUNDIALS package that is using the SUNLinSol object to know whether the associated functionality is
supported.

To aid in the creation of custom SUNLinearSolver modules the generic SUNLinearSolver module provides the
utility function SUNLinSolNewEmpty(). When used in custom SUNLinearSolver constructors this function will
ease the introduction of any new optional linear solver operations to the SUNLinearSolver API by ensuring that only
required operations need to be set.

SUNLinearSolver SUNLinSolNewEmpty(SUNContext sunctx)
This function allocates a new generic SUNLinearSolver object and initializes its content pointer and the func-
tion pointers in the operations structure to NULL.

Return value:

If successful, this function returns a SUNLinearSolver object. If an error occurs when allocating
the object, then this routine will return NULL.

8.1. The SUNLinearSolver API 213

User Documentation for KINSOL, v7.1.0

void SUNLinSolFreeEmpty(SUNLinearSolver LS)
This routine frees the generic SUNLinearSolver object, under the assumption that any implementation-specific
data that was allocated within the underlying content structure has already been freed. It will additionally test
whether the ops pointer is NULL, and, if it is not, it will free it as well.

Arguments:

• LS – a SUNLinearSolver object

Additionally, a SUNLinearSolver implementation may do the following:

• Define and implement additional user-callable “set” routines acting on the SUNLinearSolver, e.g., for setting
various configuration options to tune the linear solver for a particular problem.

• Provide additional user-callable “get” routines acting on the SUNLinearSolver object, e.g., for returning various
solve statistics.

enum SUNLinearSolver_ID
Each SUNLinSol implementation included in SUNDIALS has a unique identifier specified in enumeration and
shown in Table 8.2. It is recommended that a user-supplied SUNLinSol implementation use the SUNLINEAR-
SOLVER_CUSTOM identifier.

Table 8.2: Identifiers associated with SUNLinearSolver modules sup-
plied with SUNDIALS

SUNLinSol ID Linear solver type ID
Value

SUNLINEARSOLVER_BAND Banded direct linear solver (internal) 0
SUNLINEARSOLVER_DENSE Dense direct linear solver (internal) 1
SUNLINEARSOLVER_KLU Sparse direct linear solver (KLU) 2
SUNLINEARSOLVER_LAPACKBAND Banded direct linear solver (LAPACK) 3
SUNLINEARSOLVER_LAPACKDENSE Dense direct linear solver (LAPACK) 4
SUNLINEARSOLVER_PCG Preconditioned conjugate gradient iterative solver 5
SUNLINEARSOLVER_SPBCGS Scaled-preconditioned BiCGStab iterative solver 6
SUNLINEARSOLVER_SPFGMR Scaled-preconditioned FGMRES iterative solver 7
SUNLINEARSOLVER_SPGMR Scaled-preconditioned GMRES iterative solver 8
SUNLINEARSOLVER_SPTFQMR Scaled-preconditioned TFQMR iterative solver 9
SUNLINEARSOLVER_SUPERLUDIST Parallel sparse direct linear solver (SuperLU_Dist) 10
SUNLINEARSOLVER_SUPERLUMT Threaded sparse direct linear solver (SuperLU_-

MT)
11

SUNLINEARSOLVER_CUSOLVERSP_-
BATCHQR

Sparse direct linear solver (CUDA) 12

SUNLINEARSOLVER_MAGMADENSE Dense or block-dense direct linear solver
(MAGMA)

13

SUNLINEARSOLVER_ONEMKLDENSE Dense or block-dense direct linear solver
(OneMKL)

14

SUNLINEARSOLVER_CUSTOM User-provided custom linear solver 15

214 Chapter 8. Linear Algebraic Solvers

User Documentation for KINSOL, v7.1.0

8.1.8.1 Intended use cases

The SUNLinSol and SUNMATRIX APIs are designed to require a minimal set of routines to ease interfacing with
custom or third-party linear solver libraries. Many external solvers provide routines with similar functionality and thus
may require minimal effort to wrap within custom SUNMATRIX and SUNLinSol implementations. As SUNDIALS
packages utilize generic SUNLinSol modules they may naturally leverage user-supplied SUNLinearSolver imple-
mentations, thus there exist a wide range of possible linear solver combinations. Some intended use cases for both the
SUNDIALS-provided and user-supplied SUNLinSol modules are discussd in the sections below.

Direct linear solvers

Direct linear solver modules require a matrix and compute an “exact” solution to the linear system defined by the matrix.
SUNDIALS packages strive to amortize the high cost of matrix construction by reusing matrix information for multiple
nonlinear iterations or time steps. As a result, each package’s linear solver interface recomputes matrix information as
infrequently as possible.

Alternative matrix storage formats and compatible linear solvers that are not currently provided by, or interfaced with,
SUNDIALS can leverage this infrastructure with minimal effort. To do so, a user must implement custom SUNMA-
TRIX and SUNLinSol wrappers for the desired matrix format and/or linear solver following the APIs described in §7
and §8. This user-supplied SUNLinSol module must then self-identify as having SUNLINEARSOLVER_DIRECT type.

Matrix-free iterative linear solvers

Matrix-free iterative linear solver modules do not require a matrix, and instead compute an inexact solution to the linear
system defined by the package-supplied ATimes routine. SUNDIALS supplies multiple scaled, preconditioned iterative
SUNLinSol modules that support scaling, allowing packages to handle non-dimensionalization, and users to define
variables and equations as natural in their applications. However, for linear solvers that do not support left/right scaling,
SUNDIALS packages must instead adjust the tolerance supplied to the linear solver to compensate (see the iterative
linear tolerance section that follows for more details) – this strategy may be non-optimal since it cannot handle situations
where the magnitudes of different solution components or equations vary dramatically within a single application.

To utilize alternative linear solvers that are not currently provided by, or interfaced with, SUNDIALS a user must
implement a custom SUNLinSol wrapper for the linear solver following the API described in §8. This user-supplied
SUNLinSol module must then self-identify as having SUNLINEARSOLVER_ITERATIVE type.

Matrix-based iterative linear solvers (reusing A)

Matrix-based iterative linear solver modules require a matrix and compute an inexact solution to the linear system
defined by the matrix. This matrix will be updated infrequently and resued across multiple solves to amortize the cost
of matrix construction. As in the direct linear solver case, only thin SUNMATRIX and SUNLinSol wrappers for the
underlying matrix and linear solver structures need to be created to utilize such a linear solver. This user-supplied
SUNLinSol module must then self-identify as having SUNLINEARSOLVER_MATRIX_ITERATIVE type.

At present, SUNDIALS has one example problem that uses this approach for wrapping a structured-grid matrix, linear
solver, and preconditioner from the hypre library; this may be used as a template for other customized implementations
(see examples/arkode/CXX_parhyp/ark_heat2D_hypre.cpp).

8.1. The SUNLinearSolver API 215

User Documentation for KINSOL, v7.1.0

Matrix-based iterative linear solvers (current A)

For users who wish to utilize a matrix-based iterative linear solver where the matrix is purely for preconditioning and
the linear system is defined by the package-supplied ATimes routine, we envision two current possibilities.

The preferred approach is for users to employ one of the SUNDIALS scaled, preconditioned iterative linear solver
implementations (SUNLinSol_SPGMR(), SUNLinSol_SPFGMR(), SUNLinSol_SPBCGS(), SUNLinSol_SPTFQMR(),
or SUNLinSol_PCG()) as the outer solver. The creation and storage of the preconditioner matrix, and interfacing with
the corresponding matrix-based linear solver, can be handled through a package’s preconditioner “setup” and “solve”
functionality without creating SUNMATRIX and SUNLinSol implementations. This usage mode is recommended
primarily because the SUNDIALS-provided modules support variable and equation scaling as described above.

A second approach supported by the linear solver APIs is as follows. If the SUNLinSol implementation is matrix-
based, self-identifies as having SUNLINEARSOLVER_ITERATIVE type, and also provides a non-NULL SUNLinSolSe-
tATimes() routine, then each SUNDIALS package will call that routine to attach its package-specific matrix-vector
product routine to the SUNLinSol object. The SUNDIALS package will then call the SUNLinSol-provided SUNLin-
SolSetup() routine (infrequently) to update matrix information, but will provide current matrix-vector products to
the SUNLinSol implementation through the package-supplied SUNATimesFn routine.

Application-specific linear solvers with embedded matrix structure

Many applications can exploit additional linear system structure arising from to the implicit couplings in their model
equations. In certain circumstances, the linear solve Ax = b may be performed without the need for a global system
matrix A, as the unformed A may be block diagonal or block triangular, and thus the overall linear solve may be per-
formed through a sequence of smaller linear solves. In other circumstances, a linear system solve may be accomplished
via specialized fast solvers, such as the fast Fourier transform, fast multipole method, or treecode, in which case no
matrix structure may be explicitly necessary. In many of the above situations, construction and preprocessing of the
linear system matrixAmay be inexpensive, and thus increased performance may be possible if the current linear system
information is used within every solve (instead of being lagged, as occurs with matrix-based solvers that reuse A).

To support such application-specific situations, SUNDIALS supports user-provided linear solvers with the SUNLINEAR-
SOLVER_MATRIX_EMBEDDED type. For an application to leverage this support, it should define a custom SUNLinSol
implementation having this type, that only needs to implement the required SUNLinSolGetType() and SUNLin-
SolSolve() operations. Within SUNLinSolSolve(), the linear solver implementation should call package-specific
interface routines (e.g., ARKStepGetNonlinearSystemData, CVodeGetNonlinearSystemData, IDAGetNonlin-
earSystemData, ARKStepGetCurrentGamma, CVodeGetCurrentGamma, IDAGetCurrentCj, or MRIStepGetCur-
rentGamma) to construct the relevant system matrixA (or portions thereof), solve the linear systemAx = b, and return
the solution vector x.

We note that when attaching this custom SUNLinearSolver object with the relevant SUNDIALS package SetLinear-
Solver routine, the input SUNMatrix A should be set to NULL.

For templates of such user-provided “matrix-embedded” SUNLinSol implementations, see the SUNDIALS exam-
ples ark_analytic_mels.c, cvAnalytic_mels.c, cvsAnalytic_mels.c, idaAnalytic_mels.c, and idasAn-
alytic_mels.c.

216 Chapter 8. Linear Algebraic Solvers

User Documentation for KINSOL, v7.1.0

8.2 KINSOL SUNLinearSolver interface

Table 8.3 below lists the SUNLinearSolver module linear solver functions used within the KINLS interface. As with
the SUNMatrix module, we emphasize that the KINSOL user does not need to know detailed usage of linear solver
functions by the KINSOL code modules in order to use KINSOL. The information is presented as an implementation
detail for the interested reader.

The linear solver functions listed below are marked with “x” to indicate that they are required, or with “†” to indicate
that they are only called if they are non-NULL in the SUNLinearSolver implementation that is being used. Note:

1. SUNLinSolNumIters() is only used to accumulate overall iterative linear solver statistics. If it is not imple-
mented by the SUNLinearSolver module, then KINLS will consider all solves as requiring zero iterations.

2. Although SUNLinSolResNorm() is optional, if it is not implemented by the SUNLinearSolver then KINLS
will consider all solves a being exact.

3. Although KINLS does not call SUNLinSolLastFlag() directly, this routine is available for users to query linear
solver issues directly.

4. Although KINLS does not call SUNLinSolFree() directly, this routine should be available for users to call when
cleaning up from a simulation.

Table 8.3: List of linear solver function usage in the KINLS interface

SUNLinSolGetType x x x
SUNLinSolSetATimes † x †
SUNLinSolSetPreconditioner † † †
SUNLinSolSetScalingVectors † † †
SUNLinSolInitialize x x x
SUNLinSolSetup x x x
SUNLinSolSolve x x x
1SUNLinSolNumIters † †
2SUNLinSolResNorm † †
3SUNLinSolLastFlag
4SUNLinSolFree
SUNLinSolSpace † † †

Since there are a wide range of potential SUNLinearSolver use cases, the following subsections describe some details
of the KINLS interface, in the case that interested users wish to develop custom SUNLinearSolver modules.

8.2.1 Lagged matrix information

If the SUNLinearSolver object self-identifies as having type SUNLINEARSOLVER_DIRECT or SUNLINEARSOLVER_-
MATRIX_ITERATIVE, then the SUNLinearSolver object solves a linear system defined by a SUNMatrix object. As a
result, KINSOL can perform its optional residual monitoring scheme, described in §2.8.

8.2. KINSOL SUNLinearSolver interface 217

User Documentation for KINSOL, v7.1.0

8.2.2 Iterative linear solver tolerance

If the SUNLinearSolver object self-identifies as having type SUNLINEARSOLVER_ITERATIVE or SUNLINEAR-
SOLVER_MATRIX_ITERATIVE then KINLS will adjust the linear solver tolerance delta as described in §2.9 during
the course of the nonlinear solve process. However, if the iterative linear solver does not support scaling matrices (i.e.,
the SUNLinSolSetScalingVectors routine is NULL), then KINLS will be unable to fully handle ill-conditioning in
the nonlinear solve process through the solution and residual scaling operators described in §2.4. In this case, KINLS
will attempt to adjust the linear solver tolerance to account for this lack of functionality. To this end, the following
assumptions are made:

1. All residual components have similar magnitude; hence the scaling matrix DF used in computing the linear
residual norm (see §2.4) should satisfy the assumption

(DF)i,i ≈ DF,mean, for i = 0, . . . , n− 1.

2. The SUNLinearSolver object uses a standard 2-norm to measure convergence.

Since KINSOL uses DF as the left-scaling matrix, S1 = DF , then the linear solver convergence requirement is con-
verted as follows (using the notation from equations (8.1) – (8.2):

‖b̃− Ãx̃‖2 < tol
⇔ ‖DFP

−1
1 b−DFP

−1
1 Ax‖2 < tol

⇔
n−1∑
i=0

[
(DF)i,i

(
P−11 (b−Ax)

)
i

]2
< tol2

⇔ D2
F,mean

n−1∑
i=0

[(
P−11 (b−Ax)

)
i

]2
< tol2

⇔
n−1∑
i=0

[(
P−11 (b−Ax)

)
i

]2
<

(
tol

DF,mean

)2

⇔ ‖P−11 (b−Ax)‖2 <
tol

DF,mean

Therefore the tolerance scaling factor

DF,mean =
1√
n

(
n−1∑
i=0

(DF)2i,i

)1/2

is computed and the scaled tolerance delta= tol/DF,mean is supplied to the SUNLinearSolver object.

8.2.3 Matrix-embedded solver incompatibility

At present, KINLS is incompatible with SUNLinearSolver objects that self-identify as having type SUNLINEAR-
SOLVER_MATRIX_EMBEDDED. Support for such user-supplied linear solvers may be added in a future release. Users
interested in such support are recommended to contact the SUNDIALS development team.

218 Chapter 8. Linear Algebraic Solvers

User Documentation for KINSOL, v7.1.0

8.3 The SUNLinSol_Band Module

The SUNLinSol_Band implementation of the SUNLinearSolver class is designed to be used with the corresponding
SUNMATRIX_BAND matrix type, and one of the serial or shared-memory N_Vector implementations (NVECTOR_-
SERIAL, NVECTOR_OPENMP or NVECTOR_PTHREADS).

8.3.1 SUNLinSol_Band Usage

The header file to be included when using this module is sunlinsol/sunlinsol_band.h. The SUNLinSol_Band
module is accessible from all SUNDIALS packages without linking to the libsundials_sunlinsolband module
library.

The SUNLinSol_Band module provides the following user-callable constructor routine:

SUNLinearSolver SUNLinSol_Band(N_Vector y, SUNMatrix A, SUNContext sunctx)
This function creates and allocates memory for a band SUNLinearSolver.

Arguments:

• y – vector used to determine the linear system size

• A – matrix used to assess compatibility

• sunctx – the SUNContext object (see §4.2)

Return value:
New SUNLinSol_Band object, or NULL if either A or y are incompatible.

Notes:
This routine will perform consistency checks to ensure that it is called with consistent N_Vector and
SUNMatrix implementations. These are currently limited to the SUNMATRIX_BAND matrix type and the
NVECTOR_SERIAL, NVECTOR_OPENMP, and NVECTOR_PTHREADS vector types. As additional
compatible matrix and vector implementations are added to SUNDIALS, these will be included within this
compatibility check.

Additionally, this routine will verify that the input matrix A is allocated with appropriate upper bandwidth
storage for the LU factorization.

8.3.2 SUNLinSol_Band Description

The SUNLinSol_Band module defines the content field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_Band {
sunindextype N;
sunindextype *pivots;
sunindextype last_flag;

};

These entries of the content field contain the following information:

• N - size of the linear system,

• pivots - index array for partial pivoting in LU factorization,

• last_flag - last error return flag from internal function evaluations.

This solver is constructed to perform the following operations:

8.3. The SUNLinSol_Band Module 219

User Documentation for KINSOL, v7.1.0

• The “setup” call performs an LU factorization with partial (row) pivoting, PA = LU , where P is a permutation
matrix, L is a lower triangular matrix with 1’s on the diagonal, and U is an upper triangular matrix. This
factorization is stored in-place on the input SUNMATRIX_BAND objectA, with pivoting information encoding
P stored in the pivots array.

• The “solve” call performs pivoting and forward and backward substitution using the stored pivots array and the
LU factors held in the SUNMATRIX_BAND object.

• A must be allocated to accommodate the increase in upper bandwidth that occurs during factorization. More
precisely, if A is a band matrix with upper bandwidth mu and lower bandwidth ml, then the upper triangular
factor U can have upper bandwidth as big as smu = MIN(N-1,mu+ml). The lower triangular factor L has lower
bandwidth ml.

The SUNLinSol_Band module defines band implementations of all “direct” linear solver operations listed in §8.1:

• SUNLinSolGetType_Band

• SUNLinSolInitialize_Band – this does nothing, since all consistency checks are performed at solver creation.

• SUNLinSolSetup_Band – this performs the LU factorization.

• SUNLinSolSolve_Band – this uses the LU factors and pivots array to perform the solve.

• SUNLinSolLastFlag_Band

• SUNLinSolSpace_Band – this only returns information for the storage within the solver object, i.e. storage for
N, last_flag, and pivots.

• SUNLinSolFree_Band

8.4 The SUNLinSol_Dense Module

The SUNLinSol_Dense implementation of the SUNLinearSolver class is designed to be used with the corresponding
SUNMATRIX_DENSE matrix type, and one of the serial or shared-memory N_Vector implementations (NVEC-
TOR_SERIAL, NVECTOR_OPENMP or NVECTOR_PTHREADS).

8.4.1 SUNLinSol_Dense Usage

The header file to be included when using this module is sunlinsol/sunlinsol_dense.h. The SUNLinSol_Dense
module is accessible from all SUNDIALS solvers without linking to the libsundials_sunlinsoldense module
library.

The module SUNLinSol_Dense provides the following user-callable constructor routine:

SUNLinearSolver SUNLinSol_Dense(N_Vector y, SUNMatrix A, SUNContext sunctx)
This function creates and allocates memory for a dense SUNLinearSolver.

Arguments:

• y – vector used to determine the linear system size.

• A – matrix used to assess compatibility.

• sunctx – the SUNContext object (see §4.2)

Return value:
New SUNLinSol_Dense object, or NULL if either A or y are incompatible.

220 Chapter 8. Linear Algebraic Solvers

User Documentation for KINSOL, v7.1.0

Notes:
This routine will perform consistency checks to ensure that it is called with consistent N_Vector and SUN-
Matrix implementations. These are currently limited to the SUNMATRIX_DENSE matrix type and the
NVECTOR_SERIAL, NVECTOR_OPENMP, and NVECTOR_PTHREADS vector types. As additional
compatible matrix and vector implementations are added to SUNDIALS, these will be included within this
compatibility check.

8.4.2 SUNLinSol_Dense Description

The SUNLinSol_Dense module defines the content field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_Dense {
sunindextype N;
sunindextype *pivots;
sunindextype last_flag;

};

These entries of the content field contain the following information:

• N - size of the linear system,

• pivots - index array for partial pivoting in LU factorization,

• last_flag - last error return flag from internal function evaluations.

This solver is constructed to perform the following operations:

• The “setup” call performs anLU factorization with partial (row) pivoting (O(N3) cost), PA = LU , whereP is a
permutation matrix, L is a lower triangular matrix with 1’s on the diagonal, and U is an upper triangular matrix.
This factorization is stored in-place on the input SUNMATRIX_DENSE object A, with pivoting information
encoding P stored in the pivots array.

• The “solve” call performs pivoting and forward and backward substitution using the stored pivots array and the
LU factors held in the SUNMATRIX_DENSE object (O(N2) cost).

The SUNLinSol_Dense module defines dense implementations of all “direct” linear solver operations listed in §8.1:

• SUNLinSolGetType_Dense

• SUNLinSolInitialize_Dense – this does nothing, since all consistency checks are performed at solver cre-
ation.

• SUNLinSolSetup_Dense – this performs the LU factorization.

• SUNLinSolSolve_Dense – this uses the LU factors and pivots array to perform the solve.

• SUNLinSolLastFlag_Dense

• SUNLinSolSpace_Dense – this only returns information for the storage within the solver object, i.e. storage for
N, last_flag, and pivots.

• SUNLinSolFree_Dense

8.4. The SUNLinSol_Dense Module 221

User Documentation for KINSOL, v7.1.0

8.5 The SUNLinSol_KLU Module

The SUNLinSol_KLU implementation of the SUNLinearSolver class is designed to be used with the corresponding
SUNMATRIX_SPARSE matrix type, and one of the serial or shared-memory N_Vector implementations (NVEC-
TOR_SERIAL, NVECTOR_OPENMP, or NVECTOR_PTHREADS).

8.5.1 SUNLinSol_KLU Usage

The header file to be included when using this module is sunlinsol/sunlinsol_klu.h. The installed module library
to link to is libsundials_sunlinsolklu .lib where .lib is typically .so for shared libraries and .a for static libraries.

The module SUNLinSol_KLU provides the following additional user-callable routines:

SUNLinearSolver SUNLinSol_KLU(N_Vector y, SUNMatrix A, SUNContext sunctx)
This constructor function creates and allocates memory for a SUNLinSol_KLU object.

Arguments:

• y – vector used to determine the linear system size.

• A – matrix used to assess compatibility.

• sunctx – the SUNContext object (see §4.2)

Return value:
New SUNLinSol_KLU object, or NULL if either A or y are incompatible.

Notes:
This routine will perform consistency checks to ensure that it is called with consistent N_Vector and SUN-
Matrix implementations. These are currently limited to the SUNMATRIX_SPARSE matrix type (using
either CSR or CSC storage formats) and the NVECTOR_SERIAL, NVECTOR_OPENMP, and NVEC-
TOR_PTHREADS vector types. As additional compatible matrix and vector implementations are added
to SUNDIALS, these will be included within this compatibility check.

SUNErrCode SUNLinSol_KLUReInit(SUNLinearSolver S, SUNMatrix A, sunindextype nnz, int reinit_type)
This function reinitializes memory and flags for a new factorization (symbolic and numeric) to be conducted at
the next solver setup call. This routine is useful in the cases where the number of nonzeroes has changed or if
the structure of the linear system has changed which would require a new symbolic (and numeric factorization).

Arguments:

• S – existing SUNLinSol_KLU object to reinitialize.

• A – sparse SUNMatrix matrix (with updated structure) to use for reinitialization.

• nnz – maximum number of nonzeros expected for Jacobian matrix.

• reinit_type – governs the level of reinitialization. The allowed values are:

1. The Jacobian matrix will be destroyed and a new one will be allocated based on the nnz value
passed to this call. New symbolic and numeric factorizations will be completed at the next solver
setup.

2. Only symbolic and numeric factorizations will be completed. It is assumed that the Jacobian size
has not exceeded the size of nnz given in the sparse matrix provided to the original constructor
routine (or the previous SUNKLUReInit call).

Return value:

• A SUNErrCode

222 Chapter 8. Linear Algebraic Solvers

User Documentation for KINSOL, v7.1.0

Notes:
This routine assumes no other changes to solver use are necessary.

SUNErrCode SUNLinSol_KLUSetOrdering(SUNLinearSolver S, int ordering_choice)
This function sets the ordering used by KLU for reducing fill in the linear solve.

Arguments:

• S – existing SUNLinSol_KLU object to update.

• ordering_choice – type of ordering to use, options are:

0. AMD,

1. COLAMD, and

2. the natural ordering.

The default is 1 for COLAMD.

Return value:

• A SUNErrCode

sun_klu_symbolic *SUNLinSol_KLUGetSymbolic(SUNLinearSolver S)
This function returns a pointer to the KLU symbolic factorization stored in the SUNLinSol_KLU content
structure.

type sun_klu_symbolic
This type is an alias that depends on the SUNDIALS index size, see sunindextype and SUNDIALS_-
INDEX_SIZE. It is equivalent to:

• klu_symbolic when SUNDIALS is compiled with 32-bit indices

• klu_l_symbolic when SUNDIALS is compiled with 64-bit indices

sun_klu_numeric *SUNLinSol_KLUGetNumeric(SUNLinearSolver S)
This function returns a pointer to the KLU numeric factorization stored in the SUNLinSol_KLU content struc-
ture.

type sun_klu_numeric
This type is an alias that depends on the SUNDIALS index size, see sunindextype and SUNDIALS_-
INDEX_SIZE. It is equivalent to:

• klu_numeric when SUNDIALS is compiled with 32-bit indices

• klu_l_numeric when SUNDIALS is compiled with 64-bit indices

sun_klu_common *SUNLinSol_KLUGetCommon(SUNLinearSolver S)
This function returns a pointer to the KLU common structure stored in the SUNLinSol_KLU content structure.

type sun_klu_common
This type is an alias that depends on the SUNDIALS index size, see sunindextype and SUNDIALS_-
INDEX_SIZE. It is equivalent to:

• klu_common when SUNDIALS is compiled with 32-bit indices

• klu_l_common when SUNDIALS is compiled with 64-bit indices

8.5. The SUNLinSol_KLU Module 223

User Documentation for KINSOL, v7.1.0

8.5.2 SUNLinSol_KLU Description

The SUNLinSol_KLU module defines the content field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_KLU {
int last_flag;
int first_factorize;
sun_klu_symbolic *symbolic;
sun_klu_numeric *numeric;
sun_klu_common common;
sunindextype (*klu_solver)(sun_klu_symbolic*, sun_klu_numeric*,

sunindextype, sunindextype,
double*, sun_klu_common*);

};

These entries of the content field contain the following information:

• last_flag - last error return flag from internal function evaluations,

• first_factorize - flag indicating whether the factorization has ever been performed,

• symbolic - KLU storage structure for symbolic factorization components, with underlying type klu_symbolic
or klu_l_symbolic, depending on whether SUNDIALS was installed with 32-bit versus 64-bit indices, respec-
tively,

• numeric - KLU storage structure for numeric factorization components, with underlying type klu_numeric or
klu_l_numeric, depending on whether SUNDIALS was installed with 32-bit versus 64-bit indices, respectively,

• common - storage structure for common KLU solver components, with underlying type klu_common or klu_-
l_common, depending on whether SUNDIALS was installed with 32-bit versus 64-bit indices, respectively,

• klu_solver – pointer to the appropriate KLU solver function (depending on whether it is using a CSR or CSC
sparse matrix, and on whether SUNDIALS was installed with 32-bit or 64-bit indices).

The SUNLinSol_KLU module is a SUNLinearSolver wrapper for the KLU sparse matrix factorization and solver
library written by Tim Davis and collaborators ([4, 20]). In order to use the SUNLinSol_KLU interface to KLU, it is
assumed that KLU has been installed on the system prior to installation of SUNDIALS, and that SUNDIALS has been
configured appropriately to link with KLU (see §11.4 for details). Additionally, this wrapper only supports double-
precision calculations, and therefore cannot be compiled if SUNDIALS is configured to have sunrealtype set to
either extended or single (see §4.1 for details). Since the KLU library supports both 32-bit and 64-bit integers, this
interface will be compiled for either of the available sunindextype options.

The KLU library has a symbolic factorization routine that computes the permutation of the linear system matrix to block
triangular form and the permutations that will pre-order the diagonal blocks (the only ones that need to be factored)
to reduce fill-in (using AMD, COLAMD, CHOLAMD, natural, or an ordering given by the user). Of these ordering
choices, the default value in the SUNLinSol_KLU module is the COLAMD ordering.

KLU breaks the factorization into two separate parts. The first is a symbolic factorization and the second is a numeric
factorization that returns the factored matrix along with final pivot information. KLU also has a refactor routine that can
be called instead of the numeric factorization. This routine will reuse the pivot information. This routine also returns
diagnostic information that a user can examine to determine if numerical stability is being lost and a full numerical
factorization should be done instead of the refactor.

Since the linear systems that arise within the context of SUNDIALS calculations will typically have identical sparsity
patterns, the SUNLinSol_KLU module is constructed to perform the following operations:

• The first time that the “setup” routine is called, it performs the symbolic factorization, followed by an initial
numerical factorization.

224 Chapter 8. Linear Algebraic Solvers

User Documentation for KINSOL, v7.1.0

• On subsequent calls to the “setup” routine, it calls the appropriate KLU “refactor” routine, followed by estimates
of the numerical conditioning using the relevant “rcond”, and if necessary “condest”, routine(s). If these esti-
mates of the condition number are larger than ε−2/3 (where ε is the double-precision unit roundoff), then a new
factorization is performed.

• The module includes the routine SUNKLUReInit, that can be called by the user to force a full refactorization at
the next “setup” call.

• The “solve” call performs pivoting and forward and backward substitution using the stored KLU data structures.
We note that in this solve KLU operates on the native data arrays for the right-hand side and solution vectors,
without requiring costly data copies.

The SUNLinSol_KLU module defines implementations of all “direct” linear solver operations listed in §8.1:

• SUNLinSolGetType_KLU

• SUNLinSolInitialize_KLU – this sets the first_factorize flag to 1, forcing both symbolic and numerical
factorizations on the subsequent “setup” call.

• SUNLinSolSetup_KLU – this performs either a LU factorization or refactorization of the input matrix.

• SUNLinSolSolve_KLU – this calls the appropriate KLU solve routine to utilize the LU factors to solve the linear
system.

• SUNLinSolLastFlag_KLU

• SUNLinSolSpace_KLU – this only returns information for the storage within the solver interface, i.e. storage for
the integers last_flag and first_factorize. For additional space requirements, see the KLU documenta-
tion.

• SUNLinSolFree_KLU

8.6 The SUNLinSol_LapackBand Module

The SUNLinSol_LapackBand implementation of the SUNLinearSolver class is designed to be used with the cor-
responding SUNMATRIX_BAND matrix type, and one of the serial or shared-memory N_Vector implementations
(NVECTOR_SERIAL, NVECTOR_OPENMP, or NVECTOR_PTHREADS). The

8.6.1 SUNLinSol_LapackBand Usage

The header file to be included when using this module is sunlinsol/sunlinsol_lapackband.h. The installed
module library to link to is libsundials_sunlinsollapackband .lib where .lib is typically .so for shared libraries
and .a for static libraries.

The module SUNLinSol_LapackBand provides the following user-callable routine:

SUNLinearSolver SUNLinSol_LapackBand(N_Vector y, SUNMatrix A, SUNContext sunctx)
This function creates and allocates memory for a LAPACK band SUNLinearSolver.

Arguments:

• y – vector used to determine the linear system size.

• A – matrix used to assess compatibility.

• sunctx – the SUNContext object (see §4.2)

Return value:
New SUNLinSol_LapackBand object, or NULL if either A or y are incompatible.

8.6. The SUNLinSol_LapackBand Module 225

User Documentation for KINSOL, v7.1.0

Notes:
This routine will perform consistency checks to ensure that it is called with consistent N_Vector and
SUNMatrix implementations. These are currently limited to the SUNMATRIX_BAND matrix type and the
NVECTOR_SERIAL, NVECTOR_OPENMP, and NVECTOR_PTHREADS vector types. As additional
compatible matrix and vector implementations are added to SUNDIALS, these will be included within this
compatibility check.

Additionally, this routine will verify that the input matrix A is allocated with appropriate upper bandwidth
storage for the LU factorization.

8.6.2 SUNLinSol_LapackBand Description

SUNLinSol_LapackBand module defines the content field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_Band {
sunindextype N;
sunindextype *pivots;
sunindextype last_flag;

};

These entries of the content field contain the following information:

• N - size of the linear system,

• pivots - index array for partial pivoting in LU factorization,

• last_flag - last error return flag from internal function evaluations.

The SUNLinSol_LapackBand module is a SUNLinearSolver wrapper for the LAPACK band matrix factorization
and solve routines, *GBTRF and *GBTRS, where * is either D or S, depending on whether SUNDIALS was configured
to have sunrealtype set to double or single, respectively (see §4.1 for details). In order to use the SUNLinSol_-
LapackBand module it is assumed that LAPACK has been installed on the system prior to installation of SUNDIALS,
and that SUNDIALS has been configured appropriately to link with LAPACK (see §11.4 for details). We note that since
there do not exist 128-bit floating-point factorization and solve routines in LAPACK, this interface cannot be compiled
when using extended precision for sunrealtype. Similarly, since there do not exist 64-bit integer LAPACK routines,
the SUNLinSol_LapackBand module also cannot be compiled when using int64_t for the sunindextype.

This solver is constructed to perform the following operations:

• The “setup” call performs an LU factorization with partial (row) pivoting, PA = LU , where P is a permutation
matrix, L is a lower triangular matrix with 1’s on the diagonal, and U is an upper triangular matrix. This
factorization is stored in-place on the input SUNMATRIX_BAND objectA, with pivoting information encoding
P stored in the pivots array.

• The “solve” call performs pivoting and forward and backward substitution using the stored pivots array and the
LU factors held in the SUNMATRIX_BAND object.

• A must be allocated to accommodate the increase in upper bandwidth that occurs during factorization. More
precisely, if A is a band matrix with upper bandwidth mu and lower bandwidth ml, then the upper triangular
factor U can have upper bandwidth as big as smu = MIN(N-1,mu+ml). The lower triangular factor L has lower
bandwidth ml.

The SUNLinSol_LapackBand module defines band implementations of all “direct” linear solver operations listed in
§8.1:

• SUNLinSolGetType_LapackBand

• SUNLinSolInitialize_LapackBand – this does nothing, since all consistency checks are performed at solver
creation.

226 Chapter 8. Linear Algebraic Solvers

User Documentation for KINSOL, v7.1.0

• SUNLinSolSetup_LapackBand – this calls either DGBTRF or SGBTRF to perform the LU factorization.

• SUNLinSolSolve_LapackBand – this calls either DGBTRS or SGBTRS to use the LU factors and pivots array
to perform the solve.

• SUNLinSolLastFlag_LapackBand

• SUNLinSolSpace_LapackBand – this only returns information for the storage within the solver object, i.e. stor-
age for N, last_flag, and pivots.

• SUNLinSolFree_LapackBand

8.7 The SUNLinSol_LapackDense Module

The SUNLinSol_LapackDense implementation of the SUNLinearSolver class is designed to be used with the cor-
responding SUNMATRIX_DENSE matrix type, and one of the serial or shared-memory N_Vector implementations
(NVECTOR_SERIAL, NVECTOR_OPENMP, or NVECTOR_PTHREADS).

8.7.1 SUNLinSol_LapackDense Usage

The header file to be included when using this module is sunlinsol/sunlinsol_lapackdense.h. The installed
module library to link to is libsundials_sunlinsollapackdense .lib where .lib is typically .so for shared libraries
and .a for static libraries.

The module SUNLinSol_LapackDense provides the following additional user-callable constructor routine:

SUNLinearSolver SUNLinSol_LapackDense(N_Vector y, SUNMatrix A, SUNContext sunctx)
This function creates and allocates memory for a LAPACK dense SUNLinearSolver.

Arguments:

• y – vector used to determine the linear system size.

• A – matrix used to assess compatibility.

• sunctx – the SUNContext object (see §4.2)

Return value:
New SUNLinSol_LapackDense object, or NULL if either A or y are incompatible.

Notes:
This routine will perform consistency checks to ensure that it is called with consistent N_Vector and SUN-
Matrix implementations. These are currently limited to the SUNMATRIX_DENSE matrix type and the
NVECTOR_SERIAL, NVECTOR_OPENMP, and NVECTOR_PTHREADS vector types. As additional
compatible matrix and vector implementations are added to SUNDIALS, these will be included within this
compatibility check.

8.7. The SUNLinSol_LapackDense Module 227

User Documentation for KINSOL, v7.1.0

8.7.2 SUNLinSol_LapackDense Description

The SUNLinSol_LapackDense module defines the content field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_Dense {
sunindextype N;
sunindextype *pivots;
sunindextype last_flag;

};

These entries of the content field contain the following information:

• N - size of the linear system,

• pivots - index array for partial pivoting in LU factorization,

• last_flag - last error return flag from internal function evaluations.

The SUNLinSol_LapackDense module is a SUNLinearSolver wrapper for the LAPACK dense matrix factorization
and solve routines, *GETRF and *GETRS, where * is either D or S, depending on whether SUNDIALS was configured
to have sunrealtype set to double or single, respectively (see §4.1 for details). In order to use the SUNLinSol_-
LapackDense module it is assumed that LAPACK has been installed on the system prior to installation of SUNDIALS,
and that SUNDIALS has been configured appropriately to link with LAPACK (see §11.4 for details). We note that since
there do not exist 128-bit floating-point factorization and solve routines in LAPACK, this interface cannot be compiled
when using extended precision for sunrealtype. Similarly, since there do not exist 64-bit integer LAPACK routines,
the SUNLinSol_LapackDense module also cannot be compiled when using int64_t for the sunindextype.

This solver is constructed to perform the following operations:

• The “setup” call performs anLU factorization with partial (row) pivoting (O(N3) cost), PA = LU , whereP is a
permutation matrix, L is a lower triangular matrix with 1’s on the diagonal, and U is an upper triangular matrix.
This factorization is stored in-place on the input SUNMATRIX_DENSE object A, with pivoting information
encoding P stored in the pivots array.

• The “solve” call performs pivoting and forward and backward substitution using the stored pivots array and the
LU factors held in the SUNMATRIX_DENSE object (O(N2) cost).

The SUNLinSol_LapackDense module defines dense implementations of all “direct” linear solver operations listed in
§8.1:

• SUNLinSolGetType_LapackDense

• SUNLinSolInitialize_LapackDense – this does nothing, since all consistency checks are performed at solver
creation.

• SUNLinSolSetup_LapackDense – this calls either DGETRF or SGETRF to perform the LU factorization.

• SUNLinSolSolve_LapackDense – this calls either DGETRS or SGETRS to use the LU factors and pivots array
to perform the solve.

• SUNLinSolLastFlag_LapackDense

• SUNLinSolSpace_LapackDense – this only returns information for the storage within the solver object, i.e.
storage for N, last_flag, and pivots.

• SUNLinSolFree_LapackDense

228 Chapter 8. Linear Algebraic Solvers

User Documentation for KINSOL, v7.1.0

8.8 The SUNLinSol_MagmaDense Module

The SUNLinearSolver_MagmaDense implementation of the SUNLinearSolver class is designed to be used with
the SUNMATRIX_MAGMADENSE matrix, and a GPU-enabled vector. The header file to include when us-
ing this module is sunlinsol/sunlinsol_magmadense.h. The installed library to link to is libsundials_-
sunlinsolmagmadense.lib where lib is typically .so for shared libraries and .a for static libraries.

Warning: The SUNLinearSolver_MagmaDense module is experimental and subject to change.

8.8.1 SUNLinearSolver_MagmaDense Description

The SUNLinearSolver_MagmaDense implementation provides an interface to the dense LU and dense batched LU
methods in the MAGMA linear algebra library [48]. The batched LU methods are leveraged when solving block
diagonal linear systems of the form 

A0 0 · · · 0
0 A1 · · · 0
...

...
. . .

...
0 0 · · · An−1

xj = bj .

8.8.2 SUNLinearSolver_MagmaDense Functions

The SUNLinearSolver_MagmaDense module defines implementations of all “direct” linear solver operations listed in
§8.1:

• SUNLinSolGetType_MagmaDense

• SUNLinSolInitialize_MagmaDense

• SUNLinSolSetup_MagmaDense

• SUNLinSolSolve_MagmaDense

• SUNLinSolLastFlag_MagmaDense

• SUNLinSolFree_MagmaDense

In addition, the module provides the following user-callable routines:

SUNLinearSolver SUNLinSol_MagmaDense(N_Vector y, SUNMatrix A, SUNContext sunctx)
This constructor function creates and allocates memory for a SUNLinearSolver object.

Arguments:

• y – a vector for checking compatibility with the solver.

• A – a SUNMATRIX_MAGMADENSE matrix for checking compatibility with the solver.

• sunctx – the SUNContext object (see §4.2)

Return value:
If successful, a SUNLinearSolver object. If either A or y are incompatible then this routine will return
NULL. This routine analyzes the input matrix and vector to determine the linear system size and to assess
compatibility with the solver.

8.8. The SUNLinSol_MagmaDense Module 229

https://icl.utk.edu/magma/index.html

User Documentation for KINSOL, v7.1.0

SUNErrCode SUNLinSol_MagmaDense_SetAsync(SUNLinearSolver LS, sunbooleantype onoff)
This function can be used to toggle the linear solver between asynchronous and synchronous modes. In asyn-
chronous mode (default), SUNLinearSolver operations are asynchronous with respect to the host. In synchronous
mode, the host and GPU device are synchronized prior to the operation returning.

Arguments:

• LS – a SUNLinSol_MagmaDense object

• onoff – 0 for synchronous mode or 1 for asynchronous mode (default 1)

Return value:

• A SUNErrCode

8.8.3 SUNLinearSolver_MagmaDense Content

The SUNLinearSolver_MagmaDense module defines the object content field of a SUNLinearSolver to be the follow-
ing structure:

struct _SUNLinearSolverContent_MagmaDense {
int last_flag;
sunbooleantype async;
sunindextype N;
SUNMemory pivots;
SUNMemory pivotsarr;
SUNMemory dpivotsarr;
SUNMemory infoarr;
SUNMemory rhsarr;
SUNMemoryHelper memhelp;
magma_queue_t q;

};

8.9 The SUNLinSol_OneMklDense Module

The SUNLinearSolver_OneMklDense implementation of the SUNLinearSolver class interfaces to the direct linear
solvers from the Intel oneAPI Math Kernel Library (oneMKL) for solving dense systems or block-diagonal systems
with dense blocks. This linear solver is best paired with the SUNMatrix_OneMklDense matrix.

The header file to include when using this class is sunlinsol/sunlinsol_onemkldense.h. The installed library
to link to is libsundials_sunlinsolonemkldense.lib where lib is typically .so for shared libraries and .a for
static libraries.

Warning: The SUNLinearSolver_OneMklDense class is experimental and subject to change.

230 Chapter 8. Linear Algebraic Solvers

https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl.html

User Documentation for KINSOL, v7.1.0

8.9.1 SUNLinearSolver_OneMklDense Functions

The SUNLinearSolver_OneMklDense class defines implementations of all “direct” linear solver operations listed in
§8.1:

• SUNLinSolGetType_OneMklDense – returns SUNLINEARSOLVER_ONEMKLDENSE

• SUNLinSolInitialize_OneMklDense

• SUNLinSolSetup_OneMklDense

• SUNLinSolSolve_OneMklDense

• SUNLinSolLastFlag_OneMklDense

• SUNLinSolFree_OneMklDense

In addition, the class provides the following user-callable routines:

SUNLinearSolver SUNLinSol_OneMklDense(N_Vector y, SUNMatrix A, SUNContext sunctx)
This constructor function creates and allocates memory for a SUNLinearSolver object.

Arguments:

• y – a vector for checking compatibility with the solver.

• A – a SUNMatrix_OneMklDense matrix for checking compatibility with the solver.

• sunctx – the SUNContext object (see §4.2)

Return value:
If successful, a SUNLinearSolver object. If either A or y are incompatible then this routine will return
NULL. This routine analyzes the input matrix and vector to determine the linear system size and to assess
compatibility with the solver.

8.9.2 SUNLinearSolver_OneMklDense Usage Notes

Warning: The SUNLinearSolver_OneMklDense class only supports 64-bit indexing, thus SUNDIALS must be
built for 64-bit indexing to use this class.

When using the SUNLinearSolver_OneMklDense class with a SUNDIALS package (e.g. CVODE), the queue
given to the matrix is also used for the linear solver.

8.10 The SUNLinSol_PCG Module

The SUNLinSol_PCG implementation of the SUNLinearSolver class performs the PCG (Preconditioned Conjugate
Gradient [32]) method; this is an iterative linear solver that is designed to be compatible with any N_Vector implemen-
tation that supports a minimal subset of operations (N_VClone(), N_VDotProd(), N_VScale(), N_VLinearSum(),
N_VProd(), and N_VDestroy()). Unlike the SPGMR and SPFGMR algorithms, PCG requires a fixed amount of
memory that does not increase with the number of allowed iterations.

Unlike all of the other iterative linear solvers supplied with SUNDIALS, PCG should only be used on symmetric linear
systems (e.g. mass matrix linear systems encountered in ARKODE). As a result, the explanation of the role of scaling
and preconditioning matrices given in general must be modified in this scenario. The PCG algorithm solves a linear
system Ax = b where A is a symmetric (AT = A), real-valued matrix. Preconditioning is allowed, and is applied in
a symmetric fashion on both the right and left. Scaling is also allowed and is applied symmetrically. We denote the
preconditioner and scaling matrices as follows:

8.10. The SUNLinSol_PCG Module 231

User Documentation for KINSOL, v7.1.0

• P is the preconditioner (assumed symmetric),

• S is a diagonal matrix of scale factors.

The matrices A and P are not required explicitly; only routines that provide A and P−1 as operators are required. The
diagonal of the matrix S is held in a single N_Vector, supplied by the user.

In this notation, PCG applies the underlying CG algorithm to the equivalent transformed system

Ãx̃ = b̃ (8.3)

where

Ã = SP−1AP−1S,

b̃ = SP−1b,

x̃ = S−1Px.

(8.4)

The scaling matrix must be chosen so that the vectors SP−1b and S−1Px have dimensionless components.

The stopping test for the PCG iterations is on the L2 norm of the scaled preconditioned residual:

‖b̃− Ãx̃‖2 < δ

⇔
‖SP−1b− SP−1Ax‖2 < δ

⇔
‖P−1b− P−1Ax‖S < δ

where ‖v‖S =
√
vTSTSv, with an input tolerance δ.

8.10.1 SUNLinSol_PCG Usage

The header file to be included when using this module is sunlinsol/sunlinsol_pcg.h. The SUNLinSol_PCG
module is accessible from all SUNDIALS solvers without linking to the libsundials_sunlinsolpcgmodule library.

The module SUNLinSol_PCG provides the following user-callable routines:

SUNLinearSolver SUNLinSol_PCG(N_Vector y, int pretype, int maxl, SUNContext sunctx)
This constructor function creates and allocates memory for a PCG SUNLinearSolver.

Arguments:

• y – a template vector.

• pretype – a flag indicating the type of preconditioning to use:

– SUN_PREC_NONE

– SUN_PREC_LEFT

– SUN_PREC_RIGHT

– SUN_PREC_BOTH

• maxl – the maximum number of linear iterations to allow.

• sunctx – the SUNContext object (see §4.2)

Return value:
If successful, a SUNLinearSolver object. If either y is incompatible then this routine will return NULL.

232 Chapter 8. Linear Algebraic Solvers

User Documentation for KINSOL, v7.1.0

Notes:
This routine will perform consistency checks to ensure that it is called with a consistent N_Vector imple-
mentation (i.e. that it supplies the requisite vector operations).

A maxl argument that is ≤ 0 will result in the default value (5).

Since the PCG algorithm is designed to only support symmetric preconditioning, then any of the pre-
type inputs SUN_PREC_LEFT, SUN_PREC_RIGHT, or SUN_PREC_BOTH will result in use of the symmetric
preconditioner; any other integer input will result in the default (no preconditioning). Although some SUN-
DIALS solvers are designed to only work with left preconditioning (IDA and IDAS) and others with only
right preconditioning (KINSOL), PCG should only be used with these packages when the linear systems
are known to be symmetric. Since the scaling of matrix rows and columns must be identical in a symmetric
matrix, symmetric preconditioning should work appropriately even for packages designed with one-sided
preconditioning in mind.

SUNErrCode SUNLinSol_PCGSetPrecType(SUNLinearSolver S, int pretype)
This function updates the flag indicating use of preconditioning.

Arguments:

• S – SUNLinSol_PCG object to update.

• pretype – a flag indicating the type of preconditioning to use:

– SUN_PREC_NONE

– SUN_PREC_LEFT

– SUN_PREC_RIGHT

– SUN_PREC_BOTH

Return value:

• A SUNErrCode

Notes:
As above, any one of the input values, SUN_PREC_LEFT, SUN_PREC_RIGHT, or SUN_PREC_BOTHwill enable
preconditioning; SUN_PREC_NONE disables preconditioning.

SUNErrCode SUNLinSol_PCGSetMaxl(SUNLinearSolver S, int maxl)
This function updates the number of linear solver iterations to allow.

Arguments:

• S – SUNLinSol_PCG object to update.

• maxl – maximum number of linear iterations to allow. Any non-positive input will result in the default
value (5).

Return value:

• A SUNErrCode

8.10. The SUNLinSol_PCG Module 233

User Documentation for KINSOL, v7.1.0

8.10.2 SUNLinSol_PCG Description

The SUNLinSol_PCG module defines the content field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_PCG {
int maxl;
int pretype;
sunbooleantype zeroguess;
int numiters;
sunrealtype resnorm;
int last_flag;
SUNATimesFn ATimes;
void* ATData;
SUNPSetupFn Psetup;
SUNPSolveFn Psolve;
void* PData;
N_Vector s;
N_Vector r;
N_Vector p;
N_Vector z;
N_Vector Ap;

};

These entries of the content field contain the following information:

• maxl - number of PCG iterations to allow (default is 5),

• pretype - flag for use of preconditioning (default is none),

• numiters - number of iterations from the most-recent solve,

• resnorm - final linear residual norm from the most-recent solve,

• last_flag - last error return flag from an internal function,

• ATimes - function pointer to perform Av product,

• ATData - pointer to structure for ATimes,

• Psetup - function pointer to preconditioner setup routine,

• Psolve - function pointer to preconditioner solve routine,

• PData - pointer to structure for Psetup and Psolve,

• s - vector pointer for supplied scaling matrix (default is NULL),

• r - a N_Vector which holds the preconditioned linear system residual,

• p, z, Ap - N_Vector used for workspace by the PCG algorithm.

This solver is constructed to perform the following operations:

• During construction all N_Vector solver data is allocated, with vectors cloned from a template N_Vector that
is input, and default solver parameters are set.

• User-facing “set” routines may be called to modify default solver parameters.

• Additional “set” routines are called by the SUNDIALS solver that interfaces with SUNLinSol_PCG to supply
the ATimes, PSetup, and Psolve function pointers and s scaling vector.

• In the “initialize” call, the solver parameters are checked for validity.

234 Chapter 8. Linear Algebraic Solvers

User Documentation for KINSOL, v7.1.0

• In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the SUNDIALS
solver itself, that translates between the generic PSetup function and the solver-specific routine (solver-supplied
or user-supplied).

• In the “solve” call the PCG iteration is performed. This will include scaling and preconditioning if those options
have been supplied.

The SUNLinSol_PCG module defines implementations of all “iterative” linear solver operations listed in §8.1:

• SUNLinSolGetType_PCG

• SUNLinSolInitialize_PCG

• SUNLinSolSetATimes_PCG

• SUNLinSolSetPreconditioner_PCG

• SUNLinSolSetScalingVectors_PCG – since PCG only supports symmetric scaling, the second N_Vector
argument to this function is ignored.

• SUNLinSolSetZeroGuess_PCG – note the solver assumes a non-zero guess by default and the zero guess flag
is reset to SUNFALSE after each call to SUNLinSolSolve_PCG.

• SUNLinSolSetup_PCG

• SUNLinSolSolve_PCG

• SUNLinSolNumIters_PCG

• SUNLinSolResNorm_PCG

• SUNLinSolResid_PCG

• SUNLinSolLastFlag_PCG

• SUNLinSolSpace_PCG

• SUNLinSolFree_PCG

8.11 The SUNLinSol_SPBCGS Module

The SUNLinSol_SPBCGS implementation of the SUNLinearSolver class performs a Scaled, Preconditioned, Bi-
Conjugate Gradient, Stabilized [51] method; this is an iterative linear solver that is designed to be compatible with any
N_Vector implementation that supports a minimal subset of operations (N_VClone(), N_VDotProd(), N_VScale(),
N_VLinearSum(), N_VProd(), N_VDiv(), and N_VDestroy()). Unlike the SPGMR and SPFGMR algorithms, SP-
BCGS requires a fixed amount of memory that does not increase with the number of allowed iterations.

8.11.1 SUNLinSol_SPBCGS Usage

The header file to be included when using this module is sunlinsol/sunlinsol_spbcgs.h. The SUNLinSol_-
SPBCGS module is accessible from all SUNDIALS solvers without linking to the libsundials_sunlinsolspbcgs
module library.

The module SUNLinSol_SPBCGS provides the following user-callable routines:

SUNLinearSolver SUNLinSol_SPBCGS(N_Vector y, int pretype, int maxl, SUNContext sunctx)
This constructor function creates and allocates memory for a SPBCGS SUNLinearSolver.

Arguments:

• y – a template vector.

8.11. The SUNLinSol_SPBCGS Module 235

User Documentation for KINSOL, v7.1.0

• pretype – a flag indicating the type of preconditioning to use:

– SUN_PREC_NONE

– SUN_PREC_LEFT

– SUN_PREC_RIGHT

– SUN_PREC_BOTH

• maxl – the maximum number of linear iterations to allow.

• sunctx – the SUNContext object (see §4.2)

Return value:
If successful, a SUNLinearSolver object. If either y is incompatible then this routine will return NULL.

Notes:
This routine will perform consistency checks to ensure that it is called with a consistent N_Vector imple-
mentation (i.e. that it supplies the requisite vector operations).

A maxl argument that is ≤ 0 will result in the default value (5).

Some SUNDIALS solvers are designed to only work with left preconditioning (IDA and IDAS) and others
with only right preconditioning (KINSOL). While it is possible to configure a SUNLinSol_SPBCGS object
to use any of the preconditioning options with these solvers, this use mode is not supported and may result
in inferior performance.

Note: With SUN_PREC_RIGHT or SUN_PREC_BOTH the initial guess must be zero (use SUNLinSolSetZe-
roGuess() to indicate the initial guess is zero).

SUNErrCode SUNLinSol_SPBCGSSetPrecType(SUNLinearSolver S, int pretype)
This function updates the flag indicating use of preconditioning.

Arguments:

• S – SUNLinSol_SPBCGS object to update.

• pretype – a flag indicating the type of preconditioning to use:

– SUN_PREC_NONE

– SUN_PREC_LEFT

– SUN_PREC_RIGHT

– SUN_PREC_BOTH

Return value:

• A SUNErrCode

SUNErrCode SUNLinSol_SPBCGSSetMaxl(SUNLinearSolver S, int maxl)
This function updates the number of linear solver iterations to allow.

Arguments:

• S – SUNLinSol_SPBCGS object to update.

• maxl – maximum number of linear iterations to allow. Any non-positive input will result in the default
value (5).

Return value:

• A SUNErrCode

236 Chapter 8. Linear Algebraic Solvers

User Documentation for KINSOL, v7.1.0

8.11.2 SUNLinSol_SPBCGS Description

The SUNLinSol_SPBCGS module defines the content field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_SPBCGS {
int maxl;
int pretype;
sunbooleantype zeroguess;
int numiters;
sunrealtype resnorm;
int last_flag;
SUNATimesFn ATimes;
void* ATData;
SUNPSetupFn Psetup;
SUNPSolveFn Psolve;
void* PData;
N_Vector s1;
N_Vector s2;
N_Vector r;
N_Vector r_star;
N_Vector p;
N_Vector q;
N_Vector u;
N_Vector Ap;
N_Vector vtemp;

};

These entries of the content field contain the following information:

• maxl - number of SPBCGS iterations to allow (default is 5),

• pretype - flag for type of preconditioning to employ (default is none),

• numiters - number of iterations from the most-recent solve,

• resnorm - final linear residual norm from the most-recent solve,

• last_flag - last error return flag from an internal function,

• ATimes - function pointer to perform Av product,

• ATData - pointer to structure for ATimes,

• Psetup - function pointer to preconditioner setup routine,

• Psolve - function pointer to preconditioner solve routine,

• PData - pointer to structure for Psetup and Psolve,

• s1, s2 - vector pointers for supplied scaling matrices (default is NULL),

• r - a N_Vector which holds the current scaled, preconditioned linear system residual,

• r_star - a N_Vector which holds the initial scaled, preconditioned linear system residual,

• p, q, u, Ap, vtemp - N_Vector used for workspace by the SPBCGS algorithm.

This solver is constructed to perform the following operations:

• During construction all N_Vector solver data is allocated, with vectors cloned from a template N_Vector that
is input, and default solver parameters are set.

• User-facing “set” routines may be called to modify default solver parameters.

8.11. The SUNLinSol_SPBCGS Module 237

User Documentation for KINSOL, v7.1.0

• Additional “set” routines are called by the SUNDIALS solver that interfaces with SUNLinSol_SPBCGS to supply
the ATimes, PSetup, and Psolve function pointers and s1 and s2 scaling vectors.

• In the “initialize” call, the solver parameters are checked for validity.

• In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the SUNDIALS
solver itself, that translates between the generic PSetup function and the solver-specific routine (solver-supplied
or user-supplied).

• In the “solve” call the SPBCGS iteration is performed. This will include scaling and preconditioning if those
options have been supplied.

The SUNLinSol_SPBCGS module defines implementations of all “iterative” linear solver operations listed in §8.1:

• SUNLinSolGetType_SPBCGS

• SUNLinSolInitialize_SPBCGS

• SUNLinSolSetATimes_SPBCGS

• SUNLinSolSetPreconditioner_SPBCGS

• SUNLinSolSetScalingVectors_SPBCGS

• SUNLinSolSetZeroGuess_SPBCGS – note the solver assumes a non-zero guess by default and the zero guess
flag is reset to SUNFALSE after each call to SUNLinSolSolve_SPBCGS.

• SUNLinSolSetup_SPBCGS

• SUNLinSolSolve_SPBCGS

• SUNLinSolNumIters_SPBCGS

• SUNLinSolResNorm_SPBCGS

• SUNLinSolResid_SPBCGS

• SUNLinSolLastFlag_SPBCGS

• SUNLinSolSpace_SPBCGS

• SUNLinSolFree_SPBCGS

8.12 The SUNLinSol_SPFGMR Module

The SUNLinSol_SPFGMR implementation of the SUNLinearSolver class performs a Scaled, Preconditioned, Flex-
ible, Generalized Minimum Residual [45] method; this is an iterative linear solver that is designed to be compatible
with any N_Vector implementation that supports a minimal subset of operations (N_VClone(), N_VDotProd(), N_-
VScale(), N_VLinearSum(), N_VProd(), N_VConst(), N_VDiv(), and N_VDestroy()). Unlike the other Krylov
iterative linear solvers supplied with SUNDIALS, FGMRES is specifically designed to work with a changing precon-
ditioner (e.g. from an iterative method).

238 Chapter 8. Linear Algebraic Solvers

User Documentation for KINSOL, v7.1.0

8.12.1 SUNLinSol_SPFGMR Usage

The header file to be included when using this module is sunlinsol/sunlinsol_spfgmr.h. The SUNLinSol_-
SPFGMR module is accessible from all SUNDIALS solvers without linking to the libsundials_sunlinsolspfgmr
module library.

The module SUNLinSol_SPFGMR provides the following user-callable routines:

SUNLinearSolver SUNLinSol_SPFGMR(N_Vector y, int pretype, int maxl, SUNContext sunctx)
This constructor function creates and allocates memory for a SPFGMR SUNLinearSolver.

Arguments:

• y – a template vector.

• pretype – a flag indicating the type of preconditioning to use:

– SUN_PREC_NONE

– SUN_PREC_LEFT

– SUN_PREC_RIGHT

– SUN_PREC_BOTH

• maxl – the number of Krylov basis vectors to use.

• sunctx – the SUNContext object (see §4.2)

Return value:
If successful, a SUNLinearSolver object. If either y is incompatible then this routine will return NULL.

Notes:
This routine will perform consistency checks to ensure that it is called with a consistent N_Vector imple-
mentation (i.e. that it supplies the requisite vector operations).

A maxl argument that is ≤ 0 will result in the default value (5).

Since the FGMRES algorithm is designed to only support right preconditioning, then any of the pretype
inputs SUN_PREC_LEFT, SUN_PREC_RIGHT, or SUN_PREC_BOTH will result in use of SUN_PREC_RIGHT;
any other integer input will result in the default (no preconditioning). We note that some SUNDIALS
solvers are designed to only work with left preconditioning (IDA and IDAS). While it is possible to use a
right-preconditioned SUNLinSol_SPFGMR object for these packages, this use mode is not supported and
may result in inferior performance.

SUNErrCode SUNLinSol_SPFGMRSetPrecType(SUNLinearSolver S, int pretype)
This function updates the flag indicating use of preconditioning.

Arguments:

• S – SUNLinSol_SPFGMR object to update.

• pretype – a flag indicating the type of preconditioning to use:

– SUN_PREC_NONE

– SUN_PREC_LEFT

– SUN_PREC_RIGHT

– SUN_PREC_BOTH

Return value:

• A SUNErrCode

8.12. The SUNLinSol_SPFGMR Module 239

User Documentation for KINSOL, v7.1.0

Notes:
Since the FGMRES algorithm is designed to only support right preconditioning, then any of the pretype
inputs SUN_PREC_LEFT, SUN_PREC_RIGHT, or SUN_PREC_BOTH will result in use of SUN_PREC_RIGHT;
any other integer input will result in the default (no preconditioning).

SUNErrCode SUNLinSol_SPFGMRSetGSType(SUNLinearSolver S, int gstype)
This function sets the type of Gram-Schmidt orthogonalization to use.

Arguments:

• S – SUNLinSol_SPFGMR object to update.

• gstype – a flag indicating the type of orthogonalization to use:

– SUN_MODIFIED_GS

– SUN_CLASSICAL_GS

Return value:

• A SUNErrCode

SUNErrCode SUNLinSol_SPFGMRSetMaxRestarts(SUNLinearSolver S, int maxrs)
This function sets the number of FGMRES restarts to allow.

Arguments:

• S – SUNLinSol_SPFGMR object to update.

• maxrs – maximum number of restarts to allow. A negative input will result in the default of 0.

Return value:

• A SUNErrCode

8.12.2 SUNLinSol_SPFGMR Description

The SUNLinSol_SPFGMR module defines the content field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_SPFGMR {
int maxl;
int pretype;
int gstype;
int max_restarts;
sunbooleantype zeroguess;
int numiters;
sunrealtype resnorm;
int last_flag;
SUNATimesFn ATimes;
void* ATData;
SUNPSetupFn Psetup;
SUNPSolveFn Psolve;
void* PData;
N_Vector s1;
N_Vector s2;
N_Vector *V;
N_Vector *Z;
sunrealtype **Hes;
sunrealtype *givens;

(continues on next page)

240 Chapter 8. Linear Algebraic Solvers

User Documentation for KINSOL, v7.1.0

(continued from previous page)

N_Vector xcor;
sunrealtype *yg;
N_Vector vtemp;

};

These entries of the content field contain the following information:

• maxl - number of FGMRES basis vectors to use (default is 5),

• pretype - flag for use of preconditioning (default is none),

• gstype - flag for type of Gram-Schmidt orthogonalization (default is modified Gram-Schmidt),

• max_restarts - number of FGMRES restarts to allow (default is 0),

• numiters - number of iterations from the most-recent solve,

• resnorm - final linear residual norm from the most-recent solve,

• last_flag - last error return flag from an internal function,

• ATimes - function pointer to perform Av product,

• ATData - pointer to structure for ATimes,

• Psetup - function pointer to preconditioner setup routine,

• Psolve - function pointer to preconditioner solve routine,

• PData - pointer to structure for Psetup and Psolve,

• s1, s2 - vector pointers for supplied scaling matrices (default is NULL),

• V - the array of Krylov basis vectors v1, . . . , vmaxl+1, stored in V[0], ..., V[maxl]. Each vi is a vector of
type N_Vector,

• Z - the array of preconditioned Krylov basis vectors z1, . . . , zmaxl+1, stored in Z[0], ..., Z[maxl]. Each zi
is a vector of type N_Vector,

• Hes - the (maxl + 1) × maxl Hessenberg matrix. It is stored row-wise so that the (i,j)th element is given by
Hes[i][j],

• givens - a length 2 maxl array which represents the Givens rotation matrices that arise in the FGMRES algo-
rithm. These matrices are F0, F1, . . . , Fj , where

Fi =



1
. . .

1
ci −si
si ci

1
. . .

1


,

are represented in the givens vector as givens[0] = c0, givens[1] = s0, givens[2] = c1, givens[3]
= s1, . . ., givens[2j] = cj , givens[2j+1] = sj ,

• xcor - a vector which holds the scaled, preconditioned correction to the initial guess,

• yg - a length (maxl + 1) array of sunrealtype values used to hold “short” vectors (e.g. y and g),

• vtemp - temporary vector storage.

8.12. The SUNLinSol_SPFGMR Module 241

User Documentation for KINSOL, v7.1.0

This solver is constructed to perform the following operations:

• During construction, the xcor and vtemp arrays are cloned from a template N_Vector that is input, and default
solver parameters are set.

• User-facing “set” routines may be called to modify default solver parameters.

• Additional “set” routines are called by the SUNDIALS solver that interfaces with SUNLinSol_SPFGMR to
supply the ATimes, PSetup, and Psolve function pointers and s1 and s2 scaling vectors.

• In the “initialize” call, the remaining solver data is allocated (V, Hes, givens, and yg)

• In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the SUNDIALS
solver itself, that translates between the generic PSetup function and the solver-specific routine (solver-supplied
or user-supplied).

• In the “solve” call, the FGMRES iteration is performed. This will include scaling, preconditioning, and restarts
if those options have been supplied.

The SUNLinSol_SPFGMR module defines implementations of all “iterative” linear solver operations listed in §8.1:

• SUNLinSolGetType_SPFGMR

• SUNLinSolInitialize_SPFGMR

• SUNLinSolSetATimes_SPFGMR

• SUNLinSolSetPreconditioner_SPFGMR

• SUNLinSolSetScalingVectors_SPFGMR

• SUNLinSolSetZeroGuess_SPFGMR – note the solver assumes a non-zero guess by default and the zero guess
flag is reset to SUNFALSE after each call to SUNLinSolSolve_SPFGMR.

• SUNLinSolSetup_SPFGMR

• SUNLinSolSolve_SPFGMR

• SUNLinSolNumIters_SPFGMR

• SUNLinSolResNorm_SPFGMR

• SUNLinSolResid_SPFGMR

• SUNLinSolLastFlag_SPFGMR

• SUNLinSolSpace_SPFGMR

• SUNLinSolFree_SPFGMR

8.13 The SUNLinSol_SPGMR Module

The SUNLinSol_SPGMR implementation of the SUNLinearSolver class performs a Scaled, Preconditioned, Gen-
eralized Minimum Residual [46] method; this is an iterative linear solver that is designed to be compatible with any
N_Vector implementation that supports a minimal subset of operations (N_VClone(), N_VDotProd(), N_VScale(),
N_VLinearSum(), N_VProd(), N_VConst(), N_VDiv(), and N_VDestroy()).

242 Chapter 8. Linear Algebraic Solvers

User Documentation for KINSOL, v7.1.0

8.13.1 SUNLinSol_SPGMR Usage

The header file to be included when using this module is sunlinsol/sunlinsol_spgmr.h. The SUNinSol_SPGMR
module is accessible from all SUNDIALS solvers without linking to the libsundials_sunlinsolspgmr module
library.

The module SUNLinSol_SPGMR provides the following user-callable routines:

SUNLinearSolver SUNLinSol_SPGMR(N_Vector y, int pretype, int maxl, SUNContext sunctx)
This constructor function creates and allocates memory for a SPGMR SUNLinearSolver.

Arguments:

• y – a template vector.

• pretype – a flag indicating the type of preconditioning to use:

– SUN_PREC_NONE

– SUN_PREC_LEFT

– SUN_PREC_RIGHT

– SUN_PREC_BOTH

• maxl – the number of Krylov basis vectors to use.

Return value:
If successful, a SUNLinearSolver object. If either y is incompatible then this routine will return NULL.

Notes:
This routine will perform consistency checks to ensure that it is called with a consistent N_Vector imple-
mentation (i.e. that it supplies the requisite vector operations).

A maxl argument that is ≤ 0 will result in the default value (5).

Some SUNDIALS solvers are designed to only work with left preconditioning (IDA and IDAS) and others
with only right preconditioning (KINSOL). While it is possible to configure a SUNLinSol_SPGMR object
to use any of the preconditioning options with these solvers, this use mode is not supported and may result
in inferior performance.

SUNErrCode SUNLinSol_SPGMRSetPrecType(SUNLinearSolver S, int pretype)
This function updates the flag indicating use of preconditioning.

Arguments:

• S – SUNLinSol_SPGMR object to update.

• pretype – a flag indicating the type of preconditioning to use:

– SUN_PREC_NONE

– SUN_PREC_LEFT

– SUN_PREC_RIGHT

– SUN_PREC_BOTH

Return value:

• A SUNErrCode

SUNErrCode SUNLinSol_SPGMRSetGSType(SUNLinearSolver S, int gstype)
This function sets the type of Gram-Schmidt orthogonalization to use.

Arguments:

8.13. The SUNLinSol_SPGMR Module 243

User Documentation for KINSOL, v7.1.0

• S – SUNLinSol_SPGMR object to update.

• gstype – a flag indicating the type of orthogonalization to use:

– SUN_MODIFIED_GS

– SUN_CLASSICAL_GS

Return value:

• A SUNErrCode

SUNErrCode SUNLinSol_SPGMRSetMaxRestarts(SUNLinearSolver S, int maxrs)
This function sets the number of GMRES restarts to allow.

Arguments:

• S – SUNLinSol_SPGMR object to update.

• maxrs – maximum number of restarts to allow. A negative input will result in the default of 0.

Return value:

• A SUNErrCode

8.13.2 SUNLinSol_SPGMR Description

The SUNLinSol_SPGMR module defines the content field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_SPGMR {
int maxl;
int pretype;
int gstype;
int max_restarts;
sunbooleantype zeroguess;
int numiters;
sunrealtype resnorm;
int last_flag;
SUNATimesFn ATimes;
void* ATData;
SUNPSetupFn Psetup;
SUNPSolveFn Psolve;
void* PData;
N_Vector s1;
N_Vector s2;
N_Vector *V;
sunrealtype **Hes;
sunrealtype *givens;
N_Vector xcor;
sunrealtype *yg;
N_Vector vtemp;

};

These entries of the content field contain the following information:

• maxl - number of GMRES basis vectors to use (default is 5),

• pretype - flag for type of preconditioning to employ (default is none),

• gstype - flag for type of Gram-Schmidt orthogonalization (default is modified Gram-Schmidt),

244 Chapter 8. Linear Algebraic Solvers

User Documentation for KINSOL, v7.1.0

• max_restarts - number of GMRES restarts to allow (default is 0),

• numiters - number of iterations from the most-recent solve,

• resnorm - final linear residual norm from the most-recent solve,

• last_flag - last error return flag from an internal function,

• ATimes - function pointer to perform Av product,

• ATData - pointer to structure for ATimes,

• Psetup - function pointer to preconditioner setup routine,

• Psolve - function pointer to preconditioner solve routine,

• PData - pointer to structure for Psetup and Psolve,

• s1, s2 - vector pointers for supplied scaling matrices (default is NULL),

• V - the array of Krylov basis vectors v1, . . . , vmaxl+1, stored in V[0], ... V[maxl]. Each vi is a vector of type
N_Vector,

• Hes - the (maxl + 1) × maxl Hessenberg matrix. It is stored row-wise so that the (i,j)th element is given by
Hes[i][j],

• givens - a length 2 maxl array which represents the Givens rotation matrices that arise in the GMRES algorithm.
These matrices are F0, F1, . . . , Fj , where

Fi =



1
. . .

1
ci −si
si ci

1
. . .

1


,

are represented in the givens vector as givens[0] = c0, givens[1] = s0, givens[2] = c1, givens[3]
= s1, . . ., givens[2j] = cj , givens[2j+1] = sj ,

• xcor - a vector which holds the scaled, preconditioned correction to the initial guess,

• yg - a length (maxl + 1) array of sunrealtype values used to hold “short” vectors (e.g. y and g),

• vtemp - temporary vector storage.

This solver is constructed to perform the following operations:

• During construction, the xcor and vtemp arrays are cloned from a template N_Vector that is input, and default
solver parameters are set.

• User-facing “set” routines may be called to modify default solver parameters.

• Additional “set” routines are called by the SUNDIALS solver that interfaces with SUNLinSol_SPGMR to supply
the ATimes, PSetup, and Psolve function pointers and s1 and s2 scaling vectors.

• In the “initialize” call, the remaining solver data is allocated (V, Hes, givens, and yg)

• In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the SUNDIALS
solver itself, that translates between the generic PSetup function and the solver-specific routine (solver-supplied
or user-supplied).

• In the “solve” call, the GMRES iteration is performed. This will include scaling, preconditioning, and restarts if
those options have been supplied.

8.13. The SUNLinSol_SPGMR Module 245

User Documentation for KINSOL, v7.1.0

The SUNLinSol_SPGMR module defines implementations of all “iterative” linear solver operations listed in §8.1:

• SUNLinSolGetType_SPGMR

• SUNLinSolInitialize_SPGMR

• SUNLinSolSetATimes_SPGMR

• SUNLinSolSetPreconditioner_SPGMR

• SUNLinSolSetScalingVectors_SPGMR

• SUNLinSolSetZeroGuess_SPGMR – note the solver assumes a non-zero guess by default and the zero guess flag
is reset to SUNFALSE after each call to SUNLinSolSolve_SPGMR.

• SUNLinSolSetup_SPGMR

• SUNLinSolSolve_SPGMR

• SUNLinSolNumIters_SPGMR

• SUNLinSolResNorm_SPGMR

• SUNLinSolResid_SPGMR

• SUNLinSolLastFlag_SPGMR

• SUNLinSolSpace_SPGMR

• SUNLinSolFree_SPGMR

8.14 The SUNLinSol_SPTFQMR Module

The SUNLinSol_SPTFQMR implementation of the SUNLinearSolver class performs a Scaled, Preconditioned,
Transpose-Free Quasi-Minimum Residual [28] method; this is an iterative linear solver that is designed to be compat-
ible with any N_Vector implementation that supports a minimal subset of operations (N_VClone(), N_VDotProd(),
N_VScale(), N_VLinearSum(), N_VProd(), N_VConst(), N_VDiv(), and N_VDestroy()). Unlike the SPGMR
and SPFGMR algorithms, SPTFQMR requires a fixed amount of memory that does not increase with the number of
allowed iterations.

8.14.1 SUNLinSol_SPTFQMR Usage

The header file to be included when using this module is sunlinsol/sunlinsol_sptfqmr.h. The SUNLinSol_SPT-
FQMR module is accessible from all SUNDIALS solvers without linking to the libsundials_sunlinsolsptfqmr
module library.

The module SUNLinSol_SPTFQMR provides the following user-callable routines:

SUNLinearSolver SUNLinSol_SPTFQMR(N_Vector y, int pretype, int maxl, SUNContext sunctx)
This constructor function creates and allocates memory for a SPTFQMR SUNLinearSolver.

Arguments:

• y – a template vector.

• pretype – a flag indicating the type of preconditioning to use:

– SUN_PREC_NONE

– SUN_PREC_LEFT

– SUN_PREC_RIGHT

246 Chapter 8. Linear Algebraic Solvers

User Documentation for KINSOL, v7.1.0

– SUN_PREC_BOTH

• maxl – the number of Krylov basis vectors to use.

• sunctx – the SUNContext object (see §4.2)

Return value:
If successful, a SUNLinearSolver object. If either y is incompatible then this routine will return NULL.

Notes:
This routine will perform consistency checks to ensure that it is called with a consistent N_Vector imple-
mentation (i.e. that it supplies the requisite vector operations).

A maxl argument that is ≤ 0 will result in the default value (5).

Some SUNDIALS solvers are designed to only work with left preconditioning (IDA and IDAS) and others
with only right preconditioning (KINSOL). While it is possible to configure a SUNLinSol_SPTFQMR
object to use any of the preconditioning options with these solvers, this use mode is not supported and may
result in inferior performance.

Note: With SUN_PREC_RIGHT or SUN_PREC_BOTH the initial guess must be zero (use SUNLinSolSetZe-
roGuess() to indicate the initial guess is zero).

SUNErrCode SUNLinSol_SPTFQMRSetPrecType(SUNLinearSolver S, int pretype)
This function updates the flag indicating use of preconditioning.

Arguments:

• S – SUNLinSol_SPGMR object to update.

• pretype – a flag indicating the type of preconditioning to use:

– SUN_PREC_NONE

– SUN_PREC_LEFT

– SUN_PREC_RIGHT

– SUN_PREC_BOTH

Return value:

• A SUNErrCode

SUNErrCode SUNLinSol_SPTFQMRSetMaxl(SUNLinearSolver S, int maxl)
This function updates the number of linear solver iterations to allow.

Arguments:

• S – SUNLinSol_SPTFQMR object to update.

• maxl – maximum number of linear iterations to allow. Any non-positive input will result in the default
value (5).

Return value:

• A SUNErrCode

8.14. The SUNLinSol_SPTFQMR Module 247

User Documentation for KINSOL, v7.1.0

8.14.2 SUNLinSol_SPTFQMR Description

The SUNLinSol_SPTFQMR module defines the content field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_SPTFQMR {
int maxl;
int pretype;
sunbooleantype zeroguess;
int numiters;
sunrealtype resnorm;
int last_flag;
SUNATimesFn ATimes;
void* ATData;
SUNPSetupFn Psetup;
SUNPSolveFn Psolve;
void* PData;
N_Vector s1;
N_Vector s2;
N_Vector r_star;
N_Vector q;
N_Vector d;
N_Vector v;
N_Vector p;
N_Vector *r;
N_Vector u;
N_Vector vtemp1;
N_Vector vtemp2;
N_Vector vtemp3;

};

These entries of the content field contain the following information:

• maxl - number of TFQMR iterations to allow (default is 5),

• pretype - flag for type of preconditioning to employ (default is none),

• numiters - number of iterations from the most-recent solve,

• resnorm - final linear residual norm from the most-recent solve,

• last_flag - last error return flag from an internal function,

• ATimes - function pointer to perform Av product,

• ATData - pointer to structure for ATimes,

• Psetup - function pointer to preconditioner setup routine,

• Psolve - function pointer to preconditioner solve routine,

• PData - pointer to structure for Psetup and Psolve,

• s1, s2 - vector pointers for supplied scaling matrices (default is NULL),

• r_star - a N_Vector which holds the initial scaled, preconditioned linear system residual,

• q, d, v, p, u - N_Vector used for workspace by the SPTFQMR algorithm,

• r - array of two N_Vector used for workspace within the SPTFQMR algorithm,

• vtemp1, vtemp2, vtemp3 - temporary vector storage.

248 Chapter 8. Linear Algebraic Solvers

User Documentation for KINSOL, v7.1.0

This solver is constructed to perform the following operations:

• During construction all N_Vector solver data is allocated, with vectors cloned from a template N_Vector that
is input, and default solver parameters are set.

• User-facing “set” routines may be called to modify default solver parameters.

• Additional “set” routines are called by the SUNDIALS solver that interfaces with SUNLinSol_SPTFQMR to
supply the ATimes, PSetup, and Psolve function pointers and s1 and s2 scaling vectors.

• In the “initialize” call, the solver parameters are checked for validity.

• In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the SUNDIALS
solver itself, that translates between the generic PSetup function and the solver-specific routine (solver-supplied
or user-supplied).

• In the “solve” call the TFQMR iteration is performed. This will include scaling and preconditioning if those
options have been supplied.

The SUNLinSol_SPTFQMR module defines implementations of all “iterative” linear solver operations listed in §8.1:

• SUNLinSolGetType_SPTFQMR

• SUNLinSolInitialize_SPTFQMR

• SUNLinSolSetATimes_SPTFQMR

• SUNLinSolSetPreconditioner_SPTFQMR

• SUNLinSolSetScalingVectors_SPTFQMR

• SUNLinSolSetZeroGuess_SPTFQMR – note the solver assumes a non-zero guess by default and the zero guess
flag is reset to SUNFALSE after each call to SUNLinSolSolve_SPTFQMR.

• SUNLinSolSetup_SPTFQMR

• SUNLinSolSolve_SPTFQMR

• SUNLinSolNumIters_SPTFQMR

• SUNLinSolResNorm_SPTFQMR

• SUNLinSolResid_SPTFQMR

• SUNLinSolLastFlag_SPTFQMR

• SUNLinSolSpace_SPTFQMR

• SUNLinSolFree_SPTFQMR

8.15 The SUNLinSol_SuperLUDIST Module

The SUNLinsol_SuperLUDIST implementation of the SUNLinearSolver class interfaces with the SuperLU_DIST
library. This is designed to be used with the SUNMatrix_SLUNRloc SUNMatrix, and one of the serial, threaded or
parallel N_Vector implementations (NVECTOR_SERIAL, NVECTOR_OPENMP, NVECTOR_PTHREADS, NVEC-
TOR_PARALLEL, NVECTOR_PARHYP).

8.15. The SUNLinSol_SuperLUDIST Module 249

User Documentation for KINSOL, v7.1.0

8.15.1 SUNLinSol_SuperLUDIST Usage

The header file to be included when using this module is sunlinsol/sunlinsol_superludist.h. The installed
module library to link to is libsundials_sunlinsolsuperludist .lib where .lib is typically .so for shared libraries
and .a for static libraries.

The module SUNLinSol_SuperLUDIST provides the following user-callable routines:

Warning: Starting with SuperLU_DIST version 6.3.0, some structures were renamed to have a prefix for the
floating point type. The double precision API functions have the prefix ‘d’. To maintain backwards compatibility
with the unprefixed types, SUNDIALS provides macros to these SuperLU_DIST types with an ‘x’ prefix that expand
to the correct prefix. E.g., the SUNDIALS macro xLUstruct_t expands to dLUstruct_t or LUstruct_t based
on the SuperLU_DIST version.

SUNLinearSolver SUNLinSol_SuperLUDIST(N_Vector y, SuperMatrix *A, gridinfo_t *grid, xLUstruct_t *lu,
xScalePermstruct_t *scaleperm, xSOLVEstruct_t *solve,
SuperLUStat_t *stat, superlu_dist_options_t *options, SUNContext
sunctx)

This constructor function creates and allocates memory for a SUNLinSol_SuperLUDIST object.

Arguments:

• y – a template vector.

• A – a template matrix

• grid, lu, scaleperm, solve, stat, options – SuperLU_DIST object pointers.

• sunctx – the SUNContext object (see §4.2)

Return value:
If successful, a SUNLinearSolver object; otherwise this routine will return NULL.

Notes:
This routine analyzes the input matrix and vector to determine the linear system size and to assess the
compatibility with the SuperLU_DIST library.

This routine will perform consistency checks to ensure that it is called with consistent N_Vector and SUN-
Matrix implementations. These are currently limited to the SUNMatrix_SLUNRloc matrix type and the
NVECTOR_SERIAL, NVECTOR_OPENMP, NVECTOR_PTHREADS, NVECTOR_PARALLEL, and
NVECTOR_PARHYP vector types. As additional compatible matrix and vector implementations are added
to SUNDIALS, these will be included within this compatibility check.

The grid, lu, scaleperm, solve, and options arguments are not checked and are passed directly to
SuperLU_DIST routines.

Some struct members of the options argument are modified internally by the SUNLinSol_SuperLUDIST
solver. Specifically, the member Fact is modified in the setup and solve routines.

sunrealtype SUNLinSol_SuperLUDIST_GetBerr(SUNLinearSolver LS)
This function returns the componentwise relative backward error of the computed solution. It takes one argument,
the SUNLinearSolver object. The return type is sunrealtype.

gridinfo_t *SUNLinSol_SuperLUDIST_GetGridinfo(SUNLinearSolver LS)
This function returns a pointer to the SuperLU_DIST structure that contains the 2D process grid. It takes one
argument, the SUNLinearSolver object.

250 Chapter 8. Linear Algebraic Solvers

User Documentation for KINSOL, v7.1.0

xLUstruct_t *SUNLinSol_SuperLUDIST_GetLUstruct(SUNLinearSolver LS)
This function returns a pointer to the SuperLU_DIST structure that contains the distributed L and U structures.
It takes one argument, the SUNLinearSolver object.

superlu_dist_options_t *SUNLinSol_SuperLUDIST_GetSuperLUOptions(SUNLinearSolver LS)
This function returns a pointer to the SuperLU_DIST structure that contains the options which control how the
linear system is factorized and solved. It takes one argument, the SUNLinearSolver object.

xScalePermstruct_t *SUNLinSol_SuperLUDIST_GetScalePermstruct(SUNLinearSolver LS)
This function returns a pointer to the SuperLU_DIST structure that contains the vectors that describe the trans-
formations done to the matrix A. It takes one argument, the SUNLinearSolver object.

xSOLVEstruct_t *SUNLinSol_SuperLUDIST_GetSOLVEstruct(SUNLinearSolver LS)
This function returns a pointer to the SuperLU_DIST structure that contains information for communication
during the solution phase. It takes one argument the SUNLinearSolver object.

SuperLUStat_t *SUNLinSol_SuperLUDIST_GetSuperLUStat(SUNLinearSolver LS)
This function returns a pointer to the SuperLU_DIST structure that stores information about runtime and flop
count. It takes one argument, the SUNLinearSolver object.

8.15.2 SUNLinSol_SuperLUDIST Description

The SUNLinSol_SuperLUDIST module defines the content field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_SuperLUDIST {
sunbooleantype first_factorize;
int last_flag;
sunrealtype berr;
gridinfo_t *grid;
xLUstruct_t *lu;
superlu_dist_options_t *options;
xScalePermstruct_t *scaleperm;
xSOLVEstruct_t *solve;
SuperLUStat_t *stat;
sunindextype N;

};

These entries of the content field contain the following information:

• first_factorize – flag indicating whether the factorization has ever been performed,

• last_flag – last error return flag from internal function evaluations,

• berr – the componentwise relative backward error of the computed solution,

• grid – pointer to the SuperLU_DIST structure that strores the 2D process grid

• lu – pointer to the SuperLU_DIST structure that stores the distributed L and U factors,

• scaleperm – pointer to the SuperLU_DIST structure that stores vectors describing the transformations done to
the matrix A,

• options – pointer to the SuperLU_DIST stucture which contains options that control how the linear system is
factorized and solved,

• solve – pointer to the SuperLU_DIST solve structure,

• stat – pointer to the SuperLU_DIST structure that stores information about runtime and flop count,

8.15. The SUNLinSol_SuperLUDIST Module 251

User Documentation for KINSOL, v7.1.0

• N – the number of equations in the system.

The SUNLinSol_SuperLUDIST module is a SUNLinearSolver adapter for the SuperLU_DIST sparse matrix factor-
ization and solver library written by X. Sherry Li and collaborators [8, 30, 41, 42]. The package uses a SPMD parallel
programming model and multithreading to enhance efficiency in distributed-memory parallel environments with multi-
core nodes and possibly GPU accelerators. It uses MPI for communication, OpenMP for threading, and CUDA for GPU
support. In order to use the SUNLinSol_SuperLUDIST interface to SuperLU_DIST, it is assumed that SuperLU_DIST
has been installed on the system prior to installation of SUNDIALS, and that SUNDIALS has been configured appro-
priately to link with SuperLU_DIST (see §11.4 for details). Additionally, the wrapper only supports double-precision
calculations, and therefore cannot be compiled if SUNDIALS is configured to use single or extended precision. More-
over, since the SuperLU_DIST library may be installed to support either 32-bit or 64-bit integers, it is assumed that the
SuperLU_DIST library is installed using the same integer size as SUNDIALS.

The SuperLU_DIST library provides many options to control how a linear system will be factorized and solved. These
options may be set by a user on an instance of the superlu_dist_options_t struct, and then it may be provided as
an argument to the SUNLinSol_SuperLUDIST constructor. The SUNLinSol_SuperLUDIST module will respect all
options set except for Fact – this option is necessarily modified by the SUNLinSol_SuperLUDIST module in the setup
and solve routines.

Since the linear systems that arise within the context of SUNDIALS calculations will typically have identical sparsity
patterns, the SUNLinSol_SuperLUDIST module is constructed to perform the following operations:

• The first time that the “setup” routine is called, it sets the SuperLU_DIST option Fact to DOFACT so that a
subsequent call to the “solve” routine will perform a symbolic factorization, followed by an initial numerical
factorization before continuing to solve the system.

• On subsequent calls to the “setup” routine, it sets the SuperLU_DIST option Fact to SamePattern so that a
subsequent call to “solve” will perform factorization assuming the same sparsity pattern as prior, i.e. it will reuse
the column permutation vector.

• If “setup” is called prior to the “solve” routine, then the “solve” routine will perform a symbolic factorization,
followed by an initial numerical factorization before continuing to the sparse triangular solves, and, potentially,
iterative refinement. If “setup” is not called prior, “solve” will skip to the triangular solve step. We note that in
this solve SuperLU_DIST operates on the native data arrays for the right-hand side and solution vectors, without
requiring costly data copies.

The SUNLinSol_SuperLUDIST module defines implementations of all “direct” linear solver operations listed in §8.1:

• SUNLinSolGetType_SuperLUDIST

• SUNLinSolInitialize_SuperLUDIST – this sets the first_factorize flag to 1 and resets the internal Su-
perLU_DIST statistics variables.

• SUNLinSolSetup_SuperLUDIST – this sets the appropriate SuperLU_DIST options so that a subsequent solve
will perform a symbolic and numerical factorization before proceeding with the triangular solves

• SUNLinSolSolve_SuperLUDIST – this calls the SuperLU_DIST solve routine to perform factorization (if the
setup routine was called prior) and then use the LU factors to solve the linear system.

• SUNLinSolLastFlag_SuperLUDIST

• SUNLinSolSpace_SuperLUDIST – this only returns information for the storage within the solver interface,
i.e. storage for the integers last_flag and first_factorize. For additional space requirements, see the
SuperLU_DIST documentation.

• SUNLinSolFree_SuperLUDIST

252 Chapter 8. Linear Algebraic Solvers

User Documentation for KINSOL, v7.1.0

8.16 The SUNLinSol_SuperLUMT Module

The SUNLinSol_SuperLUMT implementation of the SUNLinearSolver class interfaces with the SuperLU_MT li-
brary. This is designed to be used with the corresponding SUNMATRIX_SPARSE matrix type, and one of the se-
rial or shared-memory N_Vector implementations (NVECTOR_SERIAL, NVECTOR_OPENMP, or NVECTOR_-
PTHREADS). While these are compatible, it is not recommended to use a threaded vector module with SUNLinSol_-
SuperLUMT unless it is the NVECTOR_OPENMP module and the SuperLU_MT library has also been compiled with
OpenMP.

8.16.1 SUNLinSol_SuperLUMT Usage

The header file to be included when using this module is sunlinsol/sunlinsol.SuperLUMT.h. The installed mod-
ule library to link to is libsundials_sunlinsolsuperlumt .lib where .lib is typically .so for shared libraries and
.a for static libraries.

The module SUNLinSol_SuperLUMT provides the following user-callable routines:

SUNLinearSolver SUNLinSol_SuperLUMT(N_Vector y, SUNMatrix A, int num_threads, SUNContext sunctx)
This constructor function creates and allocates memory for a SUNLinSol_SuperLUMT object.

Arguments:

• y – a template vector.

• A – a template matrix

• num_threads – desired number of threads (OpenMP or Pthreads, depending on how SuperLU_MT was
installed) to use during the factorization steps.

• sunctx – the SUNContext object (see §4.2)

Return value:
If successful, a SUNLinearSolver object; otherwise this routine will return NULL.

Notes:
This routine analyzes the input matrix and vector to determine the linear system size and to assess compat-
ibility with the SuperLU_MT library.

This routine will perform consistency checks to ensure that it is called with consistent N_Vector and SUN-
Matrix implementations. These are currently limited to the SUNMATRIX_SPARSE matrix type (using
either CSR or CSC storage formats) and the NVECTOR_SERIAL, NVECTOR_OPENMP, and NVEC-
TOR_PTHREADS vector types. As additional compatible matrix and vector implementations are added
to SUNDIALS, these will be included within this compatibility check.

The num_threads argument is not checked and is passed directly to SuperLU_MT routines.

SUNErrCode SUNLinSol_SuperLUMTSetOrdering(SUNLinearSolver S, int ordering_choice)
This function sets the ordering used by SuperLU_MT for reducing fill in the linear solve.

Arguments:

• S – the SUNLinSol_SuperLUMT object to update.

• ordering_choice:

0. natural ordering

1. minimal degree ordering on ATA

2. minimal degree ordering on AT +A

8.16. The SUNLinSol_SuperLUMT Module 253

User Documentation for KINSOL, v7.1.0

3. COLAMD ordering for unsymmetric matrices

The default is 3 for COLAMD.

Return value:

• A SUNErrCode

8.16.2 SUNLinSol_SuperLUMT Description

The SUNLinSol_SuperLUMT module defines the content field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_SuperLUMT {
int last_flag;
int first_factorize;
SuperMatrix *A, *AC, *L, *U, *B;
Gstat_t *Gstat;
sunindextype *perm_r, *perm_c;
sunindextype N;
int num_threads;
sunrealtype diag_pivot_thresh;
int ordering;
superlumt_options_t *options;

};

These entries of the content field contain the following information:

• last_flag - last error return flag from internal function evaluations,

• first_factorize - flag indicating whether the factorization has ever been performed,

• A, AC, L, U, B - SuperMatrix pointers used in solve,

• Gstat - GStat_t object used in solve,

• perm_r, perm_c - permutation arrays used in solve,

• N - size of the linear system,

• num_threads - number of OpenMP/Pthreads threads to use,

• diag_pivot_thresh - threshold on diagonal pivoting,

• ordering - flag for which reordering algorithm to use,

• options - pointer to SuperLU_MT options structure.

The SUNLinSol_SuperLUMT module is a SUNLinearSolver wrapper for the SuperLU_MT sparse matrix factoriza-
tion and solver library written by X. Sherry Li and collaborators [9, 22, 40]. The package performs matrix factorization
using threads to enhance efficiency in shared memory parallel environments. It should be noted that threads are only
used in the factorization step. In order to use the SUNLinSol_SuperLUMT interface to SuperLU_MT, it is assumed
that SuperLU_MT has been installed on the system prior to installation of SUNDIALS, and that SUNDIALS has been
configured appropriately to link with SuperLU_MT (see §11.4 for details). Additionally, this wrapper only supports
single- and double-precision calculations, and therefore cannot be compiled if SUNDIALS is configured to have sun-
realtype set to extended (see §4.1 for details). Moreover, since the SuperLU_MT library may be installed to support
either 32-bit or 64-bit integers, it is assumed that the SuperLU_MT library is installed using the same integer precision
as the SUNDIALS sunindextype option.

The SuperLU_MT library has a symbolic factorization routine that computes the permutation of the linear system
matrix to reduce fill-in on subsequentLU factorizations (using COLAMD, minimal degree ordering onAT ∗A, minimal

254 Chapter 8. Linear Algebraic Solvers

User Documentation for KINSOL, v7.1.0

degree ordering on AT + A, or natural ordering). Of these ordering choices, the default value in the SUNLinSol_-
SuperLUMT module is the COLAMD ordering.

Since the linear systems that arise within the context of SUNDIALS calculations will typically have identical sparsity
patterns, the SUNLinSol_SuperLUMT module is constructed to perform the following operations:

• The first time that the “setup” routine is called, it performs the symbolic factorization, followed by an initial
numerical factorization.

• On subsequent calls to the “setup” routine, it skips the symbolic factorization, and only refactors the input matrix.

• The “solve” call performs pivoting and forward and backward substitution using the stored SuperLU_MT data
structures. We note that in this solve SuperLU_MT operates on the native data arrays for the right-hand side and
solution vectors, without requiring costly data copies.

The SUNLinSol_SuperLUMT module defines implementations of all “direct” linear solver operations listed in §8.1:

• SUNLinSolGetType_SuperLUMT

• SUNLinSolInitialize_SuperLUMT – this sets the first_factorize flag to 1 and resets the internal Su-
perLU_MT statistics variables.

• SUNLinSolSetup_SuperLUMT – this performs either a LU factorization or refactorization of the input matrix.

• SUNLinSolSolve_SuperLUMT – this calls the appropriate SuperLU_MT solve routine to utilize the LU factors
to solve the linear system.

• SUNLinSolLastFlag_SuperLUMT

• SUNLinSolSpace_SuperLUMT – this only returns information for the storage within the solver interface, i.e.
storage for the integers last_flag and first_factorize. For additional space requirements, see the Su-
perLU_MT documentation.

• SUNLinSolFree_SuperLUMT

8.17 The SUNLinSol_cuSolverSp_batchQR Module

The SUNLinSol_cuSolverSp_batchQR implementation of the SUNLinearSolver class is designed to be used with
the SUNMATRIX_CUSPARSE matrix, and the NVECTOR_CUDA vector. The header file to include when using this
module is sunlinsol/sunlinsol_cusolversp_batchqr.h. The installed library to link to is libsundials_-
sunlinsolcusolversp.lib where .lib is typically .so for shared libraries and .a for static libraries.

Warning: The SUNLinearSolver_cuSolverSp_batchQR module is experimental and subject to change.

8.17.1 SUNLinSol_cuSolverSp_batchQR description

The SUNLinearSolver_cuSolverSp_batchQR implementation provides an interface to the batched sparse QR factor-
ization method provided by the NVIDIA cuSOLVER library [6]. The module is designed for solving block diagonal
linear systems of the form 

A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · An

xj = bj

where all block matrices Aj share the same sparsity pattern. The matrix must be the SUNMatrix.cuSparse.

8.17. The SUNLinSol_cuSolverSp_batchQR Module 255

User Documentation for KINSOL, v7.1.0

8.17.2 SUNLinSol_cuSolverSp_batchQR functions

The SUNLinearSolver_cuSolverSp_batchQR module defines implementations of all “direct” linear solver opera-
tions listed in §8.1:

• SUNLinSolGetType_cuSolverSp_batchQR

• SUNLinSolInitialize_cuSolverSp_batchQR – this sets the first_factorize flag to 1

• SUNLinSolSetup_cuSolverSp_batchQR – this always copies the relevant SUNMATRIX_SPARSE data to the
GPU; if this is the first setup it will perform symbolic analysis on the system

• SUNLinSolSolve_cuSolverSp_batchQR – this calls the cusolverSpXcsrqrsvBatched routine to perform
factorization

• SUNLinSolLastFlag_cuSolverSp_batchQR

• SUNLinSolFree_cuSolverSp_batchQR

In addition, the module provides the following user-callable routines:

SUNLinearSolver SUNLinSol_cuSolverSp_batchQR(N_Vector y, SUNMatrix A, cusolverHandle_t cusol,
SUNContext sunctx)

The function SUNLinSol_cuSolverSp_batchQR creates and allocates memory for a SUNLinearSolver object.

Arguments:

• y – a vector for checking compatibility with the solver.

• A – a SUNMATRIX_cuSparse matrix for checking compatibility with the solver.

• cusol – cuSolverSp object to use.

• sunctx – the SUNContext object (see §4.2)

Return value:
If successful, a SUNLinearSolver object. If either A or y are incompatible then this routine will return
NULL.

Notes:
This routine will perform consistency checks to ensure that it is called with consistent N_Vector and SUN-
Matrix implementations. These are currently limited to the SUNMATRIX_CUSPARSE matrix type and
the NVECTOR_CUDA vector type. Since the SUNMATRIX_CUSPARSE matrix type is only compatible
with the NVECTOR_CUDA the restriction is also in place for the linear solver. As additional compatible
matrix and vector implementations are added to SUNDIALS, these will be included within this compati-
bility check.

void SUNLinSol_cuSolverSp_batchQR_GetDescription(SUNLinearSolver LS, char **desc)
The function SUNLinSol_cuSolverSp_batchQR_GetDescription accesses the string description of the ob-
ject (empty by default).

void SUNLinSol_cuSolverSp_batchQR_SetDescription(SUNLinearSolver LS, const char *desc)
The function SUNLinSol_cuSolverSp_batchQR_SetDescription sets the string description of the object
(empty by default).

void SUNLinSol_cuSolverSp_batchQR_GetDeviceSpace(SUNLinearSolver S, size_t *cuSolverInternal, size_t
*cuSolverWorkspace)

The function SUNLinSol_cuSolverSp_batchQR_GetDeviceSpace returns the cuSOLVER batch QR method
internal buffer size, in bytes, in the argument cuSolverInternal and the cuSOLVER batch QR workspace
buffer size, in bytes, in the agrument cuSolverWorkspace. The size of the internal buffer is proportional to the
number of matrix blocks while the size of the workspace is almost independent of the number of blocks.

256 Chapter 8. Linear Algebraic Solvers

User Documentation for KINSOL, v7.1.0

8.17.3 SUNLinSol_cuSolverSp_batchQR content

The SUNLinSol_cuSolverSp_batchQR module defines the content field of a SUNLinearSolver to be the following
structure:

struct _SUNLinearSolverContent_cuSolverSp_batchQR {
int last_flag; /* last return flag */
sunbooleantype first_factorize; /* is this the first factorization? */
size_t internal_size; /* size of cusolver buffer for Q and R */
size_t workspace_size; /* size of cusolver memory for factorization */
cusolverSpHandle_t cusolver_handle; /* cuSolverSp context */
csrqrInfo_t info; /* opaque cusolver data structure */
void* workspace; /* memory block used by cusolver */
const char* desc; /* description of this linear solver */

};

8.18 The SUNLINEARSOLVER_GINKGO Module

New in version 6.4.0.

The SUNLINEARSOLVER_GINKGO implementation of the SUNLinearSolver API provides an interface to the
linear solvers from the Ginkgo linear algebra library [12]. Since Ginkgo is a modern C++ library, SUNLINEAR-
SOLVER_GINKGO is also written in modern C++ (specifically, C++14). Unlike most other SUNDIALS modules, it
is a header only library. To use the SUNLINEARSOLVER_GINKGO SUNLinearSolver, users will need to include
sunlinsol/sunlinsol_ginkgo.hpp. The module is meant to be used with the SUNMATRIX_GINKGO module
described in §7.10. Instructions on building SUNDIALS with Ginkgo enabled are given in §11.4. For instructions on
building and using Ginkgo itself, refer to the Ginkgo website and documentation.

Note: It is assumed that users of this module are aware of how to use Ginkgo. This module does not try to encapsulate
Ginkgo linear solvers, rather it provides a lightweight iteroperability layer between Ginkgo and SUNDIALS. Most, if
not all, of the Ginkgo linear solver should work with this interface.

8.18.1 Using SUNLINEARSOLVER_GINKGO

After choosing a compatible N_Vector (see §7.10.1) and creating a Ginkgo-enabled SUNMatrix (see §7.10) to use
the SUNLINEARSOLVER_GINKGO module, we first create a Ginkgo stopping criteria object. Importantly, the sun-
dials::ginkgo::DefaultStop class provided by SUNDIALS implements a stopping critierion that matches the
default SUNDIALS stopping critierion. Namely, it checks if the max iterations (5 by default) were reached or if the ab-
solute residual norm was below a speicified tolerance. The critierion can be created just like any other Ginkgo stopping
criteria:

auto crit{sundials::ginkgo::DefaultStop::build().with_max_iters(max_iters).on(gko_exec)};

Warning: It is highly recommended to employ this criterion when using Ginkgo solvers with SUNDIALS, but
it is optional. However, to use the Ginkgo multigrid or cbgmres linear solvers, different Ginkgo criterion must be
used.

Once we have created our stopping critierion, we create a Ginkgo solver factory object and wrap it in a sundi-
als::ginkgo::LinearSolver object. In this example, we create a Ginkgo conjugate gradient solver:

8.18. The SUNLINEARSOLVER_GINKGO Module 257

https://ginkgo-project.github.io/

User Documentation for KINSOL, v7.1.0

using GkoMatrixType = gko::matrix::Csr<sunrealtype, sunindextype>;
using GkoSolverType = gko::solver::Cg<sunrealtype>;

auto gko_solver_factory = gko::share(
GkoSolverType::build().with_criteria(std::move(crit)).on(gko_exec));

sundials::ginkgo::LinearSolver<GkoSolverType, GkoMatrixType> LS{
gko_solver_factory, sunctx};

Finally, we can pass the instance of sundials::ginkgo::LinearSolver to any function expecting a SUNLinear-
Solver object through the implicit conversion operator or explicit conversion function.

// Attach linear solver and matrix to CVODE.
//
// Implicit conversion from sundials::ginkgo::LinearSolver<GkoSolverType, GkoMatrixType>
// to a SUNLinearSolver object is done.
//
// For details about creating A see the SUNMATRIX_GINKGO module.
CVodeSetLinearSolver(cvode_mem, LS, A);

// Alternatively with explicit conversion of LS to a SUNLinearSolver
// and A to a SUNMatrix:
CVodeSetLinearSolver(cvode_mem, LS->Convert(), A->Convert());

Warning: SUNLinSolFree() should never be called on a SUNLinearSolver that was created via conversion
from a sundials::ginkgo::LinearSolver. Doing so may result in a double free.

8.18.2 SUNLINEARSOLVER_GINKGO API

In this section we list the public API of the sundials::ginkgo::LinearSolver class.

template<class GkoSolverType, class GkoMatrixType>
class sundials::ginkgo::LinearSolver : public sundials::ConvertibleTo<SUNLinearSolver>

LinearSolver() = default;
Default constructor - means the solver must be moved to.

LinearSolver(std::shared_ptr<typename GkoSolverType::Factory> gko_solver_factory, SUNContext sunctx)
Constructs a new LinearSolver from a Ginkgo solver factory.

Parameters

• gko_solver_factory – The Ginkgo solver factory (typically
gko::matrix::<type>::Factory`)

• sunctx – The SUNDIALS simulation context (SUNContext)

LinearSolver(LinearSolver &&that_solver) noexcept
Move constructor.

LinearSolver &operator=(LinearSolver &&rhs)
Move assignment.

258 Chapter 8. Linear Algebraic Solvers

User Documentation for KINSOL, v7.1.0

~LinearSolver() override = default
Default destructor.

operator SUNLinearSolver() override
Implicit conversion to a SUNLinearSolver.

operator SUNLinearSolver() const override
Implicit conversion to a SUNLinearSolver.

SUNLinearSolver Convert() override
Explicit conversion to a SUNLinearSolver.

SUNLinearSolver Convert() const override
Explicit conversion to a SUNLinearSolver.

std::shared_ptr<const gko::Executor> GkoExec() const
Get the gko::Executor associated with the Ginkgo solver.

std::shared_ptr<typename GkoSolverType::Factory> GkoFactory()
Get the underlying Ginkgo solver factory.

GkoSolverType *GkoSolver()
Get the underlying Ginkgo solver.

Note: This will be nullptr until the linear solver setup phase.

int NumIters() const
Get the number of linear solver iterations in the most recent solve.

sunrealtype ResNorm() const
Get the residual norm of the solution at the end of the last solve.

The type of residual norm depends on the Ginkgo stopping criteria used with the solver. With the De-
faultStop criteria this would be the absolute residual 2-norm.

GkoSolverType *Setup(Matrix<GkoMatrixType> *A)
Setup the linear system.

Parameters
A – the linear system matrix

Returns
Pointer to the Ginkgo solver generated from the factory

gko::LinOp *Solve(N_Vector b, N_Vector x, sunrealtype tol)
Solve the linear system Ax = b to the specificed tolerance.

Parameters

• b – the right-hand side vector

• x – the solution vector

• tol – the tolerance to solve the system to

Returns
gko::LinOp* the solution

8.18. The SUNLINEARSOLVER_GINKGO Module 259

User Documentation for KINSOL, v7.1.0

8.19 The SUNLINEARSOLVER_KOKKOSDENSE Module

New in version 6.4.0.

The SUNLINEARSOLVER_KOKKOSDENSE SUNLinearSolver implementation provides an interface to
KokkosKernels [49] linear solvers for dense and batched dense (block-diagonal) systems. Since Kokkos is a mod-
ern C++ library, the module is also written in modern C++ (it requires C++14) as a header only library. To utilize
this SUNLinearSolver user will need to include sunlinsol/sunlinsol_kokkosdense.hpp. More instructions on
building SUNDIALS with Kokkos and KokkosKernels enabled are given in §11.4. For instructions on building and
using Kokkos and KokkosKernels, refer to the Kokkos and KokkosKernels. documentation.

8.19.1 Using SUNLINEARSOLVER_KOKKOSDENSE

The SUNLINEARSOLVER_KOKKOSDENSE module is defined by the DenseLinearSolver templated class in the
sundials::kokkos namespace:

template<class ExecSpace = Kokkos::DefaultExecutionSpace,
class MemSpace = typename ExecSpace::memory_space>

class DenseLinearSolver : public sundials::impl::BaseLinearSolver,
public sundials::ConvertibleTo<SUNLinearSolver>

To use the SUNLINEARSOLVER_KOKKOSDENSE module, we begin by constructing an instance of a dense linear
solver e.g.,

// Create a dense linear solver
sundials::kokkos::DenseLinearSolver<> LS{sunctx};

Instances of the DenseLinearSolver class are implicitly or explicitly (using the Convert() method) convertible to
a SUNLinearSolver e.g.,

sundials::kokkos::DenseLinearSolver<> LS{sunctx};
SUNLinearSolver LSA = LS; // implicit conversion to SUNLinearSolver
SUNLinearSolver LSB = LS.Convert(); // explicit conversion to SUNLinearSolver

Warning: SUNLinSolFree() should never be called on a SUNLinearSolver that was created via conversion
from a sundials::kokkos::DenseLinearSolver. Doing so may result in a double free.

The SUNLINEARSOLVER_KOKKOSDENSE module is compatible with the NVECTOR_KOKKOS vector module
(see §6.14) and SUNMATRIX_KOKKOSDENSE matrix module (see §7.11).

8.19.2 SUNLINEARSOLVER_KOKKOSDENSE API

In this section we list the public API of the sundials::kokkos::DenseLinearSolver class.

template<class ExecSpace = Kokkos::DefaultExecutionSpace, class MemSpace = typename
ExecSpace::memory_space>
class DenseLinearSolver : public sundials::impl::BaseLinearSolver, public
sundials::ConvertibleTo<SUNLinearSolver>

DenseLinearSolver() = default;
Default constructor - means the solver must be moved to.

260 Chapter 8. Linear Algebraic Solvers

https://kokkos.github.io/kokkos-core-wiki/index.html
https://github.com/kokkos/kokkos-kernels/wiki

User Documentation for KINSOL, v7.1.0

DenseLinearSolver(SUNContext sunctx)
Constructs a new DenseLinearSolver.

Parameters
sunctx – The SUNDIALS simulation context (SUNContext)

DenseLinearSolver(DenseLinearSolver &&that_solver) noexcept
Move constructor.

DenseLinearSolver &operator=(DenseLinearSolver &&rhs)
Move assignment.

~DenseLinearSolver() override = default
Default destructor.

operator SUNLinearSolver() override
Implicit conversion to a SUNLinearSolver.

operator SUNLinearSolver() const override
Implicit conversion to a SUNLinearSolver.

SUNLinearSolver Convert() override
Explicit conversion to a SUNLinearSolver.

SUNLinearSolver Convert() const override
Explicit conversion to a SUNLinearSolver.

8.20 SUNLinearSolver Examples

There are SUNLinearSolver examples that may be installed for each implementation; these make use of the functions
in test_sunlinsol.c. These example functions show simple usage of the SUNLinearSolver family of modules.
The inputs to the examples depend on the linear solver type, and are output to stdout if the example is run without
the appropriate number of command-line arguments.

The following is a list of the example functions in test_sunlinsol.c:

• Test_SUNLinSolGetType: Verifies the returned solver type against the value that should be returned.

• Test_SUNLinSolGetID: Verifies the returned solver identifier against the value that should be returned.

• Test_SUNLinSolInitialize: Verifies that SUNLinSolInitialize can be called and returns successfully.

• Test_SUNLinSolSetup: Verifies that SUNLinSolSetup can be called and returns successfully.

• Test_SUNLinSolSolve: Given a SUNMatrix object A, N_Vector objects x and b (where Ax = b) and a
desired solution tolerance tol, this routine clones x into a new vector y, calls SUNLinSolSolve to fill y as the
solution to Ay = b (to the input tolerance), verifies that each entry in x and y match to within 10*tol, and
overwrites x with y prior to returning (in case the calling routine would like to investigate further).

• Test_SUNLinSolSetATimes (iterative solvers only): Verifies that SUNLinSolSetATimes can be called and
returns successfully.

• Test_SUNLinSolSetPreconditioner (iterative solvers only): Verifies that SUNLinSolSetPreconditioner
can be called and returns successfully.

• Test_SUNLinSolSetScalingVectors (iterative solvers only): Verifies that SUNLinSolSetScalingVectors
can be called and returns successfully.

• Test_SUNLinSolSetZeroGuess (iterative solvers only): Verifies that SUNLinSolSetZeroGuess can be called
and returns successfully.

8.20. SUNLinearSolver Examples 261

User Documentation for KINSOL, v7.1.0

• Test_SUNLinSolLastFlag: Verifies that SUNLinSolLastFlag can be called, and outputs the result to std-
out.

• Test_SUNLinSolNumIters (iterative solvers only): Verifies that SUNLinSolNumIters can be called, and out-
puts the result to stdout.

• Test_SUNLinSolResNorm (iterative solvers only): Verifies that SUNLinSolResNorm can be called, and that the
result is non-negative.

• Test_SUNLinSolResid (iterative solvers only): Verifies that SUNLinSolResid can be called.

• Test_SUNLinSolSpace verifies that SUNLinSolSpace can be called, and outputs the results to stdout.

We’ll note that these tests should be performed in a particular order. For either direct or iterative linear solvers, Test_-
SUNLinSolInitializemust be called before Test_SUNLinSolSetup, which must be called before Test_SUNLin-
SolSolve. Additionally, for iterative linear solvers Test_SUNLinSolSetATimes, Test_SUNLinSolSetPrecondi-
tioner and Test_SUNLinSolSetScalingVectors should be called before Test_SUNLinSolInitialize; sim-
ilarly Test_SUNLinSolNumIters, Test_SUNLinSolResNorm and Test_SUNLinSolResid should be called after
Test_SUNLinSolSolve. These are called in the appropriate order in all of the example problems.

262 Chapter 8. Linear Algebraic Solvers

Chapter 9

Tools for Memory Management

To support applications which leverage memory pools, or utilize a memory abstraction layer, sundials provides a set of
utilities we will collectively refer to as the SUNMemoryHelper API. The goal of this API is to allow users to leverage
operations defined by native sundials data structures while allowing the user to have finer-grained control of the memory
management.

9.1 The SUNMemoryHelper API

This API consists of three new SUNDIALS types: SUNMemoryType, SUNMemory, and SUNMemoryHelper:

typedef struct SUNMemory_ *SUNMemory
The SUNMemory type is a pointer the structure

struct SUNMemory_

void *ptr;
The actual data.

SUNMemoryType type;
The data memory type.

sunbooleantype own;
A flag indicating ownership.

size_t bytes;
The size of the data allocated.

SUNMemory SUNMemoryNewEmpty(SUNContext sunctx)
This function returns an empty SUNMemory object.

Arguments:

• sunctx – the SUNContext object.

Returns:

• an uninitialized SUNMemory object

Changed in version 7.0.0: The function signature was updated to add the SUNContext argument.

263

User Documentation for KINSOL, v7.1.0

enum SUNMemoryType
The SUNMemoryType type is an enumeration that defines the supported memory types:

enumerator SUNMEMTYPE_HOST
Pageable memory accessible on the host

enumerator SUNMEMTYPE_PINNED
Page-locked memory accesible on the host

enumerator SUNMEMTYPE_DEVICE
Memory accessible from the device

enumerator SUNMEMTYPE_UVM
Memory accessible from the host or device

typedef struct SUNMemoryHelper_ *SUNMemoryHelper
The SUNMemoryHelper type is a pointer to the structure

struct SUNMemoryHelper_

void *content;
Pointer to the implementation-specific member data

SUNMemoryHelper_Ops ops;
A virtual method table of member functions

SUNContext sunctx;
The SUNDIALS simulation context

typedef struct SUNMemoryHelper_Ops_ *SUNMemoryHelper_Ops
The SUNMemoryHelper_Ops type is defined as a pointer to the structure containing the function pointers to the
member function implementations. This structure is define as

struct SUNMemoryHelper_Ops_

SUNErrCode (*alloc)(SUNMemoryHelper, SUNMemory *memptr, size_t mem_size, SUNMemoryType
mem_type, void *queue)

The function implementing SUNMemoryHelper_Alloc()

SUNErrCode (*dealloc)(SUNMemoryHelper, SUNMemory mem, void *queue)
The function implementing SUNMemoryHelper_Dealloc()

SUNErrCode (*copy)(SUNMemoryHelper, SUNMemory dst, SUNMemory src, size_t mem_size, void
*queue)

The function implementing SUNMemoryHelper_Copy()

SUNErrCode (*copyasync)(SUNMemoryHelper, SUNMemory dst, SUNMemory src, size_t mem_size,
void *queue)

The function implementing SUNMemoryHelper_CopyAsync()

SUNErrCode (*getallocstats)(SUNMemoryHelper, SUNMemoryType mem_type, unsigned long
*num_allocations, unsigned long *num_deallocations, size_t *bytes_allocated, size_t
*bytes_high_watermark)

The function implementing SUNMemoryHelper_GetAllocStats()

SUNMemoryHelper (*clone)(SUNMemoryHelper)
The function implementing SUNMemoryHelper_Clone()

264 Chapter 9. Tools for Memory Management

User Documentation for KINSOL, v7.1.0

SUNErrCode (*destroy)(SUNMemoryHelper)
The function implementing SUNMemoryHelper_Destroy()

9.1.1 Implementation defined operations

The SUNMemory API defines the following operations that an implementation to must define:

SUNMemory SUNMemoryHelper_Alloc(SUNMemoryHelper helper, SUNMemory *memptr, size_t mem_size,
SUNMemoryType mem_type, void *queue)

Allocates a SUNMemory object whose ptr field is allocated for mem_size bytes and is of type mem_type. The
new object will have ownership of ptr and will be deallocated when SUNMemoryHelper_Dealloc() is called.

Arguments:

• helper – the SUNMemoryHelper object.

• memptr – pointer to the allocated SUNMemory.

• mem_size – the size in bytes of the ptr.

• mem_type – the SUNMemoryType of the ptr.

• queue – typically a handle for an object representing an alternate execution stream (e.g., a CUDA/HIP
stream or SYCL queue), but it can also be any implementation specific data.

Returns:

• A new SUNMemory object.

SUNErrCode SUNMemoryHelper_Dealloc(SUNMemoryHelper helper, SUNMemory mem, void *queue)
Deallocates the mem->ptr field if it is owned by mem, and then deallocates the mem object.

Arguments:

• helper – the SUNMemoryHelper object.

• mem – the SUNMemory object.

• queue – typically a handle for an object representing an alternate execution stream (e.g., a CUDA/HIP
stream or SYCL queue), but it can also be any implementation specific data.

Returns:

• A SUNErrCode indicating success or failure.

SUNErrCode SUNMemoryHelper_Copy(SUNMemoryHelper helper, SUNMemory dst, SUNMemory src, size_t
mem_size, void *queue)

Synchronously copies mem_size bytes from the the source memory to the destination memory. The copy can
be across memory spaces, e.g. host to device, or within a memory space, e.g. host to host. The helper object
should use the memory types of dst and src to determine the appropriate transfer type necessary.

Arguments:

• helper – the SUNMemoryHelper object.

• dst – the destination memory to copy to.

• src – the source memory to copy from.

• mem_size – the number of bytes to copy.

• queue – typically a handle for an object representing an alternate execution stream (e.g., a CUDA/HIP
stream or SYCL queue), but it can also be any implementation specific data.

9.1. The SUNMemoryHelper API 265

User Documentation for KINSOL, v7.1.0

Returns:

• A SUNErrCode indicating success or failure.

9.1.2 Utility Functions

The SUNMemoryHelper API defines the following functions which do not require a SUNMemoryHelper instance:

SUNMemory SUNMemoryHelper_Alias(SUNMemoryHelper helper, SUNMemory mem1)
Returns a SUNMemory object whose ptr field points to the same address as mem1. The new object will not have
ownership of ptr, therefore, it will not free ptr when SUNMemoryHelper_Dealloc() is called.

Arguments:

• helper – a SUNMemoryHelper object.

• mem1 – a SUNMemory object.

Returns:

• A SUNMemory object or NULL if an error occurs.

Changed in version 7.0.0: The SUNMemoryHelper argument was added to the function signature.

SUNMemory SUNMemoryHelper_Wrap(SUNMemoryHelper helper, void *ptr, SUNMemoryType mem_type)
Returns a SUNMemory object whose ptr field points to the ptr argument passed to the function. The new object
will not have ownership of ptr, therefore, it will not free ptr when SUNMemoryHelper_Dealloc() is called.

Arguments:

• helper – a SUNMemoryHelper object.

• ptr – the data pointer to wrap in a SUNMemory object.

• mem_type – the SUNMemoryType of the ptr.

Returns:

• A SUNMemory object or NULL if an error occurs.

Changed in version 7.0.0: The SUNMemoryHelper argument was added to the function signature.

SUNMemoryHelper SUNMemoryHelper_NewEmpty(SUNContext sunctx)
Returns an empty SUNMemoryHelper. This is useful for building custom SUNMemoryHelper implementations.

Arguments:

• helper – a SUNMemoryHelper object.

Returns:

• A SUNMemoryHelper object or NULL if an error occurs.

Changed in version 7.0.0: The SUNMemoryHelper argument was added to the function signature.

SUNErrCode SUNMemoryHelper_CopyOps(SUNMemoryHelper src, SUNMemoryHelper dst)
Copies the ops field of src to the ops field of dst. This is useful for building custom SUNMemoryHelper
implementations.

Arguments:

• src – the object to copy from.

• dst – the object to copy to.

Returns:

266 Chapter 9. Tools for Memory Management

User Documentation for KINSOL, v7.1.0

• A SUNErrCode indicating success or failure.

SUNErrCode SUNMemoryHelper_GetAllocStats(SUNMemoryHelper helper, SUNMemoryType mem_type,
unsigned long *num_allocations, unsigned long
*num_deallocations, size_t *bytes_allocated, size_t
*bytes_high_watermark)

Returns statistics about the allocations performed with the helper.

Arguments:

• helper – the SUNMemoryHelper object.

• mem_type – the SUNMemoryType to get stats for.

• num_allocations – (output argument) number of allocations done through the helper.

• num_deallocations – (output argument) number of deallocations done through the helper.

• bytes_allocated – (output argument) total number of bytes allocated through the helper at the moment
this function is called.

• bytes_high_watermark – (output argument) max number of bytes allocated through the helper at any
moment in the lifetime of the helper.

Returns:

• A SUNErrCode indicating success or failure.

9.1.3 Implementation overridable operations with defaults

In addition, the SUNMemoryHelper API defines the following optionally overridable operations which an implemen-
tation may define:

SUNErrCode SUNMemoryHelper_CopyAsync(SUNMemoryHelper helper, SUNMemory dst, SUNMemory src,
size_t mem_size, void *queue)

Asynchronously copies mem_size bytes from the the source memory to the destination memory. The copy can
be across memory spaces, e.g. host to device, or within a memory space, e.g. host to host. The helper object
should use the memory types of dst and src to determine the appropriate transfer type necessary. The ctx
argument is used when a different execution stream needs to be provided to perform the copy in, e.g. with CUDA
this would be a cudaStream_t.

Arguments:

• helper – the SUNMemoryHelper object.

• dst – the destination memory to copy to.

• src – the source memory to copy from.

• mem_size – the number of bytes to copy.

• queue – typically a handle for an object representing an alternate execution stream (e.g., a CUDA/HIP
stream or SYCL queue), but it can also be any implementation specific data.

Returns:

An int flag indicating success (zero) or failure (non-zero).

Note: If this operation is not defined by the implementation, then SUNMemoryHelper_Copy() will be used.

9.1. The SUNMemoryHelper API 267

User Documentation for KINSOL, v7.1.0

SUNMemoryHelper SUNMemoryHelper_Clone(SUNMemoryHelper helper)
Clones the SUNMemoryHelper object itself.

Arguments:

• helper – the SUNMemoryHelper object to clone.

Returns:

• A SUNMemoryHelper object.

Note: If this operation is not defined by the implementation, then the default clone will only copy the SUNMem-
oryHelper_Ops structure stored in helper->ops, and not the helper->content field.

SUNErrCode SUNMemoryHelper_Destroy(SUNMemoryHelper helper)
Destroys (frees) the SUNMemoryHelper object itself.

Arguments:

• helper – the SUNMemoryHelper object to destroy.

Returns:

• A SUNErrCode indicating success or failure.

Note: If this operation is not defined by the implementation, then the default destroy will only free the
helper->ops field and the helper itself. The helper->content field will not be freed.

9.1.4 Implementing a custom SUNMemoryHelper

A particular implementation of the SUNMemoryHelper API must:

• Define and implement the required operations. Note that the names of these routines should be unique to that
implementation in order to permit using more than one SUNMemoryHelper module in the same code.

• Optionally, specify the content field of SUNMemoryHelper.

• Optionally, define and implement additional user-callable routines acting on the newly defined SUNMemory-
Helper.

An example of a custom SUNMemoryHelper is given in examples/utilities/custom_memory_helper.h.

9.2 The SUNMemoryHelper_Cuda Implementation

The SUNMemoryHelper_Cuda module is an implementation of the SUNMemoryHelper API that interfaces to the
NVIDIA [5] library. The implementation defines the constructor

SUNMemoryHelper SUNMemoryHelper_Cuda(SUNContext sunctx)
Allocates and returns a SUNMemoryHelper object for handling CUDA memory if successful. Otherwise it re-
turns NULL.

268 Chapter 9. Tools for Memory Management

User Documentation for KINSOL, v7.1.0

9.2.1 SUNMemoryHelper_Cuda API Functions

The implementation provides the following operations defined by the SUNMemoryHelper API:

SUNMemory SUNMemoryHelper_Alloc_Cuda(SUNMemoryHelper helper, SUNMemory memptr, size_t mem_size,
SUNMemoryType mem_type, void *queue)

Allocates a SUNMemory object whose ptr field is allocated for mem_size bytes and is of type mem_type. The
new object will have ownership of ptr and will be deallocated when SUNMemoryHelper_Dealloc() is called.

Arguments:

• helper – the SUNMemoryHelper object.

• memptr – pointer to the allocated SUNMemory.

• mem_size – the size in bytes of the ptr.

• mem_type – the SUNMemoryType of the ptr. Supported values are:

– SUNMEMTYPE_HOST – memory is allocated with a call to malloc.

– SUNMEMTYPE_PINNED – memory is allocated with a call to cudaMallocHost.

– SUNMEMTYPE_DEVICE – memory is allocated with a call to cudaMalloc.

– SUNMEMTYPE_UVM – memory is allocated with a call to cudaMallocManaged.

• queue – currently unused.

Returns:

• A new SUNMemory object.

SUNErrCode SUNMemoryHelper_Dealloc_Cuda(SUNMemoryHelper helper, SUNMemory mem, void *queue)
Deallocates the mem->ptr field if it is owned by mem, and then deallocates the mem object.

Arguments:

• helper – the SUNMemoryHelper object.

• mem – the SUNMemory object.

• queue – currently unused.

Returns:

• A SUNErrCode indicating success or failure.

SUNErrCode SUNMemoryHelper_Copy_Cuda(SUNMemoryHelper helper, SUNMemory dst, SUNMemory src,
size_t mem_size, void *queue)

Synchronously copies mem_size bytes from the the source memory to the destination memory. The copy can
be across memory spaces, e.g. host to device, or within a memory space, e.g. host to host. The helper object
will use the memory types of dst and src to determine the appropriate transfer type necessary.

Arguments:

• helper – the SUNMemoryHelper object.

• dst – the destination memory to copy to.

• src – the source memory to copy from.

• mem_size – the number of bytes to copy.

• queue – currently unused.

Returns:

9.2. The SUNMemoryHelper_Cuda Implementation 269

User Documentation for KINSOL, v7.1.0

• A SUNErrCode indicating success or failure.

SUNErrCode SUNMemoryHelper_CopyAsync_Cuda(SUNMemoryHelper helper, SUNMemory dst, SUNMemory
src, size_t mem_size, void *queue)

Asynchronously copies mem_size bytes from the the source memory to the destination memory. The copy can
be across memory spaces, e.g. host to device, or within a memory space, e.g. host to host. The helper object
will use the memory types of dst and src to determine the appropriate transfer type necessary.

Arguments:

• helper – the SUNMemoryHelper object.

• dst – the destination memory to copy to.

• src – the source memory to copy from.

• mem_size – the number of bytes to copy.

• queue – the cudaStream_t handle for the stream that the copy will be performed on.

Returns:

• A SUNErrCode indicating success or failure.

SUNErrCode SUNMemoryHelper_GetAllocStats_Cuda(SUNMemoryHelper helper, SUNMemoryType
mem_type, unsigned long *num_allocations, unsigned
long *num_deallocations, size_t *bytes_allocated, size_t
*bytes_high_watermark)

Returns statistics about memory allocations performed with the helper.

Arguments:

• helper – the SUNMemoryHelper object.

• mem_type – the SUNMemoryType to get stats for.

• num_allocations – (output argument) number of memory allocations done through the helper.

• num_deallocations – (output argument) number of memory deallocations done through the helper.

• bytes_allocated – (output argument) total number of bytes allocated through the helper at the moment
this function is called.

• bytes_high_watermark – (output argument) max number of bytes allocated through the helper at any
moment in the lifetime of the helper.

Returns:

• A SUNErrCode indicating success or failure.

9.3 The SUNMemoryHelper_Hip Implementation

The SUNMemoryHelper_Hip module is an implementation of the SUNMemoryHelper API that interfaces to the AMD
ROCm HIP library [2]. The implementation defines the constructor

SUNMemoryHelper SUNMemoryHelper_Hip(SUNContext sunctx)
Allocates and returns a SUNMemoryHelper object for handling HIP memory if successful. Otherwise it returns
NULL.

270 Chapter 9. Tools for Memory Management

User Documentation for KINSOL, v7.1.0

9.3.1 SUNMemoryHelper_Hip API Functions

The implementation provides the following operations defined by the SUNMemoryHelper API:

SUNMemory SUNMemoryHelper_Alloc_Hip(SUNMemoryHelper helper, SUNMemory memptr, size_t mem_size,
SUNMemoryType mem_type, void *queue)

Allocates a SUNMemory object whose ptr field is allocated for mem_size bytes and is of type mem_type. The
new object will have ownership of ptr and will be deallocated when SUNMemoryHelper_Dealloc() is called.

Arguments:

• helper – the SUNMemoryHelper object.

• memptr – pointer to the allocated SUNMemory.

• mem_size – the size in bytes of the ptr.

• mem_type – the SUNMemoryType of the ptr. Supported values are:

– SUNMEMTYPE_HOST – memory is allocated with a call to malloc.

– SUNMEMTYPE_PINNED – memory is allocated with a call to hipMallocHost.

– SUNMEMTYPE_DEVICE – memory is allocated with a call to hipMalloc.

– SUNMEMTYPE_UVM – memory is allocated with a call to hipMallocManaged.

• queue – currently unused.

Returns:

• An int flag indicating success (zero) or failure (non-zero).

SUNErrCode SUNMemoryHelper_Dealloc_Hip(SUNMemoryHelper helper, SUNMemory mem, void *queue)
Deallocates the mem->ptr field if it is owned by mem, and then deallocates the mem object.

Arguments:

• helper – the SUNMemoryHelper object.

• mem – the SUNMemory object.

Returns:

• An int flag indicating success (zero) or failure (non-zero).

SUNErrCode SUNMemoryHelper_Copy_Hip(SUNMemoryHelper helper, SUNMemory dst, SUNMemory src, size_t
mem_size, void *queue)

Synchronously copies mem_size bytes from the the source memory to the destination memory. The copy can
be across memory spaces, e.g. host to device, or within a memory space, e.g. host to host. The helper object
will use the memory types of dst and src to determine the appropriate transfer type necessary.

Arguments:

• helper – the SUNMemoryHelper object.

• dst – the destination memory to copy to.

• src – the source memory to copy from.

• mem_size – the number of bytes to copy.

Returns:

• An int flag indicating success (zero) or failure (non-zero).

9.3. The SUNMemoryHelper_Hip Implementation 271

User Documentation for KINSOL, v7.1.0

SUNErrCode SUNMemoryHelper_CopyAsync_Hip(SUNMemoryHelper helper, SUNMemory dst, SUNMemory src,
size_t mem_size, void *queue)

Asynchronously copies mem_size bytes from the the source memory to the destination memory. The copy can
be across memory spaces, e.g. host to device, or within a memory space, e.g. host to host. The helper object
will use the memory types of dst and src to determine the appropriate transfer type necessary.

Arguments:

• helper – the SUNMemoryHelper object.

• dst – the destination memory to copy to.

• src – the source memory to copy from.

• mem_size – the number of bytes to copy.

• queue – the hipStream_t handle for the stream that the copy will be performed on.

Returns:

• An int flag indicating success (zero) or failure (non-zero).

SUNErrCode SUNMemoryHelper_GetAllocStats_Hip(SUNMemoryHelper helper, SUNMemoryType mem_type,
unsigned long *num_allocations, unsigned long
*num_deallocations, size_t *bytes_allocated, size_t
*bytes_high_watermark)

Returns statistics about memory allocations performed with the helper.

Arguments:

• helper – the SUNMemoryHelper object.

• mem_type – the SUNMemoryType to get stats for.

• num_allocations – (output argument) number of memory allocations done through the helper.

• num_deallocations – (output argument) number of memory deallocations done through the helper.

• bytes_allocated – (output argument) total number of bytes allocated through the helper at the moment
this function is called.

• bytes_high_watermark – (output argument) max number of bytes allocated through the helper at any
moment in the lifetime of the helper.

Returns:

• An int flag indicating success (zero) or failure (non-zero).

9.4 The SUNMemoryHelper_Sycl Implementation

The SUNMemoryHelper_Sycl module is an implementation of the SUNMemoryHelperAPI that interfaces to the SYCL
abstraction layer. The implementation defines the constructor

SUNMemoryHelper SUNMemoryHelper_Sycl(SUNContext sunctx)
Allocates and returns a SUNMemoryHelper object for handling SYCL memory using the provided queue. Oth-
erwise it returns NULL.

272 Chapter 9. Tools for Memory Management

https://www.khronos.org/sycl/

User Documentation for KINSOL, v7.1.0

9.4.1 SUNMemoryHelper_Sycl API Functions

The implementation provides the following operations defined by the SUNMemoryHelper API:

SUNMemory SUNMemoryHelper_Alloc_Sycl(SUNMemoryHelper helper, SUNMemory memptr, size_t mem_size,
SUNMemoryType mem_type, void *queue)

Allocates a SUNMemory object whose ptr field is allocated for mem_size bytes and is of type mem_type. The
new object will have ownership of ptr and will be deallocated when SUNMemoryHelper_Dealloc() is called.

Arguments:

• helper – the SUNMemoryHelper object.

• memptr – pointer to the allocated SUNMemory.

• mem_size – the size in bytes of the ptr.

• mem_type – the SUNMemoryType of the ptr. Supported values are:

– SUNMEMTYPE_HOST – memory is allocated with a call to malloc.

– SUNMEMTYPE_PINNED – memory is allocated with a call to sycl::malloc_host.

– SUNMEMTYPE_DEVICE – memory is allocated with a call to sycl::malloc_device.

– SUNMEMTYPE_UVM – memory is allocated with a call to sycl::malloc_shared.

• queue – the sycl::queue handle for the stream that the allocation will be performed on.

Returns:

• A new SUNMemory object.

SUNErrCode SUNMemoryHelper_Dealloc_Sycl(SUNMemoryHelper helper, SUNMemory mem, void *queue)
Deallocates the mem->ptr field if it is owned by mem, and then deallocates the mem object.

Arguments:

• helper – the SUNMemoryHelper object.

• mem – the SUNMemory object.

• queue – the sycl::queue handle for the queue that the deallocation will be performed on.

Returns:

• A SUNErrCode indicating success or failure.

SUNErrCode SUNMemoryHelper_Copy_Sycl(SUNMemoryHelper helper, SUNMemory dst, SUNMemory src,
size_t mem_size, void *queue)

Synchronously copies mem_size bytes from the the source memory to the destination memory. The copy can
be across memory spaces, e.g. host to device, or within a memory space, e.g. host to host. The helper object
will use the memory types of dst and src to determine the appropriate transfer type necessary.

Arguments:

• helper – the SUNMemoryHelper object.

• dst – the destination memory to copy to.

• src – the source memory to copy from.

• mem_size – the number of bytes to copy.

• queue – the sycl::queue handle for the queue that the copy will be performed on.

Returns:

9.4. The SUNMemoryHelper_Sycl Implementation 273

User Documentation for KINSOL, v7.1.0

• A SUNErrCode indicating success or failure.

SUNErrCode SUNMemoryHelper_CopyAsync_Sycl(SUNMemoryHelper helper, SUNMemory dst, SUNMemory
src, size_t mem_size, void *queue)

Asynchronously copies mem_size bytes from the the source memory to the destination memory. The copy can
be across memory spaces, e.g. host to device, or within a memory space, e.g. host to host. The helper object
will use the memory types of dst and src to determine the appropriate transfer type necessary.

Arguments:

• helper – the SUNMemoryHelper object.

• dst – the destination memory to copy to.

• src – the source memory to copy from.

• mem_size – the number of bytes to copy.

• queue – the sycl::queue handle for the queue that the copy will be performed on.

Returns:

• A SUNErrCode indicating success or failure.

SUNErrCode SUNMemoryHelper_GetAllocStats_Sycl(SUNMemoryHelper helper, SUNMemoryType
mem_type, unsigned long *num_allocations, unsigned
long *num_deallocations, size_t *bytes_allocated, size_t
*bytes_high_watermark)

Returns statistics about memory allocations performed with the helper.

Arguments:

• helper – the SUNMemoryHelper object.

• mem_type – the SUNMemoryType to get stats for.

• num_allocations – (output argument) number of memory allocations done through the helper.

• num_deallocations – (output argument) number of memory deallocations done through the helper.

• bytes_allocated – (output argument) total number of bytes allocated through the helper at the moment
this function is called.

• bytes_high_watermark – (output argument) max number of bytes allocated through the helper at any
moment in the lifetime of the helper.

Returns:

• A SUNErrCode indicating success or failure.

274 Chapter 9. Tools for Memory Management

Chapter 10

Acquiring SUNDIALS

There are two supported ways for building and installing SUNDIALS from source. One option is to use the Spack HPC
package manager:

spack install sundials

The second supported option for building and installing SUNDIALS is with CMake. Before proceeding with CMake,
the source code must be downloaded. This can be done by cloning the SUNDIALS GitHub repository (run git clone
https://github.com/LLNL/sundials), or by downloading the SUNDIALS release compressed archives (.tar.
gz) from the SUNDIALS website.

The compressed archives allow for downloading of indvidual SUNDIALS packages. The name of the distribution
archive is of the form SOLVER-7.1.0.tar.gz, where SOLVER is one of: sundials, cvode, cvodes, arkode, ida,
idas, or kinsol, and 7.1.0 represents the version number (of the SUNDIALS suite or of the individual solver). After
downloading the relevant archives, uncompress and expand the sources, by running

% tar -zxf SOLVER-7.1.0.tar.gz

This will extract source files under a directory SOLVER-7.1.0.

Starting with version 2.6.0 of SUNDIALS, CMake is the only supported method of installation. The explanations of
the installation procedure begin with a few common observations:

1. The remainder of this chapter will follow these conventions:

SOLVERDIR is the directory SOLVER-7.1.0 created above; i.e. the directory containing the SUNDIALS sources.

BUILDDIR is the (temporary) directory under which SUNDIALS is built.

INSTDIR is the directory under which the SUNDIALS exported header files and libraries will be installed. Typi-
cally, header files are exported under a directory INSTDIR/includewhile libraries are installed under INSTDIR/
lib, with INSTDIR specified at configuration time.

2. For SUNDIALS’ CMake-based installation, in-source builds are prohibited; in other words, the build directory
BUILDDIR can not be the same as SOLVERDIR and such an attempt will lead to an error. This prevents “polluting”
the source tree and allows efficient builds for different configurations and/or options.

3. The installation directory INSTDIR can not be the same as the source directory SOLVERDIR.

4. By default, only the libraries and header files are exported to the installation directory INSTDIR. If enabled by
the user (with the appropriate toggle for CMake), the examples distributed with SUNDIALS will be built to-
gether with the solver libraries but the installation step will result in exporting (by default in a subdirectory of
the installation directory) the example sources and sample outputs together with automatically generated config-
uration files that reference the installed SUNDIALS headers and libraries. As such, these configuration files for

275

https://spack.io/
https://spack.io/
https://github.com/LLNL/sundials
https://computing.llnl.gov/projects/sundials/sundials-software

User Documentation for KINSOL, v7.1.0

the SUNDIALS examples can be used as “templates” for your own problems. CMake installs CMakeLists.txt
files and also (as an option available only under Unix/Linux) Makefile files. Note this installation approach
also allows the option of building the SUNDIALS examples without having to install them. (This can be used
as a sanity check for the freshly built libraries.)

Further details on the CMake-based installation procedures, instructions for manual compilation, and a roadmap of the
resulting installed libraries and exported header files, are provided in §11 and §11.8.

276 Chapter 10. Acquiring SUNDIALS

Chapter 11

Building and Installing with CMake

CMake-based installation provides a platform-independent build system. CMake can generate Unix and Linux Make-
files, as well as KDevelop, Visual Studio, and (Apple) XCode project files from the same configuration file. In addition,
CMake also provides a GUI front end and which allows an interactive build and installation process.

The SUNDIALS build process requires CMake version 3.18.0 or higher and a working C compiler. On Unix-like
operating systems, it also requires Make (and curses, including its development libraries, for the GUI front end to
CMake, ccmake or cmake-gui), while on Windows it requires Visual Studio. While many Linux distributions offer
CMake, the version included may be out of date. CMake adds new features regularly, and you should download the
latest version from http://www.cmake.org. Build instructions for CMake (only necessary for Unix-like systems) can be
found on the CMake website. Once CMake is installed, Linux/Unix users will be able to use ccmake or cmake-gui
(depending on the version of CMake), while Windows users will be able to use CMakeSetup.

As previously noted, when using CMake to configure, build and install SUNDIALS, it is always required to use a
separate build directory. While in-source builds are possible, they are explicitly prohibited by the SUNDIALS CMake
scripts (one of the reasons being that, unlike autotools, CMake does not provide a make distclean procedure and it
is therefore difficult to clean-up the source tree after an in-source build). By ensuring a separate build directory, it is an
easy task for the user to clean-up all traces of the build by simply removing the build directory. CMake does generate
a make clean which will remove files generated by the compiler and linker.

11.1 Configuring, building, and installing on Unix-like systems

The default CMake configuration will build all included solvers and associated examples and will build static and
shared libraries. The INSTDIR defaults to /usr/local and can be changed by setting the CMAKE_INSTALL_PREFIX
variable. Support for FORTRAN and all other options are disabled.

CMake can be used from the command line with the cmake command, or from a curses-based GUI by using the
ccmake command, or from a wxWidgets or QT based GUI by using the cmake-gui command. Examples for using
both text and graphical methods will be presented. For the examples shown it is assumed that there is a top level
SUNDIALS directory with appropriate source, build and install directories:

$ mkdir (...)/INSTDIR
$ mkdir (...)/BUILDDIR
$ cd (...)/BUILDDIR

277

http://www.cmake.org

User Documentation for KINSOL, v7.1.0

11.1.1 Building with the GUI

Using CMake with the ccmake GUI follows the general process:

1. Select and modify values, run configure (c key)

2. New values are denoted with an asterisk

3. To set a variable, move the cursor to the variable and press enter

• If it is a boolean (ON/OFF) it will toggle the value

• If it is string or file, it will allow editing of the string

• For file and directories, the <tab> key can be used to complete

4. Repeat until all values are set as desired and the generate option is available (g key)

5. Some variables (advanced variables) are not visible right away; to see advanced variables, toggle to advanced
mode (t key)

6. To search for a variable press the / key, and to repeat the search, press the n key

Using CMake with the cmake-gui GUI follows a similar process:

1. Select and modify values, click Configure

2. The first time you click Configure, make sure to pick the appropriate generator (the following will assume
generation of Unix Makfiles).

3. New values are highlighted in red

4. To set a variable, click on or move the cursor to the variable and press enter

• If it is a boolean (ON/OFF) it will check/uncheck the box

• If it is string or file, it will allow editing of the string. Additionally, an ellipsis button will appear ... on
the far right of the entry. Clicking this button will bring up the file or directory selection dialog.

• For files and directories, the <tab> key can be used to complete

5. Repeat until all values are set as desired and click the Generate button

6. Some variables (advanced variables) are not visible right away; to see advanced variables, click the advanced
button

To build the default configuration using the curses GUI, from the BUILDDIR enter the ccmake command and point to
the SOLVERDIR:

$ ccmake (...)/SOLVERDIR

Similarly, to build the default configuration using the wxWidgets GUI, from the BUILDDIR enter the cmake-gui com-
mand and point to the SOLVERDIR:

$ cmake-gui (...)/SOLVERDIR

The default curses configuration screen is shown in the following figure.

The default INSTDIR for both SUNDIALS and the corresponding examples can be changed by setting the CMAKE_-
INSTALL_PREFIX and the EXAMPLES_INSTALL_PATH as shown in the following figure.

Pressing the g key or clicking generate will generate Makefiles including all dependencies and all rules to build
SUNDIALS on this system. Back at the command prompt, you can now run:

$ make

278 Chapter 11. Building and Installing with CMake

User Documentation for KINSOL, v7.1.0

Fig. 11.1: Default configuration screen. Note: Initial screen is empty. To get this default configuration, press ‘c’
repeatedly (accepting default values denoted with asterisk) until the ‘g’ option is available.

11.1. Configuring, building, and installing on Unix-like systems 279

User Documentation for KINSOL, v7.1.0

Fig. 11.2: Changing the INSTDIR for SUNDIALS and corresponding EXAMPLES.

280 Chapter 11. Building and Installing with CMake

User Documentation for KINSOL, v7.1.0

or for a faster parallel build (e.g. using 4 threads), you can run

$ make -j 4

To install SUNDIALS in the installation directory specified in the configuration, simply run:

$ make install

11.1.2 Building from the command line

Using CMake from the command line is simply a matter of specifying CMake variable settings with the cmake com-
mand. The following will build the default configuration:

$ cmake -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \
> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \
> ../srcdir
$ make
$ make install

11.2 Configuration options

A complete list of all available options for a CMake-based SUNDIALS configuration is provide below. Note that the
default values shown are for a typical configuration on a Linux system and are provided as illustration only.

BUILD_ARKODE

Build the ARKODE library

Default: ON

BUILD_CVODE

Build the CVODE library

Default: ON

BUILD_CVODES

Build the CVODES library

Default: ON

BUILD_IDA

Build the IDA library

Default: ON

BUILD_IDAS

Build the IDAS library

Default: ON

BUILD_KINSOL

Build the KINSOL library

Default: ON

11.2. Configuration options 281

User Documentation for KINSOL, v7.1.0

BUILD_SHARED_LIBS

Build shared libraries

Default: ON

BUILD_STATIC_LIBS

Build static libraries

Default: ON

CMAKE_BUILD_TYPE

Choose the type of build, options are: Debug, Release, RelWithDebInfo, and MinSizeRel

Default: RelWithDebInfo

Note: Specifying a build type will trigger the corresponding build type specific compiler flag options below
which will be appended to the flags set by CMAKE_<language>_FLAGS.

CMAKE_C_COMPILER

C compiler

Default: /usr/bin/cc

CMAKE_C_FLAGS

Flags for C compiler

Default:

CMAKE_C_FLAGS_DEBUG

Flags used by the C compiler during debug builds

Default: -g

CMAKE_C_FLAGS_MINSIZEREL

Flags used by the C compiler during release minsize builds

Default: -Os -DNDEBUG

CMAKE_C_FLAGS_RELEASE

Flags used by the C compiler during release builds

Default: -O3 -DNDEBUG

CMAKE_C_STANDARD

The C standard to build C parts of SUNDIALS with.

Default: 99

Options: 99, 11, 17.

CMAKE_C_EXTENSIONS

Enable compiler specific C extensions.

Default: OFF

CMAKE_CXX_COMPILER

C++ compiler

Default: /usr/bin/c++

282 Chapter 11. Building and Installing with CMake

User Documentation for KINSOL, v7.1.0

Note: A C++ compiler is only required when a feature requiring C++ is enabled (e.g., CUDA, HIP, SYCL,
RAJA, etc.) or the C++ examples are enabled.

All SUNDIALS solvers can be used from C++ applications without setting any additional configuration options.

CMAKE_CXX_FLAGS

Flags for C++ compiler

Default:

CMAKE_CXX_FLAGS_DEBUG

Flags used by the C++ compiler during debug builds

Default: -g

CMAKE_CXX_FLAGS_MINSIZEREL

Flags used by the C++ compiler during release minsize builds

Default: -Os -DNDEBUG

CMAKE_CXX_FLAGS_RELEASE

Flags used by the C++ compiler during release builds

Default: -O3 -DNDEBUG

CMAKE_CXX_STANDARD

The C++ standard to build C++ parts of SUNDIALS with.

Default: 11

Options: 98, 11, 14, 17, 20.

CMAKE_CXX_EXTENSIONS

Enable compiler specific C++ extensions.

Default: OFF

CMAKE_Fortran_COMPILER

Fortran compiler

Default: /usr/bin/gfortran

Note: Fortran support (and all related options) are triggered only if either Fortran-C support (BUILD_FORTRAN_-
MODULE_INTERFACE) or LAPACK (ENABLE_LAPACK) support is enabled.

CMAKE_Fortran_FLAGS

Flags for Fortran compiler

Default:

CMAKE_Fortran_FLAGS_DEBUG

Flags used by the Fortran compiler during debug builds

Default: -g

CMAKE_Fortran_FLAGS_MINSIZEREL

Flags used by the Fortran compiler during release minsize builds

Default: -Os

11.2. Configuration options 283

User Documentation for KINSOL, v7.1.0

CMAKE_Fortran_FLAGS_RELEASE

Flags used by the Fortran compiler during release builds

Default: -O3

CMAKE_INSTALL_LIBDIR

The directory under which libraries will be installed.

Default: Set based on the system: lib, lib64, or lib/<multiarch-tuple>

CMAKE_INSTALL_PREFIX

Install path prefix, prepended onto install directories

Default: /usr/local

Note: The user must have write access to the location specified through this option. Exported SUNDIALS
header files and libraries will be installed under subdirectories include and lib of CMAKE_INSTALL_PREFIX,
respectively.

ENABLE_CUDA

Build the SUNDIALS CUDA modules.

Default: OFF

CMAKE_CUDA_ARCHITECTURES

Specifies the CUDA architecture to compile for.

Default: sm_30

EXAMPLES_ENABLE_C

Build the SUNDIALS C examples

Default: ON

EXAMPLES_ENABLE_CXX

Build the SUNDIALS C++ examples

Default: OFF

EXAMPLES_ENABLE_CUDA

Build the SUNDIALS CUDA examples

Default: OFF

Note: You need to enable CUDA support to build these examples.

EXAMPLES_ENABLE_F2003

Build the SUNDIALS Fortran2003 examples

Default: ON (if BUILD_FORTRAN_MODULE_INTERFACE is ON)

EXAMPLES_INSTALL

Install example files

Default: ON

Note: This option is triggered when any of the SUNDIALS example programs are enabled (EXAMPLES_-
ENABLE_<language> is ON). If the user requires installation of example programs then the sources and sample

284 Chapter 11. Building and Installing with CMake

User Documentation for KINSOL, v7.1.0

output files for all SUNDIALS modules that are currently enabled will be exported to the directory specified
by EXAMPLES_INSTALL_PATH. A CMake configuration script will also be automatically generated and exported
to the same directory. Additionally, if the configuration is done under a Unix-like system, makefiles for the
compilation of the example programs (using the installed SUNDIALS libraries) will be automatically generated
and exported to the directory specified by EXAMPLES_INSTALL_PATH.

EXAMPLES_INSTALL_PATH

Output directory for installing example files

Default: /usr/local/examples

Note: The actual default value for this option will be an examples subdirectory created under CMAKE_IN-
STALL_PREFIX.

BUILD_FORTRAN_MODULE_INTERFACE

Enable Fortran 2003 interface

Default: OFF

Warning: There is a known issue with MSYS/gfortran and SUNDIALS shared libraries that causes linking
the Fortran interfaces to fail when buidling SUNDIALS. For now the work around is to only build with static
libraries when using MSYS with gfortran on Windows.

SUNDIALS_LOGGING_LEVEL

Set the maximum logging level for the SUNLogger runtime API. The higher this is set, the more output that may
be logged, and the more performance may degrade. The options are:

• 0 – no logging

• 1 – log errors

• 2 – log errors + warnings

• 3 – log errors + warnings + informational output

• 4 – log errors + warnings + informational output + debug output

• 5 – log all of the above and even more (e.g. vector valued variables may be logged)

Default: 2

SUNDIALS_BUILD_WITH_MONITORING

Build SUNDIALS with capabilties for fine-grained monitoring of solver progress and statistics. This is primarily
useful for debugging.

Default: OFF

Warning: Building with monitoring may result in minor performance degradation even if monitoring is not
utilized.

SUNDIALS_BUILD_WITH_PROFILING

Build SUNDIALS with capabilties for fine-grained profiling. This requires POSIX timers or the Windows
profileapi.h timers.

Default: OFF

11.2. Configuration options 285

User Documentation for KINSOL, v7.1.0

Warning: Profiling will impact performance, and should be enabled judiciously.

SUNDIALS_ENABLE_ERROR_CHECKS

Build SUNDIALS with more extensive checks for unrecoverable errors.

Default: OFF when CMAKE_BUILD_TYPE=Release|RelWithDebInfo `` and ``ON otherwise.

Warning: Error checks will impact performance, but can be helpful for debugging.

SUNDIALS_ENABLE_EXTERNAL_ADDONS

Build SUNDIALS with any external addons that you have put in sundials/external.

Default: OFF

Warning: Addons are not maintained by the SUNDIALS team. Use at your own risk.

ENABLE_GINKGO

Enable interfaces to the Ginkgo linear algebra library.

Default: OFF

Ginkgo_DIR

Path to the Ginkgo installation.

Default: None

SUNDIALS_GINKGO_BACKENDS

Semi-colon separated list of Ginkgo target architecutres/executors to build for. Options currenty supported are
REF (the Ginkgo reference executor), OMP, CUDA, HIP, and SYCL.

Default: “REF;OMP”

ENABLE_KOKKOS

Enable the Kokkos based vector.

Default: OFF

Kokkos_DIR

Path to the Kokkos installation.

Default: None

ENABLE_KOKKOS_KERNELS

Enable the Kokkos based dense matrix and linear solver.

Default: OFF

KokkosKernels_DIR

Path to the Kokkos-Kernels installation.

Default: None

ENABLE_HIP

Enable HIP Support

Default: OFF

286 Chapter 11. Building and Installing with CMake

User Documentation for KINSOL, v7.1.0

AMDGPU_TARGETS

Specify which AMDGPU processor(s) to target.

Default: None

ENABLE_HYPRE

Flag to enable hypre support

Default: OFF

Note: See additional information on building with hypre enabled in §11.4.

HYPRE_INCLUDE_DIR

Path to hypre header files

Default: none

HYPRE_LIBRARY

Path to hypre installed library files

Default: none

ENABLE_KLU

Enable KLU support

Default: OFF

Note: See additional information on building with KLU enabled in §11.4.

KLU_INCLUDE_DIR

Path to SuiteSparse header files

Default: none

KLU_LIBRARY_DIR

Path to SuiteSparse installed library files

Default: none

ENABLE_LAPACK

Enable LAPACK support

Default: OFF

Note: Setting this option to ON will trigger additional CMake options. See additional information on building
with LAPACK enabled in §11.4.

LAPACK_LIBRARIES

LAPACK (and BLAS) libraries

Default: /usr/lib/liblapack.so;/usr/lib/libblas.so

Note: CMake will search for libraries in your LD_LIBRARY_PATH prior to searching default system paths.

11.2. Configuration options 287

User Documentation for KINSOL, v7.1.0

ENABLE_MAGMA

Enable MAGMA support.

Default: OFF

Note: Setting this option to ON will trigger additional options related to MAGMA.

MAGMA_DIR

Path to the root of a MAGMA installation.

Default: none

SUNDIALS_MAGMA_BACKENDS

Which MAGMA backend to use under the SUNDIALS MAGMA interface.

Default: CUDA

ENABLE_MPI

Enable MPI support. This will build the parallel nvector and the MPI-aware version of the ManyVector library.

Default: OFF

Note: Setting this option to ON will trigger several additional options related to MPI.

MPI_C_COMPILER

mpicc program

Default:

MPI_CXX_COMPILER

mpicxx program

Default:

Note: This option is triggered only if MPI is enabled (ENABLE_MPI is ON) and C++ examples are enabled
(EXAMPLES_ENABLE_CXX is ON). All SUNDIALS solvers can be used from C++ MPI applications by default
without setting any additional configuration options other than ENABLE_MPI.

MPI_Fortran_COMPILER

mpif90 program

Default:

Note: This option is triggered only if MPI is enabled (ENABLE_MPI is ON) and Fortran-C support is enabled
(EXAMPLES_ENABLE_F2003 is ON).

MPIEXEC_EXECUTABLE

Specify the executable for running MPI programs

Default: mpirun

Note: This option is triggered only if MPI is enabled (ENABLE_MPI is ON).

288 Chapter 11. Building and Installing with CMake

User Documentation for KINSOL, v7.1.0

ENABLE_ONEMKL

Enable oneMKL support.

Default: OFF

ONEMKL_DIR

Path to oneMKL installation.

Default: none

SUNDIALS_ONEMKL_USE_GETRF_LOOP

This advanced debugging option replaces the batched LU factorization with a loop over each system in the batch
and a non-batched LU factorization.

Default: OFF

SUNDIALS_ONEMKL_USE_GETRS_LOOP

This advanced debugging option replaces the batched LU solve with a loop over each system in the batch and a
non-batched solve.

Default: OFF

ENABLE_OPENMP

Enable OpenMP support (build the OpenMP NVector)

Default: OFF

ENABLE_PETSC

Enable PETSc support

Default: OFF

Note: See additional information on building with PETSc enabled in §11.4.

PETSC_DIR

Path to PETSc installation

Default: none

PETSC_LIBRARIES

Semi-colon separated list of PETSc link libraries. Unless provided by the user, this is autopopulated based on
the PETSc installation found in PETSC_DIR.

Default: none

PETSC_INCLUDES

Semi-colon separated list of PETSc include directroies. Unless provided by the user, this is autopopulated based
on the PETSc installation found in PETSC_DIR.

Default: none

ENABLE_PTHREAD

Enable Pthreads support (build the Pthreads NVector)

Default: OFF

ENABLE_RAJA

Enable RAJA support.

Default: OFF

11.2. Configuration options 289

User Documentation for KINSOL, v7.1.0

Note: You need to enable CUDA or HIP in order to build the RAJA vector module.

SUNDIALS_RAJA_BACKENDS

If building SUNDIALS with RAJA support, this sets the RAJA backend to target. Values supported are CUDA,
HIP, or SYCL.

Default: CUDA

ENABLE_SUPERLUDIST

Enable SuperLU_DIST support

Default: OFF

Note: See additional information on building wtih SuperLU_DIST enabled in §11.4.

SUPERLUDIST_DIR

Path to SuperLU_DIST installation.

Default: none

SUPERLUDIST_OpenMP

Enable SUNDIALS support for SuperLU_DIST built with OpenMP

Default: none

Note: SuperLU_DIST must be built with OpenMP support for this option to function. Additionally the environ-
ment variable OMP_NUM_THREADS must be set to the desired number of threads.

SUPERLUDIST_INCLUDE_DIRS

List of include paths for SuperLU_DIST (under a typical SuperLU_DIST install, this is typically the SuperLU_-
DIST SRC directory)

Default: none

Note: This is an advanced option. Prefer to use SUPERLUDIST_DIR .

SUPERLUDIST_LIBRARIES

Semi-colon separated list of libraries needed for SuperLU_DIST

Default: none

Note: This is an advanced option. Prefer to use SUPERLUDIST_DIR .

SUPERLUDIST_INCLUDE_DIR

Path to SuperLU_DIST header files (under a typical SuperLU_DIST install, this is typically the SuperLU_DIST
SRC directory)

Default: none

Note: This is an advanced option. This option is deprecated. Use SUPERLUDIST_INCLUDE_DIRS.

290 Chapter 11. Building and Installing with CMake

User Documentation for KINSOL, v7.1.0

SUPERLUDIST_LIBRARY_DIR

Path to SuperLU_DIST installed library files

Default: none

Note: This option is deprecated. Use SUPERLUDIST_DIR .

ENABLE_SUPERLUMT

Enable SuperLU_MT support

Default: OFF

Note: See additional information on building with SuperLU_MT enabled in §11.4.

SUPERLUMT_INCLUDE_DIR

Path to SuperLU_MT header files (under a typical SuperLU_MT install, this is typically the SuperLU_MT SRC
directory)

Default: none

SUPERLUMT_LIBRARY_DIR

Path to SuperLU_MT installed library files

Default: none

SUPERLUMT_THREAD_TYPE

Must be set to Pthread or OpenMP, depending on how SuperLU_MT was compiled.

Default: Pthread

ENABLE_SYCL

Enable SYCL support.

Default: OFF

Note: Building with SYCL enabled requires a compiler that supports a subset of the of SYCL 2020 specification
(specifically sycl/sycl.hpp must be available).

CMake does not currently support autodetection of SYCL compilers and CMAKE_CXX_COMPILER must be set
to a valid SYCL compiler. At present the only supported SYCL compilers are the Intel oneAPI compilers i.e.,
dpcpp and icpx. When using icpx the -fsycl flag and any ahead of time compilation flags must be added to
CMAKE_CXX_FLAGS.

SUNDIALS_SYCL_2020_UNSUPPORTED

This advanced option disables the use of some features from the SYCL 2020 standard in SUNDIALS libraries
and examples. This can be used to work around some cases of incomplete compiler support for SYCL 2020.

Default: OFF

ENABLE_CALIPER

Enable CALIPER support

Default: OFF

Note: Using Caliper requires setting SUNDIALS_BUILD_WITH_PROFILING to ON.

11.2. Configuration options 291

User Documentation for KINSOL, v7.1.0

CALIPER_DIR

Path to the root of a Caliper installation

Default: None

ENABLE_ADIAK

Enable Adiak support

Default: OFF

adiak_DIR

Path to the root of an Adiak installation

Default: None

SUNDIALS_LAPACK_CASE

Specify the case to use in the Fortran name-mangling scheme, options are: lower or upper

Default:

Note: The build system will attempt to infer the Fortran name-mangling scheme using the Fortran compiler.
This option should only be used if a Fortran compiler is not available or to override the inferred or default (lower)
scheme if one can not be determined. If used, SUNDIALS_LAPACK_UNDERSCORES must also be set.

SUNDIALS_LAPACK_UNDERSCORES

Specify the number of underscores to append in the Fortran name-mangling scheme, options are: none, one, or
two

Default:

Note: The build system will attempt to infer the Fortran name-mangling scheme using the Fortran compiler.
This option should only be used if a Fortran compiler is not available or to override the inferred or default (one)
scheme if one can not be determined. If used, SUNDIALS_LAPACK_CASE must also be set.

SUNDIALS_INDEX_TYPE

Integer type used for SUNDIALS indices. The size must match the size provided for the SUNDIALS_INDEX_SIZE
option.

Default: Automatically determined based on SUNDIALS_INDEX_SIZE

Note: In past SUNDIALS versions, a user could set this option to INT64_T to use 64-bit integers, or INT32_T
to use 32-bit integers. Starting in SUNDIALS 3.2.0, these special values are deprecated. For SUNDIALS 3.2.0
and up, a user will only need to use the SUNDIALS_INDEX_SIZE option in most cases.

SUNDIALS_INDEX_SIZE

Integer size (in bits) used for indices in SUNDIALS, options are: 32 or 64

Default: 64

Note: The build system tries to find an integer type of appropriate size. Candidate 64-bit integer types are
(in order of preference): int64_t, __int64, long long, and long. Candidate 32-bit integers are (in order of
preference): int32_t, int, and long. The advanced option, SUNDIALS_INDEX_TYPE can be used to provide a
type not listed here.

292 Chapter 11. Building and Installing with CMake

User Documentation for KINSOL, v7.1.0

SUNDIALS_PRECISION

The floating-point precision used in SUNDIALS packages and class implementations, options are: double,
single, or extended

Default: double

SUNDIALS_MATH_LIBRARY

The standard C math library (e.g., libm) to link with.

Default: -lm on Unix systems, none otherwise

SUNDIALS_INSTALL_CMAKEDIR

Installation directory for the SUNDIALS cmake files (relative to CMAKE_INSTALL_PREFIX).

Default: CMAKE_INSTALL_PREFIX/cmake/sundials

ENABLE_XBRAID

Enable or disable the ARKStep + XBraid interface.

Default: OFF

Note: See additional information on building with XBraid enabled in §11.4.

XBRAID_DIR

The root directory of the XBraid installation.

Default: OFF

XBRAID_INCLUDES

Semi-colon separated list of XBraid include directories. Unless provided by the user, this is autopopulated based
on the XBraid installation found in XBRAID_DIR.

Default: none

XBRAID_LIBRARIES

Semi-colon separated list of XBraid link libraries. Unless provided by the user, this is autopopulated based on
the XBraid installation found in XBRAID_DIR.

Default: none

USE_XSDK_DEFAULTS

Enable xSDK (see https://xsdk.info for more information) default configuration settings. This sets CMAKE_-
BUILD_TYPE to Debug, SUNDIALS_INDEX_SIZE to 32 and SUNDIALS_PRECISION to double.

Default: OFF

11.3 Configuration examples

The following examples will help demonstrate usage of the CMake configure options.

To configure SUNDIALS using the default C and Fortran compilers, and default mpicc and mpif90 parallel compilers,
enable compilation of examples, and install libraries, headers, and example sources under subdirectories of /home/
myname/sundials/, use:

11.3. Configuration examples 293

https://xsdk.info

User Documentation for KINSOL, v7.1.0

% cmake \
> -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \
> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \
> -DENABLE_MPI=ON \
> /home/myname/sundials/srcdir

% make install

To disable installation of the examples, use:

% cmake \
> -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \
> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \
> -DENABLE_MPI=ON \
> -DEXAMPLES_INSTALL=OFF \
> /home/myname/sundials/srcdir

% make install

11.4 Working with external Libraries

The SUNDIALS suite contains many options to enable implementation flexibility when developing solutions. The
following are some notes addressing specific configurations when using the supported third party libraries.

11.4.1 Building with Ginkgo

Ginkgo is a high-performance linear algebra library for manycore systems, with a focus on solving sparse linear systems.
It is implemented using modern C++ (you will need at least a C++14 compliant compiler to build it), with GPU kernels
implemented in CUDA (for NVIDIA devices), HIP (for AMD devices) and SYCL/DPC++ (for Intel devices and other
supported hardware). To enable Ginkgo in SUNDIALS, set the ENABLE_GINKGO to ON and provide the path to the
root of the Ginkgo installation in Ginkgo_DIR . Additionally, SUNDIALS_GINKGO_BACKENDS must be set to a list of
Ginkgo target architecutres/executors. E.g.,

% cmake \
> -DENABLE_GINKGO=ON \
> -DGinkgo_DIR=/path/to/ginkgo/installation \
> -DSUNDIALS_GINKGO_BACKENDS="REF;OMP;CUDA" \
> /home/myname/sundials/srcdir

The SUNDIALS interfaces to Ginkgo are not compatible with SUNDIALS_PRECISION set to extended.

294 Chapter 11. Building and Installing with CMake

https://ginkgo-project.github.io/

User Documentation for KINSOL, v7.1.0

11.4.2 Building with Kokkos

Kokkos is a modern C++ (requires at least C++14) programming model for witting performance portable code for multi-
core CPU and GPU-based systems including NVIDIA, AMD, and Intel accelerators. To enable Kokkos in SUNDIALS,
set the ENABLE_KOKKOS to ON and provide the path to the root of the Kokkos installation in Kokkos_DIR . Additionally,
the Kokkos-Kernels library provides common computational kernels for linear algebra. To enable Kokkos-Kernels in
SUNDIALS, set the ENABLE_KOKKOS_KERNELS to ON and provide the path to the root of the Kokkos-Kernels installa-
tion in KokkosKernels_DIR e.g.,

% cmake \
> -DENABLE_KOKKOS=ON \
> -DKokkos_DIR=/path/to/kokkos/installation \
> -DENABLE_KOKKOS_KERNELS=ON \
> -DKokkosKernels_DIR=/path/to/kokkoskernels/installation \
> /home/myname/sundials/srcdir

Note: The minimum supported version of Kokkos-Kernels 3.7.00.

11.4.3 Building with LAPACK

To enable LAPACK, set the ENABLE_LAPACK option to ON. If the directory containing the LAPACK library is in the
LD_LIBRARY_PATH environment variable, CMake will set the LAPACK_LIBRARIES variable accordingly, otherwise
CMake will attempt to find the LAPACK library in standard system locations. To explicitly tell CMake what library to
use, the LAPACK_LIBRARIES variable can be set to the desired libraries required for LAPACK.

% cmake \
> -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \
> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \
> -DENABLE_LAPACK=ON \
> -DLAPACK_LIBRARIES=/mylapackpath/lib/libblas.so;/mylapackpath/lib/liblapack.so \
> /home/myname/sundials/srcdir

% make install

Note: If a working Fortran compiler is not available to infer the Fortran name-mangling scheme, the options SUNDI-
ALS_F77_FUNC_CASE and SUNDIALS_F77_FUNC_UNDERSCORESmust be set in order to bypass the check for a Fortran
compiler and define the name-mangling scheme. The defaults for these options in earlier versions of SUNDIALS were
lower and one, respectively.

SUNDIALS has been tested with OpenBLAS 0.3.18.

11.4. Working with external Libraries 295

https://kokkos.github.io/kokkos-core-wiki/
https://github.com/kokkos/kokkos-kernels

User Documentation for KINSOL, v7.1.0

11.4.4 Building with KLU

KLU is a software package for the direct solution of sparse nonsymmetric linear systems of equations that arise in
circuit simulation and is part of SuiteSparse, a suite of sparse matrix software. The library is developed by Texas A&M
University and is available from the SuiteSparse GitHub repository.

To enable KLU, set ENABLE_KLU to ON, set KLU_INCLUDE_DIR to the include path of the KLU installation and set
KLU_LIBRARY_DIR to the lib path of the KLU installation. In that case, the CMake configure will result in populating
the following variables: AMD_LIBRARY, AMD_LIBRARY_DIR, BTF_LIBRARY, BTF_LIBRARY_DIR, COLAMD_LIBRARY,
COLAMD_LIBRARY_DIR, and KLU_LIBRARY.

For SuiteSparse 7.4.0 and newer, the necessary information can also be gathered from a CMake import target. If
SuiteSparse is installed in a non-default prefix, the path to the CMake Config file can be set using CMAKE_PREFIX_-
PATH. In that case, the CMake configure step won’t populate the previously mentioned variables. It is still possible
to set KLU_INCLUDE_DIR and KLU_LIBRARY_DIR which take precedence over a potentially installed CMake import
target file.

In either case, a CMake target SUNDIALS::KLU will be created if the KLU library could be found. Dependent targets
should link to that target.

SUNDIALS has been tested with SuiteSparse version 5.10.1.

11.4.5 Building with SuperLU_DIST

SuperLU_DIST is a general purpose library for the direct solution of large, sparse, nonsymmetric systems of linear
equations in a distributed memory setting. The library is developed by Lawrence Berkeley National Laboratory and is
available from the SuperLU_DIST GitHub repository.

To enable SuperLU_DIST, set ENABLE_SUPERLUDIST to ON, set SUPERLUDIST_DIR to the path where SuperLU_DIST
is installed. If SuperLU_DIST was built with OpenMP then the option SUPERLUDIST_OpenMP and ENABLE_OPENMP
should be set to ON.

SUNDIALS supports SuperLU_DIST v7.0.0 – v8.x.x and has been tested with v7.2.0 and v8.1.0.

11.4.6 Building with SuperLU_MT

SuperLU_MT is a general purpose library for the direct solution of large, sparse, nonsymmetric systems of linear
equations on shared memory parallel machines. The library is developed by Lawrence Berkeley National Laboratory
and is available from the SuperLU_MT GitHub repository.

To enable SuperLU_MT, set ENABLE_SUPERLUMT to ON, set SUPERLUMT_INCLUDE_DIR to the SRC path of the Su-
perLU_MT installation, and set the variable SUPERLUMT_LIBRARY_DIR to the lib path of the SuperLU_MT installa-
tion. At the same time, the variable SUPERLUMT_LIBRARIESmust be set to a semi-colon separated list of other libraries
SuperLU_MT depends on. For example, if SuperLU_MT was build with an external blas library, then include the full
path to the blas library in this list. Additionally, the variable SUPERLUMT_THREAD_TYPEmust be set to either Pthread
or OpenMP.

Do not mix thread types when building SUNDIALS solvers. If threading is enabled for SUNDIALS by having either
ENABLE_OPENMP or ENABLE_PTHREAD set to ON then SuperLU_MT should be set to use the same threading type.

SUNDIALS has been tested with SuperLU_MT version 3.1.

296 Chapter 11. Building and Installing with CMake

https://github.com/DrTimothyAldenDavis/SuiteSparse
https://github.com/xiaoyeli/superlu_dist
https://github.com/xiaoyeli/superlu_mt

User Documentation for KINSOL, v7.1.0

11.4.7 Building with PETSc

The Portable, Extensible Toolkit for Scientific Computation (PETSc) is a suite of data structures and routines for simu-
lating applications modeled by partial differential equations. The library is developed by Argonne National Laboratory
and is available from the PETSc GitLab repository.

To enable PETSc, set ENABLE_PETSC to ON, and set PETSC_DIR to the path of the PETSc installation. Alternatively,
a user can provide a list of include paths in PETSC_INCLUDES and a list of complete paths to the PETSc libraries in
PETSC_LIBRARIES.

SUNDIALS is regularly tested with the latest PETSc versions, specifically up to version 3.18.1 as of SUNDIALS
version v7.1.0. SUNDIALS requires PETSc 3.5.0 or newer.

11.4.8 Building with hypre

hypre is a library of high performance preconditioners and solvers featuring multigrid methods for the solution of large,
sparse linear systems of equations on massively parallel computers. The library is developed by Lawrence Livermore
National Laboratory and is available from the hypre GitHub repository.

To enable hypre, set ENABLE_HYPRE to ON, set HYPRE_INCLUDE_DIR to the include path of the hypre installation,
and set the variable HYPRE_LIBRARY_DIR to the lib path of the hypre installation.

Note: SUNDIALS must be configured so that SUNDIALS_INDEX_SIZE is compatible with HYPRE_BigInt in the
hypre installation.

SUNDIALS is regularly tested with the latest versions of hypre, specifically up to version 2.26.0 as of SUNDIALS
version v7.1.0.

11.4.9 Building with MAGMA

The Matrix Algebra on GPU and Multicore Architectures (MAGMA) project provides a dense linear algebra library
similar to LAPACK but targeting heterogeneous architectures. The library is developed by the University of Tennessee
and is available from the UTK webpage.

To enable the SUNDIALS MAGMA interface set ENABLE_MAGMA to ON, MAGMA_DIR to the MAGMA installation path,
and SUNDIALS_MAGMA_BACKENDS to the desired MAGMA backend to use with SUNDIALS e.g., CUDA or HIP.

SUNDIALS has been tested with MAGMA version v2.6.1 and v2.6.2.

11.4.10 Building with oneMKL for SYCL

The Intel oneAPI Math Kernel Library (oneMKL) includes CPU and SYCL/DPC++ interfaces for LAPACK dense
linear algebra routines. The SUNDIALS oneMKL interface targets the SYCL/DPC++ routines, to utilize the CPU
routine see §11.4.3.

To enable the SUNDIALS oneMKL interface set ENABLE_ONEMKL to ON and ONEMKL_DIR to the oneMKL installation
path.

SUNDIALS has been tested with oneMKL version 2021.4.

11.4. Working with external Libraries 297

https://gitlab.com/petsc/petsc
https://github.com/hypre-space/hypre
https://icl.utk.edu/magma/index.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl.html

User Documentation for KINSOL, v7.1.0

11.4.11 Building with CUDA

The NVIDIA CUDA Toolkit provides a development environment for GPU-accelerated computing with NVIDIA
GPUs. The CUDA Toolkit and compatible NVIDIA drivers are available from the NVIDIA developer website.

To enable CUDA, set ENABLE_CUDA to ON. If CUDA is installed in a nonstandard location, you may be prompted to
set the variable CUDA_TOOLKIT_ROOT_DIR with your CUDA Toolkit installation path. To enable CUDA examples, set
EXAMPLES_ENABLE_CUDA to ON.

SUNDIALS has been tested with the CUDA toolkit versions 10 and 11.

11.4.12 Building with HIP

HIP(heterogeneous-compute interface for portability) allows developers to create portable applications for AMD and
NVIDIA GPUs. HIP can be obtained from HIP GitHub repository.

To enable HIP, set ENABLE_HIP to ON and set AMDGPU_TARGETS to the desired target(ex. gfx705). In addition, set
CMAKE_C_COMPILER and CMAKE_CXX_COMPILER to point to an installation of hipcc.

SUNDIALS has been tested with HIP versions between 5.0.0 to 5.4.3.

11.4.13 Building with RAJA

RAJA is a performance portability layer developed by Lawrence Livermore National Laboratory and can be obtained
from the RAJA GitHub repository.

Building SUNDIALS RAJA modules requires a CUDA, HIP, or SYCL enabled RAJA installation. To enable RAJA, set
ENABLE_RAJA to ON, set SUNDIALS_RAJA_BACKENDS to the desired backend (CUDA, HIP, or SYCL), and set ENABLE_-
CUDA, ENABLE_HIP, or ENABLE_SYCL to ON depending on the selected backend. If RAJA is installed in a nonstandard
location you will be prompted to set the variable RAJA_DIR with the path to the RAJA CMake configuration file. To
enable building the RAJA examples set EXAMPLES_ENABLE_CXX to ON.

SUNDIALS has been tested with RAJA version 0.14.0.

11.4.14 Building with XBraid

XBraid is parallel-in-time library implementing an optimal-scaling multigrid reduction in time (MGRIT) solver. The
library is developed by Lawrence Livermore National Laboratory and is available from the XBraid GitHub repository.

To enable XBraid support, set ENABLE_XBRAID to ON, set XBRAID_DIR to the root install location of XBraid or the
location of the clone of the XBraid repository.

Note: At this time the XBraid types braid_Int and braid_Real are hard-coded to int and double respectively.
As such SUNDIALS must be configured with SUNDIALS_INDEX_SIZE set to 32 and SUNDIALS_PRECISION set to
double. Additionally, SUNDIALS must be configured with ENABLE_MPI set to ON.

SUNDIALS has been tested with XBraid version 3.0.0.

298 Chapter 11. Building and Installing with CMake

https://developer.nvidia.com/cuda-downloads
https://github.com/ROCm-Developer-Tools/HIP
https://github.com/LLNL/RAJA
https://github.com/XBraid/xbraid

User Documentation for KINSOL, v7.1.0

11.5 Testing the build and installation

If SUNDIALS was configured with EXAMPLES_ENABLE_<language> options to ON, then a set of regression tests can
be run after building with the make command by running:

% make test

Additionally, if EXAMPLES_INSTALL was also set to ON, then a set of smoke tests can be run after installing with the
make install command by running:

% make test_install

11.6 Building and Running Examples

Each of the SUNDIALS solvers is distributed with a set of examples demonstrating basic usage. To build and in-
stall the examples, set at least of the EXAMPLES_ENABLE_<language> options to ON, and set EXAMPLES_INSTALL to
ON. Specify the installation path for the examples with the variable EXAMPLES_INSTALL_PATH. CMake will generate
CMakeLists.txt configuration files (and Makefile files if on Linux/Unix) that reference the installed SUNDIALS
headers and libraries.

Either the CMakeLists.txt file or the traditional Makefile may be used to build the examples as well as serve as a
template for creating user developed solutions. To use the supplied Makefile simply run make to compile and generate
the executables. To use CMake from within the installed example directory, run cmake (or ccmake or cmake-gui to
use the GUI) followed by make to compile the example code. Note that if CMake is used, it will overwrite the traditional
Makefile with a new CMake-generated Makefile.

The resulting output from running the examples can be compared with example output bundled in the SUNDIALS
distribution.

Note: There will potentially be differences in the output due to machine architecture, compiler versions, use of third
party libraries etc.

11.7 Configuring, building, and installing on Windows

CMake can also be used to build SUNDIALS on Windows. To build SUNDIALS for use with Visual Studio the
following steps should be performed:

1. Unzip the downloaded tar file(s) into a directory. This will be the SOLVERDIR

2. Create a separate BUILDDIR

3. Open a Visual Studio Command Prompt and cd to BUILDDIR

4. Run cmake-gui ../SOLVERDIR

a. Hit Configure

b. Check/Uncheck solvers to be built

c. Change CMAKE_INSTALL_PREFIX to INSTDIR

d. Set other options as desired

e. Hit Generate

11.5. Testing the build and installation 299

User Documentation for KINSOL, v7.1.0

5. Back in the VS Command Window:

a. Run msbuild ALL_BUILD.vcxproj

b. Run msbuild INSTALL.vcxproj

The resulting libraries will be in the INSTDIR.

The SUNDIALS project can also now be opened in Visual Studio. Double click on the ALL_BUILD.vcxproj file to
open the project. Build the whole solution to create the SUNDIALS libraries. To use the SUNDIALS libraries in
your own projects, you must set the include directories for your project, add the SUNDIALS libraries to your project
solution, and set the SUNDIALS libraries as dependencies for your project.

11.8 Installed libraries and exported header files

Using the CMake SUNDIALS build system, the command

$ make install

will install the libraries under LIBDIR and the public header files under INCLUDEDIR. The values for these directories
are INSTDIR/lib and INSTDIR/include, respectively. The location can be changed by setting the CMake variable
CMAKE_INSTALL_PREFIX. Although all installed libraries reside under LIBDIR/lib, the public header files are further
organized into subdirectories under INCLUDEDIR/include.

The installed libraries and exported header files are listed for reference in the table below. The file extension .LIB is
typically .so for shared libraries and .a for static libraries. Note that, in this table names are relative to LIBDIR for
libraries and to INCLUDEDIR for header files.

Warning: SUNDIALS installs some header files to INSTDIR/include/sundials/priv. All of the header files
in this directory are private and should not be included in user code. The private headers are subject to change
without any notice and relying on them may break your code.

11.9 Using SUNDIALS in your project

After building and installing SUNDIALS, using SUNDIALS in your application involves two steps: including the right
header files and linking to the right libraries.

Depending on what features of SUNDIALS that your application uses, the header files needed will vary. For example,
if you want to use CVODE for serial computations you need the following includes:

#include <cvode/cvode.h>
#include <nvector/nvector_serial.h>

If you wanted to use CVODE with the GMRES linear solver and our CUDA enabled vector:

#include <cvode/cvode.h>
#include <nvector/nvector_cuda.h>
#include <sunlinsol/sunlinsol_spgmr.h>

The story is similar for linking to SUNDIALS. Starting in v7.0.0, all applications will need to link to libsundials_-
core. Furthermore, depending on the packages and modules of SUNDIALS of interest an application will need to

300 Chapter 11. Building and Installing with CMake

User Documentation for KINSOL, v7.1.0

link to a few more libraries. Using the same examples as for the includes, we would need to also link to libsundi-
als_cvode, libsundials_nvecserial for the first example and libsundials_cvode, libsundials_nveccuda,
libsundials_sunlinsolspgmr for the second.

Refer to the documentations sections for the individual packages and modules of SUNDIALS that interest you for the
proper includes and libraries to link to.

11.10 Using SUNDIALS as a Third Party Library in other CMake Projects

The make install command will also install a CMake package configuration file that other CMake projects can load
to get all the information needed to build against SUNDIALS. In the consuming project’s CMake code, the find_-
package command may be used to search for the configuration file, which will be installed to instdir/SUNDIALS_-
INSTALL_CMAKEDIR/SUNDIALSConfig.cmake alongside a package version file instdir/SUNDIALS_INSTALL_-
CMAKEDIR/SUNDIALSConfigVersion.cmake. Together these files contain all the information the consuming project
needs to use SUNDIALS, including exported CMake targets. The SUNDIALS exported CMake targets follow the same
naming convention as the generated library binaries, e.g. the exported target for CVODE is SUNDIALS::cvode. The
CMake code snipped below shows how a consuming project might leverage the SUNDIALS package configuration file
to build against SUNDIALS in their own CMake project.

project(MyProject)

Set the variable SUNDIALS_DIR to the SUNDIALS instdir.
When using the cmake CLI command, this can be done like so:
cmake -D SUNDIALS_DIR=/path/to/sundials/installation

Find any SUNDIALS version...
find_package(SUNDIALS REQUIRED)

... or find any version newer than some minimum...
find_package(SUNDIALS 7.1.0 REQUIRED)

... or find a version in a range
find_package(SUNDIALS 7.0.0...7.1.0 REQUIRED)

add_executable(myexec main.c)

Link to SUNDIALS libraries through the exported targets.
This is just an example, users should link to the targets appropriate
for their use case.
target_link_libraries(myexec PUBLIC SUNDIALS::cvode SUNDIALS::nvecpetsc)

Note: Changed in version 7.1.0: A single version provided to find_package denotes the minimum version of SUNDI-
ALS to look for, and any version equal or newer than what is specified will match. In prior versions SUNDIALSConfig.
cmake required the version found to have the same major version number as the single version provided to find_pack-
age.

11.10. Using SUNDIALS as a Third Party Library in other CMake Projects 301

https://cmake.org/cmake/help/v3.18/manual/cmake-packages.7.html

User Documentation for KINSOL, v7.1.0

11.11 Table of SUNDIALS libraries and header files

Table 11.1: SUNDIALS shared libraries and header files

Core Libraries libsundials_core.LIB
Headers sundials/sundials_band.h

sundials/sundials_config.h
sundials/sundials_context.h
sundials/sundials_cuda_policies.hpp
sundials/sundials_dense.h
sundials/sundials_direct.h
sundials/sundials_hip_policies.hpp
sundials/sundials_iterative.h
sundials/sundials_linearsolver.h
sundials/sundials_math.h
sundials/sundials_matrix.h
sundials/sundials_memory.h
sundials/sundials_mpi_types.h
sundials/sundials_nonlinearsolver.h
sundials/sundials_nvector.h
sundials/sundials_types.h
sundials/sundials_version.h
sundials/sundials_xbraid.h

NVECTOR Modules
SERIAL Libraries libsundials_nvecserial.LIB

Headers nvector/nvector_serial.h
PARALLEL Libraries libsundials_nvecparallel.LIB

Headers nvector/nvector_parallel.h
OPENMP Libraries libsundials_nvecopenmp.LIB

Headers nvector/nvector_openmp.h
PTHREADS Libraries libsundials_nvecpthreads.LIB

Headers nvector/nvector_pthreads.h
PARHYP Libraries libsundials_nvecparhyp.LIB

Headers nvector/nvector_parhyp.h
PETSC Libraries libsundials_nvecpetsc.LIB

Headers nvector/nvector_petsc.h
CUDA Libraries libsundials_nveccuda.LIB

Headers nvector/nvector_cuda.h
HIP Libraries libsundials_nvechip.LIB

Headers nvector/nvector_hip.h
RAJA Libraries libsundials_nveccudaraja.LIB

libsundials_nvechipraja.LIB
Headers nvector/nvector_raja.h

SYCL Libraries libsundials_nvecsycl.LIB
Headers nvector/nvector_sycl.h

MANYVECTOR Libraries libsundials_nvecmanyvector.LIB
Headers nvector/nvector_manyvector.h

MPIMANYVECTOR Libraries libsundials_nvecmpimanyvector.LIB
Headers nvector/nvector_mpimanyvector.h

MPIPLUSX Libraries libsundials_nvecmpiplusx.LIB
Headers nvector/nvector_mpiplusx.h

continues on next page

302 Chapter 11. Building and Installing with CMake

User Documentation for KINSOL, v7.1.0

Table 11.1 – continued from previous page
SUNMATRIX Modules
BAND Libraries libsundials_sunmatrixband.LIB

Headers sunmatrix/sunmatrix_band.h
CUSPARSE Libraries libsundials_sunmatrixcusparse.LIB

Headers sunmatrix/sunmatrix_cusparse.h
DENSE Libraries libsundials_sunmatrixdense.LIB

Headers sunmatrix/sunmatrix_dense.h
Ginkgo Headers sunmatrix/sunmatrix_ginkgo.hpp
MAGMADENSE Libraries libsundials_sunmatrixmagmadense.LIB

Headers sunmatrix/sunmatrix_magmadense.h
ONEMKLDENSE Libraries libsundials_sunmatrixonemkldense.LIB

Headers sunmatrix/sunmatrix_onemkldense.h
SPARSE Libraries libsundials_sunmatrixsparse.LIB

Headers sunmatrix/sunmatrix_sparse.h
SLUNRLOC Libraries libsundials_sunmatrixslunrloc.LIB

Headers sunmatrix/sunmatrix_slunrloc.h
SUNLINSOL Modules
BAND Libraries libsundials_sunlinsolband.LIB

Headers sunlinsol/sunlinsol_band.h
CUSOLVERSP_BATCHQR Libraries libsundials_sunlinsolcusolversp.LIB

Headers sunlinsol/sunlinsol_cusolversp_batchqr.h
DENSE Libraries libsundials_sunlinsoldense.LIB

Headers sunlinsol/sunlinsol_dense.h
Ginkgo Headers sunlinsol/sunlinsol_ginkgo.hpp
KLU Libraries libsundials_sunlinsolklu.LIB

Headers sunlinsol/sunlinsol_klu.h
LAPACKBAND Libraries libsundials_sunlinsollapackband.LIB

Headers sunlinsol/sunlinsol_lapackband.h
LAPACKDENSE Libraries libsundials_sunlinsollapackdense.LIB

Headers sunlinsol/sunlinsol_lapackdense.h
MAGMADENSE Libraries libsundials_sunlinsolmagmadense.LIB

Headers sunlinsol/sunlinsol_magmadense.h
ONEMKLDENSE Libraries libsundials_sunlinsolonemkldense.LIB

Headers sunlinsol/sunlinsol_onemkldense.h
PCG Libraries libsundials_sunlinsolpcg.LIB

Headers sunlinsol/sunlinsol_pcg.h
SPBCGS Libraries libsundials_sunlinsolspbcgs.LIB

Headers sunlinsol/sunlinsol_spbcgs.h
SPFGMR Libraries libsundials_sunlinsolspfgmr.LIB

Headers sunlinsol/sunlinsol_spfgmr.h
SPGMR Libraries libsundials_sunlinsolspgmr.LIB

Headers sunlinsol/sunlinsol_spgmr.h
SPTFQMR Libraries libsundials_sunlinsolsptfqmr.LIB

Headers sunlinsol/sunlinsol_sptfqmr.h
SUPERLUDIST Libraries libsundials_sunlinsolsuperludist.LIB

Headers sunlinsol/sunlinsol_superludist.h
SUPERLUMT Libraries libsundials_sunlinsolsuperlumt.LIB

Headers sunlinsol/sunlinsol_superlumt.h
SUNNONLINSOL Modules
NEWTON Libraries libsundials_sunnonlinsolnewton.LIB

Headers sunnonlinsol/sunnonlinsol_newton.h

continues on next page

11.11. Table of SUNDIALS libraries and header files 303

User Documentation for KINSOL, v7.1.0

Table 11.1 – continued from previous page
FIXEDPOINT Libraries libsundials_sunnonlinsolfixedpoint.LIB

Headers sunnonlinsol/sunnonlinsol_fixedpoint.h
PETSCSNES Libraries libsundials_sunnonlinsolpetscsnes.LIB

Headers sunnonlinsol/sunnonlinsol_petscsnes.h
SUNMEMORY Modules
SYSTEM Libraries libsundials_sunmemsys.LIB

Headers sunmemory/sunmemory_system.h
CUDA Libraries libsundials_sunmemcuda.LIB

Headers sunmemory/sunmemory_cuda.h
HIP Libraries libsundials_sunmemhip.LIB

Headers sunmemory/sunmemory_hip.h
SYCL Libraries libsundials_sunmemsycl.LIB

Headers sunmemory/sunmemory_sycl.h
SUNDIALS Packages
CVODE Libraries libsundials_cvode.LIB

Headers cvode/cvode.h
cvode/cvode_bandpre.h
cvode/cvode_bbdpre.h
cvode/cvode_diag.h
cvode/cvode_impl.h
cvode/cvode_ls.h
cvode/cvode_proj.h

CVODES Libraries libsundials_cvodes.LIB
Headers cvodes/cvodes.h

cvodes/cvodes_bandpre.h
cvodes/cvodes_bbdpre.h
cvodes/cvodes_diag.h
cvodes/cvodes_impl.h
cvodes/cvodes_ls.h

ARKODE Libraries libsundials_arkode.LIB
libsundials_xbraid.LIB

Headers arkode/arkode.h
arkode/arkode_arkstep.h
arkode/arkode_bandpre.h
arkode/arkode_bbdpre.h
arkode/arkode_butcher.h
arkode/arkode_butcher_dirk.h
arkode/arkode_butcher_erk.h
arkode/arkode_erkstep.h
arkode/arkode_impl.h
arkode/arkode_ls.h
arkode/arkode_mristep.h
arkode/arkode_xbraid.h

IDA Libraries libsundials_ida.LIB
Headers ida/ida.h

ida/ida_bbdpre.h
ida/ida_impl.h
ida/ida_ls.h

IDAS Libraries libsundials_idas.LIB
Headers idas/idas.h

idas/idas_bbdpre.h

continues on next page

304 Chapter 11. Building and Installing with CMake

User Documentation for KINSOL, v7.1.0

Table 11.1 – continued from previous page
idas/idas_impl.h

KINSOL Libraries libsundials_kinsol.LIB
Headers kinsol/kinsol.h

kinsol/kinsol_bbdpre.h
kinsol/kinsol_impl.h
kinsol/kinsol_ls.h

11.12 Installing SUNDIALS on HPC Clusters

This section is a guide for installing SUNDIALS on specific HPC clusters. In general, the procedure is the same as
described previously for Linux machines. The main differences are in the modules and environment variables that are
specific to different HPC clusters. We aim to keep this section as up to date as possible, but it may lag the latest software
updates to each cluster.

11.12.1 Frontier

Frontier is an Exascale supercomputer at the Oak Ridge Leadership Computing Facility. If you are new to this system,
then we recommend that you review the Frontier user guide.

A Standard Installation

Clone SUNDIALS:

git clone https://github.com/LLNL/sundials.git && cd sundials

Next we load the modules and set the environment variables needed to build SUNDIALS. This configuration enables
both MPI and HIP support for distributed and GPU parallelism. It uses the HIP compiler for C and C++ and the Cray
Fortran compiler. Other configurations are possible.

required dependencies
module load PrgEnv-cray-amd/8.5.0
module load craype-accel-amd-gfx90a
module load rocm/5.3.0
module load cmake/3.23.2

GPU-aware MPI
export MPICH_GPU_SUPPORT_ENABLED=1

compiler environment hints
export CC=$(which hipcc)
export CXX=$(which hipcc)
export FC=$(which ftn)
export CFLAGS="-I${ROCM_PATH}/include"
export CXXFLAGS="-I${ROCM_PATH}/include -Wno-pass-failed"
export LDFLAGS="-L${ROCM_PATH}/lib -lamdhip64 ${PE_MPICH_GTL_DIR_amd_gfx90a} -lmpi_gtl_hsa"

Now we can build SUNDIALS. In general, this is the same procedure described in the previous sections. The following
command builds and installs SUNDIALS with MPI, HIP, and the Fortran interface enabled, where <install path> is
your desired installation location, and <account> is your allocation account on Frontier:

11.12. Installing SUNDIALS on HPC Clusters 305

https://www.olcf.ornl.gov/frontier/
https://docs.olcf.ornl.gov/systems/frontier_user_guide.html

User Documentation for KINSOL, v7.1.0

cmake -S . -B builddir -DCMAKE_INSTALL_PREFIX=<install path> -DAMDGPU_TARGETS=gfx90a \
-DENABLE_HIP=ON -DENABLE_MPI=ON -DBUILD_FORTRAN_MODULE_INTERFACE=ON
cd builddir
make -j8 install
Need an allocation to run the tests:
salloc -A <account> -t 10 -N 1 -p batch
make test
make test_install_all

11.13 Building with SUNDIALS Addons

SUNDIALS “addons” are community developed code additions for SUNDIALS that can be subsumed by the SUN-
DIALS build system so that they have full access to all internal SUNDIALS symbols. The intent is for SUNDIALS
addons to function as if they are part of the SUNDIALS library, while allowing them to potentially have different li-
censes (although we encourage BSD-3-Clause still), code style (although we encourage them to follow the SUNDIALS
style outlined here).

Warning: SUNDIALS addons are not maintained by the SUNDIALS team and may come with different licenses.
Use them at your own risk.

To build with SUNDIALS addons,

1. Clone/copy the addon(s) into <sundials root>/external/

2. Copy the sundials-addon-example block in the <sundials root>/external/CMakeLists.txt, paste it
below the example block, and modify the path listed for your own external addon(s).

3. When building SUNDIALS, set the CMake option SUNDIALS_ENABLE_EXTERNAL_ADDONS to ON

4. Build SUNDIALS as usual.

306 Chapter 11. Building and Installing with CMake

https://sundials.readthedocs.io/en/v7.1.0/developers/style_guide/index.html#style

Chapter 12

KINSOL Constants

Below we list all input and output constants used by the main solver and linear solver modules, together with their
numerical values and a short description of their meaning.

12.1 KINSOL input constants

Table 12.1: KINSOL Main Solver Input Constants

Constant Name Value Description
KIN_ETACHOICE1 1 Use Eisenstat and Walker Choice 1 for η.
KIN_ETACHOICE2 2 Use Eisenstat and Walker Choice 2 for η.
KIN_ETACONSTANT 3 Use constant value for η.
KIN_NONE 0 Use Newton iteration.
KIN_LINESEARCH 1 Use Newton iteration with linesearch globalization.
KIN_PICARD 2 Use Picard iteration.

Table 12.2: Iterative Linear Solver Constants

Constant Name Value Description
SUN_PREC_NONE 0 No preconditioning
SUN_PREC_RIGHT 2 Preconditioning on the right.
SUN_MODIFIED_GS 1 Use modified Gram-Schmidt procedure.
SUN_CLASSICAL_GS 2 Use classical Gram-Schmidt procedure.

307

User Documentation for KINSOL, v7.1.0

Table 12.3: Anderson Acceleration Orthogonalization Method Constants

Constant Name Value Description
KIN_ORTH_MGS 0 Use Modified Gram-Schmidt for Anderson acceleration.
KIN_ORTH_ICWY 1 Use Inverse Compact WY Modified Gram-Schmidt for Anderson

acceleration.
KIN_ORTH_CGS2 2 Use Classical Gram-Schmidt with Reorthogonalization (CGS-2) for

Anderson Acceleration.
KIN_ORTH_DCGS2 3 Use CGS-2 with Delayed Reorthogonalization for Anderson accel-

eration.

12.2 KINSOL output constants

Table 12.4: KINSOL Main Solver Output Constants

Constant Name Value Description
KIN_SUCCESS 0 Successful function return.
KIN_INITIAL_GUESS_OK 1 The initial user-supplied guess already satisfies the stopping crite-

rion.
KIN_STEP_LT_STPTOL 2 The stopping tolerance on scaled step length was satisfied.
KIN_WARNING 99 A non-fatal warning. The solver will continue.
KIN_MEM_NULL -1 The kin_mem argument was NULL.
KIN_ILL_INPUT -2 One of the function inputs is illegal.
KIN_NO_MALLOC -3 The KINSOL memory was not allocated by a call to KINMalloc.
KIN_MEM_FAIL -4 A memory allocation failed.
KIN_LINESEARCH_NONCONV -5 The linesearch algorithm was unable to find an iterate sufficiently

distinct from the current iterate.
KIN_MAXITER_REACHED -6 The maximum number of nonlinear iterations has been reached.
KIN_MXNEWT_5X_EXCEEDED -7 Five consecutive steps have been taken that satisfy a scaled step

length test.
KIN_LINESEARCH_BCFAIL -8 The linesearch algorithm was unable to satisfy the β-condition for

nbcfails iterations.
KIN_LINSOLV_NO_RECOVERY -9 The user-supplied routine preconditioner slve function failed recov-

erably, but the preconditioner is already current.
KIN_LINIT_FAIL -10 The linear solver’s initialization function failed.
KIN_LSETUP_FAIL -11 The linear solver’s setup function failed in an unrecoverable manner.
KIN_LSOLVE_FAIL -12 The linear solver’s solve function failed in an unrecoverable manner.
KIN_SYSFUNC_FAIL -13 The system function failed in an unrecoverable manner.
KIN_FIRST_SYSFUNC_ERR -14 The system function failed with a recoverable error at the first call.
KIN_REPTD_SYSFUNC_ERR -15 The system function had repeated recoverable errors.

308 Chapter 12. KINSOL Constants

User Documentation for KINSOL, v7.1.0

Table 12.5: KINLS Linear Solver Interface Output Constants

Constant Name Value Description
KINLS_SUCCESS 0 Successful function return.
KINLS_MEM_NULL -1 The kin_mem argument was NULL.
KINLS_LMEM_NULL -2 The KINLS linear solver has not been initialized.
KINLS_ILL_INPUT -3 The KINLS solver is not compatible with the current N_Vector

module, or an input value was illegal.
KINLS_MEM_FAIL -4 A memory allocation request failed.
KINLS_PMEM_NULL -5 The preconditioner module has not been initialized.
KINLS_JACFUNC_ERR -6 The Jacobian function failed
KINLS_SUNMAT_FAIL -7 An error occurred with the current SUNMatrix module.
KINLS_SUNLS_FAIL -8 An error occurred with the current SUNLinearSolver module.

12.2. KINSOL output constants 309

User Documentation for KINSOL, v7.1.0

310 Chapter 12. KINSOL Constants

Chapter 13

Release History

Date SUNDIALS ARKODE CVODE CVODES IDA IDAS KINSOL
Jun 2024 7.1.0 6.1.0 7.1.0 7.1.0 7.1.0 6.1.0 7.1.0
Feb 2024 7.0.0 6.0.0 7.0.0 7.0.0 7.0.0 6.0.0 7.0.0
Dec 2023 6.7.0 5.7.0 6.7.0 6.7.0 6.7.0 5.7.0 6.7.0
Nov 2023 6.6.2 5.6.2 6.6.2 6.6.2 6.6.2 5.6.2 6.6.2
Sep 2023 6.6.1 5.6.1 6.6.1 6.6.1 6.6.1 5.6.1 6.6.1
Jul 2023 6.6.0 5.6.0 6.6.0 6.6.0 6.6.0 5.6.0 6.6.0
Mar 2023 6.5.1 5.5.1 6.5.1 6.5.1 6.5.1 5.5.1 6.5.1
Dec 2022 6.5.0 5.5.0 6.5.0 6.5.0 6.5.0 5.5.0 6.5.0
Oct 2022 6.4.1 5.4.1 6.4.1 6.4.1 6.4.1 5.4.1 6.4.1
Oct 2022 6.4.0 5.4.0 6.4.0 6.4.0 6.4.0 5.4.0 6.4.0
Aug 2022 6.3.0 5.3.0 6.3.0 6.3.0 6.3.0 5.3.0 6.3.0
Apr 2022 6.2.0 5.2.0 6.2.0 6.2.0 6.2.0 5.2.0 6.2.0
Feb 2022 6.1.1 5.1.1 6.1.1 6.1.1 6.1.1 5.1.1 6.1.1
Jan 2022 6.1.0 5.1.0 6.1.0 6.1.0 6.1.0 5.1.0 6.1.0
Dec 2021 6.0.0 5.0.0 6.0.0 6.0.0 6.0.0 5.0.0 6.0.0
Sep 2021 5.8.0 4.8.0 5.8.0 5.8.0 5.8.0 4.8.0 5.8.0
Jan 2021 5.7.0 4.7.0 5.7.0 5.7.0 5.7.0 4.7.0 5.7.0
Dec 2020 5.6.1 4.6.1 5.6.1 5.6.1 5.6.1 4.6.1 5.6.1
Dec 2020 5.6.0 4.6.0 5.6.0 5.6.0 5.6.0 4.6.0 5.6.0
Oct 2020 5.5.0 4.5.0 5.5.0 5.5.0 5.5.0 4.5.0 5.5.0
Sep 2020 5.4.0 4.4.0 5.4.0 5.4.0 5.4.0 4.4.0 5.4.0
May 2020 5.3.0 4.3.0 5.3.0 5.3.0 5.3.0 4.3.0 5.3.0
Mar 2020 5.2.0 4.2.0 5.2.0 5.2.0 5.2.0 4.2.0 5.2.0
Jan 2020 5.1.0 4.1.0 5.1.0 5.1.0 5.1.0 4.1.0 5.1.0
Oct 2019 5.0.0 4.0.0 5.0.0 5.0.0 5.0.0 4.0.0 5.0.0
Feb 2019 4.1.0 3.1.0 4.1.0 4.1.0 4.1.0 3.1.0 4.1.0
Jan 2019 4.0.2 3.0.2 4.0.2 4.0.2 4.0.2 3.0.2 4.0.2
Dec 2018 4.0.1 3.0.1 4.0.1 4.0.1 4.0.1 3.0.1 4.0.1
Dec 2018 4.0.0 3.0.0 4.0.0 4.0.0 4.0.0 3.0.0 4.0.0
Oct 2018 3.2.1 2.2.1 3.2.1 3.2.1 3.2.1 2.2.1 3.2.1
Sep 2018 3.2.0 2.2.0 3.2.0 3.2.0 3.2.0 2.2.0 3.2.0
Jul 2018 3.1.2 2.1.2 3.1.2 3.1.2 3.1.2 2.1.2 3.1.2
May 2018 3.1.1 2.1.1 3.1.1 3.1.1 3.1.1 2.1.1 3.1.1
Nov 2017 3.1.0 2.1.0 3.1.0 3.1.0 3.1.0 2.1.0 3.1.0

continues on next page

311

User Documentation for KINSOL, v7.1.0

Table 13.1 – continued from previous page
Date SUNDIALS ARKODE CVODE CVODES IDA IDAS KINSOL
Sep 2017 3.0.0 2.0.0 3.0.0 3.0.0 3.0.0 2.0.0 3.0.0
Sep 2016 2.7.0 1.1.0 2.9.0 2.9.0 2.9.0 1.3.0 2.9.0
Aug 2015 2.6.2 1.0.2 2.8.2 2.8.2 2.8.2 1.2.2 2.8.2
Mar 2015 2.6.1 1.0.1 2.8.1 2.8.1 2.8.1 1.2.1 2.8.1
Mar 2015 2.6.0 1.0.0 2.8.0 2.8.0 2.8.0 1.2.0 2.8.0
Mar 2012 2.5.0 – 2.7.0 2.7.0 2.7.0 1.1.0 2.7.0
May 2009 2.4.0 – 2.6.0 2.6.0 2.6.0 1.0.0 2.6.0
Nov 2006 2.3.0 – 2.5.0 2.5.0 2.5.0 – 2.5.0
Mar 2006 2.2.0 – 2.4.0 2.4.0 2.4.0 – 2.4.0
May 2005 2.1.1 – 2.3.0 2.3.0 2.3.0 – 2.3.0
Apr 2005 2.1.0 – 2.3.0 2.2.0 2.3.0 – 2.3.0
Mar 2005 2.0.2 – 2.2.2 2.1.2 2.2.2 – 2.2.2
Jan 2005 2.0.1 – 2.2.1 2.1.1 2.2.1 – 2.2.1
Dec 2004 2.0.0 – 2.2.0 2.1.0 2.2.0 – 2.2.0
Jul 2002 1.0.0 – 2.0.0 1.0.0 2.0.0 – 2.0.0
Mar 2002 – – 1.0.0 3 – – – –
Feb 1999 – – – – 1.0.0 4 – –
Aug 1998 – – – – – – 1.0.0 5

Jul 1997 – – 1.0.0 2 – – – –
Sep 1994 – – 1.0.0 1 – – – –

1. CVODE written

2. PVODE written

3. CVODE and PVODE combined

4. IDA written

5. KINSOL written

312 Chapter 13. Release History

Chapter 14

Changelog

14.1 Changes to SUNDIALS in release 7.1.0

Major Features

Created shared user interface functions for ARKODE to allow more uniform control over time-stepping algorithms,
improved extensibility, and simplified code maintenance. The corresponding stepper-specific user-callable functions
are now deprecated and will be removed in a future major release.

Added CMake infrastructure that enables externally maintained addons/plugins to be optionally built with SUNDIALS.
See Contributing for details.

New Features and Enhancements

Added support for Kokkos Kernels v4.

Added the following Runge-Kutta Butcher tables

• ARKODE_FORWARD_EULER_1_1

• ARKODE_RALSTON_EULER_2_1_2

• ARKODE_EXPLICIT_MIDPOINT_EULER_2_1_2

• ARKODE_BACKWARD_EULER_1_1

• ARKODE_IMPLICIT_MIDPOINT_1_2

• ARKODE_IMPLICIT_TRAPEZOIDAL_2_2

Added the following MRI coupling tables

• ARKODE_MRI_GARK_FORWARD_EULER

• ARKODE_MRI_GARK_RALSTON2

• ARKODE_MRI_GARK_RALSTON3

• ARKODE_MRI_GARK_BACKWARD_EULER

• ARKODE_MRI_GARK_IMPLICIT_MIDPOINT

• ARKODE_IMEX_MRI_GARK_EULER

• ARKODE_IMEX_MRI_GARK_TRAPEZOIDAL

• ARKODE_IMEX_MRI_GARK_MIDPOINT

313

https://sundials.readthedocs.io/en/v7.1.0/contributing/index.html#contributing

User Documentation for KINSOL, v7.1.0

Added ARKodeButcherTable_ERKIDToName() and ARKodeButcherTable_DIRKIDToName() to convert a Butcher
table ID to a string representation.

Added the function ARKodeSetAutonomous() in ARKODE to indicate that the implicit right-hand side function does
not explicitly depend on time. When using the trivial predictor, an autonomous problem may reuse implicit function
evaluations across stage solves to reduce the total number of function evaluations.

Users may now disable interpolated output in ARKODE by passing ARK_INTERP_NONE to ARKodeSetInterpolant-
Type(). When interpolation is disabled, rootfinding is not supported, implicit methods must use the trivial predictor
(the default option), and interpolation at stop times cannot be used (interpolating at stop times is disabled by default).
With interpolation disabled, calling ARKodeEvolve() in ARK_NORMALmode will return at or past the requested output
time (setting a stop time may still be used to halt the integrator at a specific time). Disabling interpolation will reduce
the memory footprint of an integrator by two or more state vectors (depending on the interpolant type and degree) which
can be beneficial when interpolation is not needed e.g., when integrating to a final time without output in between or
using an explicit fast time scale integrator with an MRI method.

Added “Resize” capability to ARKODE’s SPRKStep time-stepping module.

Enabled the Fortran interfaces to build with 32-bit sunindextype.

Bug Fixes

Updated the CMake variable HIP_PLATFORM default to amd as the previous default, hcc, is no longer recognized in
ROCm 5.7.0 or newer. The new default is also valid in older version of ROCm (at least back to version 4.3.1).

Renamed the DPCPP value for the SUNDIALS_GINKGO_BACKENDS CMake option to SYCL to match Ginkgo’s updated
naming convention.

Changed the CMake version compatibility mode for SUNDIALS to AnyNewerVersion instead of SameMajorVer-
sion. This fixes the issue seen here.

Fixed a CMake bug that caused an MPI linking error for our C++ examples in some instances. Fixes GitHub Issue
#464.

Fixed the runtime library installation path for windows systems. This fix changes the default library installation path
from CMAKE_INSTALL_PREFIX/CMAKE_INSTALL_LIBDIR to CMAKE_INSTALL_PREFIX/CMAKE_INSTALL_BINDIR.

Fixed conflicting .lib files between shared and static libs when using MSVC on Windows

Fixed invalid SUNDIALS_EXPORT generated macro when building both shared and static libs.

Fixed a bug in some Fortran examples where c_null_ptr was passed as an argument to a function pointer instead of
c_null_funptr. This caused compilation issues with the Cray Fortran compiler.

Fixed a bug in the HIP execution policies where WARP_SIZE would not be set with ROCm 6.0.0 or newer.

Fixed a bug that caused error messages to be cut off in some cases. Fixes GitHub Issue #461.

Fixed a memory leak when an error handler was added to a SUNContext. Fixes GitHub Issue #466.

Fixed a bug where MRIStepEvolve() would not handle a recoverable error produced from evolving the inner stepper.

Added missing SetRootDirection and SetNoInactiveRootWarn functions to ARKODE’s SPRKStep time-
stepping module.

Fixed a bug in ARKodeSPRKTable_Create() where the coefficient arrays were not allocated.

Fix bug on LLP64 platforms (like Windows 64-bit) where KLU_INDEXTYPE could be 32 bits wide even if SUNDIALS_-
INT64_T is defined.

Check if size of SuiteSparse_long is 8 if the size of sunindextype is 8 when using KLU.

Fixed several build errors with the Fortran interfaces on Windows systems.

Deprecation Notices

314 Chapter 14. Changelog

https://sundials.readthedocs.io/en/v7.1.0/arkode/ARKodeButcherTable_link.html#c.ARKodeButcherTable_ERKIDToName
https://sundials.readthedocs.io/en/v7.1.0/arkode/ARKodeButcherTable_link.html#c.ARKodeButcherTable_DIRKIDToName
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/User_callable.html#c.ARKodeSetAutonomous
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/User_callable.html#c.ARKodeSetInterpolantType
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/User_callable.html#c.ARKodeSetInterpolantType
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/User_callable.html#c.ARKodeEvolve
https://github.com/AMReX-Codes/amrex/pull/3835
https://github.com/LLNL/sundials/issues/464
https://github.com/LLNL/sundials/issues/464
https://github.com/LLNL/sundials/issues/461
https://github.com/LLNL/sundials/issues/466
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/MRIStep/User_callable.html#c.MRIStepEvolve
https://sundials.readthedocs.io/en/v7.1.0/arkode/ARKodeSPRKTable_link.html#c.ARKodeSPRKTable_Create

User Documentation for KINSOL, v7.1.0

Numerous ARKODE stepper-specific functions are now deprecated in favor of ARKODE-wide functions.

Deprecated the ARKStepSetOptimalParams function. Since this function does not have an ARKODE-wide equivalent,
instructions have been added to the user guide for how to retain the current functionality using other user-callable
functions.

The unsupported implementations of N_VGetArrayPointer and N_VSetArrayPointer for the hypre and PETSc
vectors are now deprecated. Users should access the underlying wrapped external library vector objects instead with
N_VGetVector_ParHyp and N_VGetVector_Petsc, respectively.

14.2 Changes to SUNDIALS in release 7.0.0

Major Feature

SUNDIALS now has more robust and uniform error handling. Non-release builds will be built with additional error
checking by default. See §4.3 for details.

Breaking Changes

Minimum C Standard

SUNDIALS now requires using a compiler that supports a subset of the C99 standard. Note with the Microsoft C/C++
compiler the subset of C99 features utilized by SUNDIALS are available starting with Visual Studio 2015.

Minimum CMake Version

CMake 3.18 or newer is now required when building SUNDIALS.

Deprecated Types and Functions Removed

The previously deprecated types realtype and booleantype were removed from sundials_types.h and replaced
with sunrealtype and sunbooleantype. The deprecated names for these types can be used by including the header
file sundials_types_deprecated.h but will be fully removed in the next major release. Functions, types and header
files that were previously deprecated have also been removed.

Error Handling Changes

With the addition of the new error handling capability, the *SetErrHandlerFn and *SetErrFile functions in
CVODE(S), IDA(S), ARKODE, and KINSOL have been removed. Users of these functions can use the functions
SUNContext_PushErrHandler(), and SUNLogger_SetErrorFilename() instead. For further details see Sections
§4.3 and §4.4.

In addition the following names/symbols were replaced by SUN_ERR_* codes:

14.2. Changes to SUNDIALS in release 7.0.0 315

https://learn.microsoft.com/en-us/cpp/overview/visual-cpp-language-conformance?view=msvc-170#c-standard-library-features-1

User Documentation for KINSOL, v7.1.0

Removed Replaced with SUNErrCode
SUNLS_SUCCESS SUN_SUCCESS
SUNLS_UNRECOV_FAILURE no replacement (value was unused)
SUNLS_MEM_NULL SUN_ERR_ARG_CORRUPT
SUNLS_ILL_INPUT SUN_ERR_ARG_*
SUNLS_MEM_FAIL SUN_ERR_MEM_FAIL
SUNLS_PACKAGE_FAIL_UNREC SUN_ERR_EXT_FAIL
SUNLS_VECTOROP_ERR SUN_ERR_OP_FAIL
SUN_NLS_SUCCESS SUN_SUCCESS
SUN_NLS_MEM_NULL SUN_ERR_ARG_CORRUPT
SUN_NLS_MEM_FAIL SUN_ERR_MEM_FAIL
SUN_NLS_ILL_INPUT SUN_ERR_ARG_*
SUN_NLS_VECTOROP_ERR SUN_ERR_OP_FAIL
SUN_NLS_EXT_FAIL SUN_ERR_EXT_FAIL
SUNMAT_SUCCESS SUN_SUCCESS
SUNMAT_ILL_INPUT SUN_ERR_ARG_*
SUNMAT_MEM_FAIL SUN_ERR_MEM_FAIL
SUNMAT_OPERATION_FAIL SUN_ERR_OP_FAIL
SUNMAT_MATVEC_SETUP_REQUIRED SUN_ERR_OP_FAIL

The following functions have had their signature updated to ensure they can leverage the new SUNDIALS error handling
capabilities.

• From sundials_futils.h

– SUNDIALSFileOpen()

– SUNDIALSFileClose()

• From sundials_memory.h

– SUNMemoryNewEmpty()

– SUNMemoryHelper_Alias()

– SUNMemoryHelper_Wrap()

• From sundials_nvector.h

– N_VNewVectorArray()

SUNComm Type Added

We have replaced the use of a type-erased (i.e., void*) pointer to a communicator in place of MPI_Comm throughout the
SUNDIALS API with a SUNComm , which is just a typedef to an int in builds without MPI and a typedef to a MPI_Comm
in builds with MPI. As a result:

• When MPI is enabled, all SUNDIALS libraries will include MPI symbols and applications will need to include
the path for MPI headers and link against the corresponding MPI library.

• All users will need to update their codes because the call to SUNContext_Create() now takes a SUNComm in-
stead of type-erased pointer to a communicator. For non-MPI codes, pass SUN_COMM_NULL to the comm argument
instead of NULL. For MPI codes, pass the MPI_Comm directly.

• The same change must be made for calls to SUNLogger_Create() or SUNProfiler_Create().

• Some users will need to update their calls to N_VGetCommunicator(), and update any custom N_Vector im-
plementations that provide N_VGetCommunicator(), since it now returns a SUNComm .

316 Chapter 14. Changelog

User Documentation for KINSOL, v7.1.0

The change away from type-erased pointers for SUNComm fixes problems like the one described in GitHub Issue #275.

The SUNLogger is now always MPI-aware if MPI is enabled in SUNDIALS and the SUNDIALS_LOGGING_ENABLE_-
MPI CMake option and macro definition were removed accordingly.

SUNDIALS Core Library

Users now need to link to sundials_core in addition to the libraries already linked to. This will be picked up au-
tomatically in projects that use the SUNDIALS CMake target. The library sundials_generic has been superseded
by sundials_core and is no longer available. This fixes some duplicate symbol errors on Windows when linking to
multiple SUNDIALS libraries.

Fortran Interface Modules Streamlined

We have streamlined the Fortran modules that need to be included by users by combining the SUNDIALS core into one
Fortran module, fsundials_core_mod. Modules for implementations of the core APIs still exist (e.g., for the Dense
linear solver there is fsunlinsol_dense_mod) as do the modules for the SUNDIALS packages (e.g., fcvode_mod).
The following modules are the ones that have been consolidated into fsundials_core_mod:

fsundials_adaptcontroller_mod
fsundials_context_mod
fsundials_futils_mod
fsundials_linearsolver_mod
fsundials_logger_mod
fsundials_matrix_mod
fsundials_nonlinearsolver_mod
fsundials_nvector_mod
fsundials_profiler_mod
fsundials_types_mod

Minor Changes

The CMAKE_BUILD_TYPE defaults to RelWithDebInfo mode now i.e., SUNDIALS will be built with optimizations
and debugging symbols enabled by default. Previously the build type was unset by default so no optimization or
debugging flags were set.

The advanced CMake options to override the inferred LAPACK name-mangling scheme have been updated from SUN-
DIALS_F77_FUNC_CASE and SUNDIALS_F77_FUNC_UNDERSCORES to SUNDIALS_LAPACK_CASE and SUNDIALS_LA-
PACK_UNDERSCORES, respectively.

As a subset of C99 is now required the CMake option USE_GENERIC_MATH as been removed.

The C++ convenience classes (e.g., sundials::Context) have been moved to from SUNDIALS .h headers to corre-
sponding .hpp headers (e.g., sundials/sundials_context.hpp) so C++ codes do not need to compile with C++14
support when using the C API.

Converted most previous Fortran 77 and 90 examples to use SUNDIALS’ Fortran 2003 interface.

Bug Fixes

Fixed GitHub Issue #329 so that C++20 aggregate initialization can be used.

Fixed integer overflow in the internal SUNDIALS hashmap. This resolves GitHub Issues #409 and #249.

Deprecation Notice

The functions in sundials_math.h will be deprecated in the next release.

sunrealtype SUNRpowerI(sunrealtype base, int exponent);
sunrealtype SUNRpowerR(sunrealtype base, sunrealtype exponent);
sunbooleantype SUNRCompare(sunrealtype a, sunrealtype b);

(continues on next page)

14.2. Changes to SUNDIALS in release 7.0.0 317

https://github.com/LLNL/sundials/issues/275
https://github.com/LLNL/sundials/issues/329
https://github.com/LLNL/sundials/issues/409
https://github.com/LLNL/sundials/issues/249

User Documentation for KINSOL, v7.1.0

(continued from previous page)

sunbooleantype SUNRCompareTol(sunrealtype a, sunrealtype b, sunrealtype tol);
sunrealtype SUNStrToReal(const char* str);

Additionally, the following header files (and everything in them) will be deprecated – users who rely on these are
recommended to transition to the corresponding SUNMatrix and SUNLinearSolver modules:

sundials_direct.h
sundials_dense.h
sundials_band.h

14.3 Changes to SUNDIALS in release 6.7.0

Major Feature

Added the SUNAdaptController base class, ported ARKODE’s internal implementations of time step controllers
to implementations of this class, and updated ARKODE to use these objects instead of its own implementations.
Added ARKStepSetAdaptController() and ERKStepSetAdaptController() routines so that users can modify
controller parameters, or even provide custom implementations.

New Features

Improved the computational complexity of the sparse matrix ScaleAddI function from O(M ∗N) to O(NNZ).

Added Fortran support for the LAPACK dense linear solver implementation.

Added the routines ARKStepSetAdaptivityAdjustment() and ERKStepSetAdaptivityAdjustment(), that al-
low users to adjust the value for the method order supplied to the temporal adaptivity controllers. The ARKODE default
for this adjustment has been−1 since its initial release, but for some applications a value of 0 is more appropriate. Users
who notice that their simulations encounter a large number of temporal error test failures may want to experiment with
adjusting this value.

Added the third order ERK method ARKODE_SHU_OSHER_3_2_3, the fourth order ERK method ARKODE_SOFRONIOU_-
SPALETTA_5_3_4, the sixth order ERK method ARKODE_VERNER_9_5_6, the seventh order ERK method ARKODE_-
VERNER_10_6_7, the eighth order ERK method ARKODE_VERNER_13_7_8, and the ninth order ERK method ARKODE_-
VERNER_16_8_9.

ARKStep, ERKStep, MRIStep, and SPRKStep were updated to remove a potentially unnecessary right-hand side eval-
uation at the end of an integration. ARKStep was additionally updated to remove extra right-hand side evaluations
when using an explicit method or an implicit method with an explicit first stage.

The MRIStepInnerStepper class in MRIStep was updated to make supplying an MRIStepInnerFullRhsFn optional.

Bug Fixes

Changed the SUNProfiler so that it does not rely on MPI_WTime in any case. This fixes GitHub Issue #312.

Fixed scaling bug in SUNMatScaleAddI_Sparse for non-square matrices.

Fixed a regression introduced by the stop time bug fix in v6.6.1 where ARKODE, CVODE, CVODES, IDA, and IDAS
would return at the stop time rather than the requested output time if the stop time was reached in the same step in
which the output time was passed.

Fixed a bug in ERKStep where methods with cs = 1 but as,j 6= bj were incorrectly treated as having the first same as
last (FSAL) property.

Fixed a bug in ARKODE where ARKStepSetInterpolateStopTime() would return an interpolated solution at the
stop time in some cases when interpolation was disabled.

318 Chapter 14. Changelog

https://sundials.readthedocs.io/en/v7.1.0/sunadaptcontroller/SUNAdaptController_links.html#c.SUNAdaptController
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ARKStep/User_callable.html#c.ARKStepSetAdaptController
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ERKStep/User_callable.html#c.ERKStepSetAdaptController
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ARKStep/User_callable.html#c.ARKStepSetAdaptivityAdjustment
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ERKStep/User_callable.html#c.ERKStepSetAdaptivityAdjustment
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/MRIStep/Custom_Inner_Stepper/Description.html#c.MRIStepInnerStepper
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/MRIStep/Custom_Inner_Stepper/Description.html#c.MRIStepInnerFullRhsFn
https://github.com/LLNL/sundials/issues/312
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ARKStep/User_callable.html#c.ARKStepSetInterpolateStopTime

User Documentation for KINSOL, v7.1.0

Fixed a bug in ARKStepSetTableNum() wherein it did not recognize ARKODE_ARK2_ERK_3_1_2 and ARKODE_-
ARK2_DIRK_3_1_2 as a valid additive Runge–Kutta Butcher table pair.

Fixed a bug in MRIStepCoupling_Write() where explicit coupling tables were not written to the output file pointer.

Fixed missing soversions in some SUNLinearSolver and SUNNonlinearSolver CMake targets.

Renamed some internal types in CVODES and IDAS to allow both packages to be built together in the same binary.

14.4 Changes to SUNDIALS in release 6.6.2

Fixed the build system support for MAGMA when using a NVIDIA HPC SDK installation of CUDA and fixed the
targets used for rocBLAS and rocSPARSE.

14.5 Changes to SUNDIALS in release 6.6.1

New Features

Updated the Trilinos Tpetra N_Vector interface to support Trilinos 14.

Bug Fixes

Fixed a memory leak when destroying a CUDA, HIP, SYCL, or system SUNMemoryHelper object.

Fixed a bug in ARKODE, CVODE, CVODES, IDA, and IDAS where the stop time may not be cleared when using
normal mode if the requested output time is the same as the stop time. Additionally, with ARKODE, CVODE, and
CVODES this fix removes an unnecessary interpolation of the solution at the stop time that could occur in this case.

14.6 Changes to SUNDIALS in release 6.6.0

Major Features

A new time-stepping module, SPRKStep, was added to ARKODE. This time-stepper provides explicit symplectic
partitioned Runge-Kutta methods up to order 10 for separable Hamiltonian systems.

Added support for relaxation Runge-Kutta methods in ERKStep and ARKStep, see Relaxation Methods, Relaxation
Methods, and Relaxation Methods for more information.

New Features

Updated the default ARKODE, CVODE, and CVODES behavior when returning the solution when the internal time
has reached a user-specified stop time. Previously, the output solution was interpolated to the value of tstop;
the default is now to copy the internal solution vector. Users who wish to revert to interpolation may call a
new routine CVodeSetInterpolateStopTime(), ARKStepSetInterpolateStopTime(), ERKStepSetInterpo-
lateStopTime(), or MRIStepSetInterpolateStopTime().

Added the second order IMEX method from [29] as the default second order IMEX method in ARKStep. The explicit
table is given by ARKODE_ARK2_ERK_3_1_2 (see ARK2-ERK-3-1-2) and the implicit table by ARKODE_ARK2_DIRK_-
3_1_2 (see ARK2-DIRK-3-1-2).

Updated the F2003 utility routines SUNDIALSFileOpen() and SUNDIALSFileClose() to support user specification
of stdout and stderr strings for the output file names.

Bug Fixes

14.4. Changes to SUNDIALS in release 6.6.2 319

https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ARKStep/User_callable.html#c.ARKStepSetTableNum
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/MRIStep/MRIStepCoupling.html#c.MRIStepCoupling_Write
https://sundials.readthedocs.io/en/v7.1.0/sunnonlinsol/SUNNonlinSol_API_link.html#c.SUNNonlinearSolver
https://sundials.readthedocs.io/en/v7.1.0/arkode/Mathematics_link.html#arkode-mathematics-sprkstep
https://sundials.readthedocs.io/en/v7.1.0/arkode/Mathematics_link.html#arkode-mathematics-relaxation
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ERKStep/Relaxation.html#arkode-usage-erkstep-relaxation
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ERKStep/Relaxation.html#arkode-usage-erkstep-relaxation
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ARKStep/Relaxation.html#arkode-usage-arkstep-relaxation
https://sundials.readthedocs.io/en/v7.1.0/cvodes/Usage/SIM.html#c.CVodeSetInterpolateStopTime
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ARKStep/User_callable.html#c.ARKStepSetInterpolateStopTime
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ERKStep/User_callable.html#c.ERKStepSetInterpolateStopTime
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ERKStep/User_callable.html#c.ERKStepSetInterpolateStopTime
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/MRIStep/User_callable.html#c.MRIStepSetInterpolateStopTime
https://sundials.readthedocs.io/en/v7.1.0/arkode/Butcher_link.html#butcher-ark2-erk
https://sundials.readthedocs.io/en/v7.1.0/arkode/Butcher_link.html#butcher-ark2-dirk

User Documentation for KINSOL, v7.1.0

A potential bug was fixed when using inequality constraint handling and calling ARKStepGetEstLocalErrors() or
ERKStepGetEstLocalErrors() after a failed step in which an inequality constraint violation occurred. In this case,
the values returned by ARKStepGetEstLocalErrors() or ERKStepGetEstLocalErrors() may have been invalid.

14.7 Changes to SUNDIALS in release 6.5.1

New Features

Added the following functions to disable a previously set stop time:

• ARKStepClearStopTime()

• ERKStepClearStopTime()

• MRIStepClearStopTime()

• CVodeClearStopTime()

• IDAClearStopTime()

The default interpolant in ARKODE when using a first order method has been updated to a linear interpolant to en-
sure values obtained by the integrator are returned at the ends of the time interval. To restore the previous behavior
of using a constant interpolant call ARKStepSetInterpolantDegree(), ERKStepSetInterpolantDegree(), or
MRIStepSetInterpolantDegree() and set the interpolant degree to zero before evolving the problem.

Bug Fixes

Fixed build errors when using SuperLU_DIST with ROCM enabled to target AMD GPUs.

Fixed compilation errors in some SYCL examples when using the icx compiler.

14.8 Changes to SUNDIALS in release 6.5.0

New Features

A new capability to keep track of memory allocations made through the SUNMemoryHelper classes has been added.
Memory allocation stats can be accessed through the SUNMemoryHelper_GetAllocStats() function. See §9.1 for
more details.

Added the following functions to assist in debugging simulations utilizing matrix-based linear solvers:

• ARKStepGetJac()

• ARKStepGetJacTime()

• ARKStepGetJacNumSteps()

• MRIStepGetJac()

• MRIStepGetJacTime()

• MRIStepGetJacNumSteps()

• CVodeGetJac()

• CVodeGetJacTime()

• CVodeGetJacNumSteps()

• IDAGetJac()

• IDAGetJacCj()

320 Chapter 14. Changelog

https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ARKStep/User_callable.html#c.ARKStepGetEstLocalErrors
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ERKStep/User_callable.html#c.ERKStepGetEstLocalErrors
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ARKStep/User_callable.html#c.ARKStepGetEstLocalErrors
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ERKStep/User_callable.html#c.ERKStepGetEstLocalErrors
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ARKStep/User_callable.html#c.ARKStepClearStopTime
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ERKStep/User_callable.html#c.ERKStepClearStopTime
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/MRIStep/User_callable.html#c.MRIStepClearStopTime
https://sundials.readthedocs.io/en/v7.1.0/cvodes/Usage/SIM.html#c.CVodeClearStopTime
https://sundials.readthedocs.io/en/v7.1.0/idas/Usage/SIM.html#c.IDAClearStopTime
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ARKStep/User_callable.html#c.ARKStepSetInterpolantDegree
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ERKStep/User_callable.html#c.ERKStepSetInterpolantDegree
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/MRIStep/User_callable.html#c.MRIStepSetInterpolantDegree
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ARKStep/User_callable.html#c.ARKStepGetJac
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ARKStep/User_callable.html#c.ARKStepGetJacTime
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ARKStep/User_callable.html#c.ARKStepGetJacNumSteps
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/MRIStep/User_callable.html#c.MRIStepGetJac
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/MRIStep/User_callable.html#c.MRIStepGetJacTime
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/MRIStep/User_callable.html#c.MRIStepGetJacNumSteps
https://sundials.readthedocs.io/en/v7.1.0/cvodes/Usage/SIM.html#c.CVodeGetJac
https://sundials.readthedocs.io/en/v7.1.0/cvodes/Usage/SIM.html#c.CVodeGetJacTime
https://sundials.readthedocs.io/en/v7.1.0/cvodes/Usage/SIM.html#c.CVodeGetJacNumSteps
https://sundials.readthedocs.io/en/v7.1.0/idas/Usage/SIM.html#c.IDAGetJac
https://sundials.readthedocs.io/en/v7.1.0/idas/Usage/SIM.html#c.IDAGetJacCj

User Documentation for KINSOL, v7.1.0

• IDAGetJacTime()

• IDAGetJacNumSteps()

• KINGetJac()

• KINGetJacNumIters()

Added support for CUDA 12.

Added support for the SYCL backend with RAJA 2022.x.y.

Bug Fixes

Fixed an underflow bug during root finding in ARKODE, CVODE, CVODES, IDA and IDAS. This fixes GitHub Issue
#57.

Fixed an issue with finding oneMKL when using the icpx compiler with the -fsycl flag as the C++ compiler instead
of dpcpp.

Fixed the shape of the arrays returned by the Fortran interfaces to N_VGetArrayPointer(), SUNDenseMatrix_-
Data(), SUNBandMatrix_Data(), SUNSparseMatrix_Data(), SUNSparseMatrix_IndexValues(), and SUN-
SparseMatrix_IndexPointers(). Compiling and running code that uses the SUNDIALS Fortran interfaces with
bounds checking will now work.

Fixed an implicit conversion error in the Butcher table for ESDIRK5(4)7L[2]SA2.

14.9 Changes to SUNDIALS in release 6.4.1

Fixed a bug with the Kokkos interfaces that would arise when using clang.

Fixed a compilation error with the Intel oneAPI 2022.2 Fortran compiler in the Fortran 2003 interface test for the serial
N_Vector.

Fixed a bug in the LAPACK band and dense linear solvers which would cause the tests to fail on some platforms.

14.10 Changes to SUNDIALS in release 6.4.0

New Requirements

CMake 3.18.0 or newer is now required for CUDA support.

A C++14 compliant compiler is now required for C++ based features and examples e.g., CUDA, HIP, RAJA, Trilinos,
SuperLU_DIST, MAGMA, Ginkgo, and Kokkos.

Major Features

Added support for the Ginkgo linear algebra library. This support includes new SUNDIALS matrix and linear solver
implementations, see the sections §7.10 and §8.18.

Added new SUNDIALS vector, dense matrix, and dense linear solver implementations utilizing the Kokkos Ecosystem
for performance portability, see sections §6.14, §7.11, and §8.19 for more information.

New Features

Added support for GPU enabled SuperLU_DIST and SuperLU_DIST v8.x.x. Removed support for SuperLU_DIST
v6.x.x or older. Fix mismatched definition and declaration bug in SuperLU_DIST matrix constructor.

Added the functions following functions to load a Butcher table from a string:

• ARKStepSetTableName()

14.9. Changes to SUNDIALS in release 6.4.1 321

https://sundials.readthedocs.io/en/v7.1.0/idas/Usage/SIM.html#c.IDAGetJacTime
https://sundials.readthedocs.io/en/v7.1.0/idas/Usage/SIM.html#c.IDAGetJacNumSteps
https://github.com/LLNL/sundials/issues/57
https://github.com/LLNL/sundials/issues/57
https://ginkgo-project.github.io/
https://kokkos.org/
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ARKStep/User_callable.html#c.ARKStepSetTableName

User Documentation for KINSOL, v7.1.0

• ERKStepSetTableName()

• MRIStepCoupling_LoadTableByName()

• ARKodeButcherTable_LoadDIRKByName()

• ARKodeButcherTable_LoadERKByName()

Bug Fixes

Fixed a bug in the CUDA and HIP vectors where N_VMaxNorm() would return the minimum positive floating-point
value for the zero vector.

Fixed memory leaks/out of bounds memory accesses in the ARKODE MRIStep module that could occur when attaching
a coupling table after reinitialization with a different number of stages than originally selected.

Fixed a memory leak where the projection memory would not be deallocated when calling CVodeFree().

14.11 Changes to SUNDIALS in release 6.3.0

New Features

Added the following functions to retrieve the user data pointer provided with SetUserData functions:

• ARKStepGetUserData()

• ERKStepGetUserData()

• MRIStepGetUserData()

• CVodeGetUserData()

• IDAGetUserData()

• KINGetUserData()

Added a variety of embedded DIRK methods from [37] and [38].

Updated MRIStepReset() to call the corresponding MRIStepInnerResetFn with the same tR and yR arguments for
the MRIStepInnerStepper object that is used to evolve the MRI “fast” time scale subproblems.

Added a new example (examples/cvode/serial/cvRocket_dns.c) which demonstrates using CVODE with a dis-
continuous right-hand-side function and rootfinding.

Bug Fixes

Fixed a bug in ERKStepReset(), ERKStepReInit(), ARKStepReset(), ARKStepReInit(), MRIStepReset(),
and MRIStepReInit() where a previously-set value of tstop (from a call to ERKStepSetStopTime(), ARK-
StepSetStopTime(), or MRIStepSetStopTime(), respectively) would not be cleared.

Fixed the unituitive behavior of the USE_GENERIC_MATH CMake option which caused the double precision math func-
tions to be used regardless of the value of SUNDIALS_PRECISION. Now, SUNDIALS will use precision appropriate
math functions when they are available and the user may provide the math library to link to via the advanced CMake
option SUNDIALS_MATH_LIBRARY .

Changed SUNDIALS_LOGGING_ENABLE_MPI CMake option default to be OFF. This fixes GitHub Issue #177.

322 Chapter 14. Changelog

https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ERKStep/User_callable.html#c.ERKStepSetTableName
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/MRIStep/MRIStepCoupling.html#c.MRIStepCoupling_LoadTableByName
https://sundials.readthedocs.io/en/v7.1.0/arkode/ARKodeButcherTable_link.html#c.ARKodeButcherTable_LoadDIRKByName
https://sundials.readthedocs.io/en/v7.1.0/arkode/ARKodeButcherTable_link.html#c.ARKodeButcherTable_LoadERKByName
https://sundials.readthedocs.io/en/v7.1.0/cvodes/Usage/SIM.html#c.CVodeFree
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ARKStep/User_callable.html#c.ARKStepGetUserData
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ERKStep/User_callable.html#c.ERKStepGetUserData
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/MRIStep/User_callable.html#c.MRIStepGetUserData
https://sundials.readthedocs.io/en/v7.1.0/cvodes/Usage/SIM.html#c.CVodeGetUserData
https://sundials.readthedocs.io/en/v7.1.0/idas/Usage/SIM.html#c.IDAGetUserData
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/MRIStep/User_callable.html#c.MRIStepReset
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/MRIStep/Custom_Inner_Stepper/Description.html#c.MRIStepInnerResetFn
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/MRIStep/Custom_Inner_Stepper/Description.html#c.MRIStepInnerStepper
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ERKStep/User_callable.html#c.ERKStepReset
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ERKStep/User_callable.html#c.ERKStepReInit
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ARKStep/User_callable.html#c.ARKStepReset
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ARKStep/User_callable.html#c.ARKStepReInit
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/MRIStep/User_callable.html#c.MRIStepReset
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/MRIStep/User_callable.html#c.MRIStepReInit
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ERKStep/User_callable.html#c.ERKStepSetStopTime
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ARKStep/User_callable.html#c.ARKStepSetStopTime
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ARKStep/User_callable.html#c.ARKStepSetStopTime
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/MRIStep/User_callable.html#c.MRIStepSetStopTime
https://github.com/LLNL/sundials/issues/177

User Documentation for KINSOL, v7.1.0

14.12 Changes to SUNDIALS in release 6.2.0

Major Features

Added the SUNLogger API which provides a SUNDIALS-wide mechanism for logging of errors, warnings, informa-
tional output, and debugging output.

Added support to CVODES for integrating IVPs with constraints using BDF methods and projecting the solution onto
the constraint manifold with a user defined projection function. This implementation is accompanied by additions to
the CVODES user documentation and examples.

New Features

Added the function SUNProfiler_Reset() to reset the region timings and counters to zero.

Added the following functions to output all of the integrator, nonlinear solver, linear solver, and other statistics in one
call:

• ARKStepPrintAllStats()

• ERKStepPrintAllStats()

• MRIStepPrintAllStats()

• CVodePrintAllStats()

• IDAPrintAllStats()

• KINPrintAllStats()

The file scripts/sundials_csv.py contains functions for parsing the comma-separated value (CSV) output files
when using the CSV output format.

Added functions to CVODE, CVODES, IDA, and IDAS to change the default step size adaptivity parameters. For more
information see the documentation for:

• CVodeSetEtaFixedStepBounds()

• CVodeSetEtaMaxFirstStep()

• CVodeSetEtaMaxEarlyStep()

• CVodeSetNumStepsEtaMaxEarlyStep()

• CVodeSetEtaMax()

• CVodeSetEtaMin()

• CVodeSetEtaMinErrFail()

• CVodeSetEtaMaxErrFail()

• CVodeSetNumFailsEtaMaxErrFail()

• CVodeSetEtaConvFail()

• IDASetEtaFixedStepBounds()

• IDASetEtaMax()

• IDASetEtaMin()

• IDASetEtaLow()

• IDASetEtaMinErrFail()

• IDASetEtaConvFail()

14.12. Changes to SUNDIALS in release 6.2.0 323

https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ARKStep/User_callable.html#c.ARKStepPrintAllStats
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ERKStep/User_callable.html#c.ERKStepPrintAllStats
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/MRIStep/User_callable.html#c.MRIStepPrintAllStats
https://sundials.readthedocs.io/en/v7.1.0/cvodes/Usage/SIM.html#c.CVodePrintAllStats
https://sundials.readthedocs.io/en/v7.1.0/idas/Usage/SIM.html#c.IDAPrintAllStats
https://sundials.readthedocs.io/en/v7.1.0/cvodes/Usage/SIM.html#c.CVodeSetEtaFixedStepBounds
https://sundials.readthedocs.io/en/v7.1.0/cvodes/Usage/SIM.html#c.CVodeSetEtaMaxFirstStep
https://sundials.readthedocs.io/en/v7.1.0/cvodes/Usage/SIM.html#c.CVodeSetEtaMaxEarlyStep
https://sundials.readthedocs.io/en/v7.1.0/cvodes/Usage/SIM.html#c.CVodeSetNumStepsEtaMaxEarlyStep
https://sundials.readthedocs.io/en/v7.1.0/cvodes/Usage/SIM.html#c.CVodeSetEtaMax
https://sundials.readthedocs.io/en/v7.1.0/cvodes/Usage/SIM.html#c.CVodeSetEtaMin
https://sundials.readthedocs.io/en/v7.1.0/cvodes/Usage/SIM.html#c.CVodeSetEtaMinErrFail
https://sundials.readthedocs.io/en/v7.1.0/cvodes/Usage/SIM.html#c.CVodeSetEtaMaxErrFail
https://sundials.readthedocs.io/en/v7.1.0/cvodes/Usage/SIM.html#c.CVodeSetNumFailsEtaMaxErrFail
https://sundials.readthedocs.io/en/v7.1.0/cvodes/Usage/SIM.html#c.CVodeSetEtaConvFail
https://sundials.readthedocs.io/en/v7.1.0/idas/Usage/SIM.html#c.IDASetEtaFixedStepBounds
https://sundials.readthedocs.io/en/v7.1.0/idas/Usage/SIM.html#c.IDASetEtaMax
https://sundials.readthedocs.io/en/v7.1.0/idas/Usage/SIM.html#c.IDASetEtaMin
https://sundials.readthedocs.io/en/v7.1.0/idas/Usage/SIM.html#c.IDASetEtaLow
https://sundials.readthedocs.io/en/v7.1.0/idas/Usage/SIM.html#c.IDASetEtaMinErrFail
https://sundials.readthedocs.io/en/v7.1.0/idas/Usage/SIM.html#c.IDASetEtaConvFail

User Documentation for KINSOL, v7.1.0

Added the functions ARKStepSetDeduceImplicitRhs() and MRIStepSetDeduceImplicitRhs() to optionally re-
move an evaluation of the implicit right-hand side function after nonlinear solves. See Nonlinear solver methods, for
considerations on using this optimization.

Added the function MRIStepSetOrder() to select the default MRI method of a given order.

Added the functions CVodeSetDeltaGammaMaxLSetup() and CVodeSetDeltaGammaMaxBadJac() in CVODE and
CVODES to adjust the γ change thresholds to require a linear solver setup or Jacobian/precondition update, respectively.

Added the function IDASetDeltaCjLSetup() in IDA and IDAS to adjust the parameter that determines when a change
in cj requires calling the linear solver setup function.

Added the function IDASetMinStep() to set a minimum step size.

Bug Fixes

Fixed the SUNContext convenience class for C++ users to disallow copy construction and allow move construction.

The behavior of N_VSetKernelExecPolicy_Sycl() has been updated to be consistent with the CUDA and HIP
vectors. The input execution policies are now cloned and may be freed after calling N_VSetKernelExecPolicy_-
Sycl(). Additionally, NULL inputs are now allowed and, if provided, will reset the vector execution policies to the
defaults.

A memory leak in the SYCL vector was fixed where the execution policies were not freed when the vector was destroyed.

The include guard in nvector_mpimanyvector.h has been corrected to enable using both the ManyVector and MPI-
ManyVector vector implementations in the same simulation.

A bug was fixed in the ARKODE, CVODE(S), and IDA(S) functions to retrieve the number of nonlinear solver failures.
The failure count returned was the number of failed steps due to a nonlinear solver failure i.e., if a nonlinear solve failed
with a stale Jacobian or preconditioner but succeeded after updating the Jacobian or preconditioner, the initial failure
was not included in the nonlinear solver failure count. The following functions have been updated to return the total
number of nonlinear solver failures:

• ARKStepGetNumNonlinSolvConvFails()

• ARKStepGetNonlinSolvStats()

• MRIStepGetNumNonlinSolvConvFails()

• MRIStepGetNonlinSolvStats()

• CVodeGetNumNonlinSolvConvFails()

• CVodeGetNonlinSolvStats()

• CVodeGetSensNumNonlinSolvConvFails()

• CVodeGetSensNonlinSolvStats()

• CVodeGetStgrSensNumNonlinSolvConvFails()

• CVodeGetStgrSensNonlinSolvStats()

• IDAGetNumNonlinSolvConvFails()

• IDAGetNonlinSolvStats()

• IDAGetSensNumNonlinSolvConvFails()

• IDAGetSensNonlinSolvStats()

As a result of this change users may see an increase in the number of failures reported from the above functions. The
following functions have been added to retrieve the number of failed steps due to a nonlinear solver failure i.e., the
counts previously returned by the above functions:

• ARKStepGetNumStepSolveFails()

324 Chapter 14. Changelog

https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ARKStep/User_callable.html#c.ARKStepSetDeduceImplicitRhs
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/MRIStep/User_callable.html#c.MRIStepSetDeduceImplicitRhs
https://sundials.readthedocs.io/en/v7.1.0/arkode/Mathematics_link.html#arkode-mathematics-nonlinear
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/MRIStep/User_callable.html#c.MRIStepSetOrder
https://sundials.readthedocs.io/en/v7.1.0/cvodes/Usage/SIM.html#c.CVodeSetDeltaGammaMaxLSetup
https://sundials.readthedocs.io/en/v7.1.0/cvodes/Usage/SIM.html#c.CVodeSetDeltaGammaMaxBadJac
https://sundials.readthedocs.io/en/v7.1.0/idas/Usage/SIM.html#c.IDASetDeltaCjLSetup
https://sundials.readthedocs.io/en/v7.1.0/idas/Usage/SIM.html#c.IDASetMinStep
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ARKStep/User_callable.html#c.ARKStepGetNumNonlinSolvConvFails
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ARKStep/User_callable.html#c.ARKStepGetNonlinSolvStats
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/MRIStep/User_callable.html#c.MRIStepGetNumNonlinSolvConvFails
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/MRIStep/User_callable.html#c.MRIStepGetNonlinSolvStats
https://sundials.readthedocs.io/en/v7.1.0/cvodes/Usage/SIM.html#c.CVodeGetNumNonlinSolvConvFails
https://sundials.readthedocs.io/en/v7.1.0/cvodes/Usage/SIM.html#c.CVodeGetNonlinSolvStats
https://sundials.readthedocs.io/en/v7.1.0/cvodes/Usage/FSA.html#c.CVodeGetSensNumNonlinSolvConvFails
https://sundials.readthedocs.io/en/v7.1.0/cvodes/Usage/FSA.html#c.CVodeGetSensNonlinSolvStats
https://sundials.readthedocs.io/en/v7.1.0/cvodes/Usage/FSA.html#c.CVodeGetStgrSensNumNonlinSolvConvFails
https://sundials.readthedocs.io/en/v7.1.0/cvodes/Usage/FSA.html#c.CVodeGetStgrSensNonlinSolvStats
https://sundials.readthedocs.io/en/v7.1.0/idas/Usage/SIM.html#c.IDAGetNumNonlinSolvConvFails
https://sundials.readthedocs.io/en/v7.1.0/idas/Usage/SIM.html#c.IDAGetNonlinSolvStats
https://sundials.readthedocs.io/en/v7.1.0/idas/Usage/FSA.html#c.IDAGetSensNumNonlinSolvConvFails
https://sundials.readthedocs.io/en/v7.1.0/idas/Usage/FSA.html#c.IDAGetSensNonlinSolvStats
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ARKStep/User_callable.html#c.ARKStepGetNumStepSolveFails

User Documentation for KINSOL, v7.1.0

• MRIStepGetNumStepSolveFails()

• CVodeGetNumStepSolveFails()

• CVodeGetNumStepSensSolveFails()

• CVodeGetNumStepStgrSensSolveFails()

• IDAGetNumStepSolveFails()

• IDAGetNumStepSensSolveFails()

Changed exported SUNDIALS PETSc CMake targets to be INTERFACE IMPORTED instead of UNKNOWN IM-
PORTED.

Deprecation Notice

Deprecated the following functions, it is recommended to use the SUNLogger API instead.

• ARKStepSetDiagnostics

• ERKStepSetDiagnostics

• MRIStepSetDiagnostics

• KINSetInfoFile

• SUNNonlinSolSetPrintLevel_Newton

• SUNNonlinSolSetInfoFile_Newton

• SUNNonlinSolSetPrintLevel_FixedPoint

• SUNNonlinSolSetInfoFile_FixedPoint

• SUNLinSolSetInfoFile_PCG

• SUNLinSolSetPrintLevel_PCG

• SUNLinSolSetInfoFile_SPGMR

• SUNLinSolSetPrintLevel_SPGMR

• SUNLinSolSetInfoFile_SPFGMR

• SUNLinSolSetPrintLevel_SPFGMR

• SUNLinSolSetInfoFile_SPTFQM

• SUNLinSolSetPrintLevel_SPTFQMR

• SUNLinSolSetInfoFile_SPBCGS

• SUNLinSolSetPrintLevel_SPBCGS

The SUNLinSolSetInfoFile_* and SUNNonlinSolSetInfoFile_* family of functions are now enabled by setting
the CMake option SUNDIALS_LOGGING_LEVEL to a value >= 3.

14.12. Changes to SUNDIALS in release 6.2.0 325

https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/MRIStep/User_callable.html#c.MRIStepGetNumStepSolveFails
https://sundials.readthedocs.io/en/v7.1.0/cvodes/Usage/SIM.html#c.CVodeGetNumStepSolveFails
https://sundials.readthedocs.io/en/v7.1.0/cvodes/Usage/FSA.html#c.CVodeGetNumStepSensSolveFails
https://sundials.readthedocs.io/en/v7.1.0/cvodes/Usage/FSA.html#c.CVodeGetNumStepStgrSensSolveFails
https://sundials.readthedocs.io/en/v7.1.0/idas/Usage/SIM.html#c.IDAGetNumStepSolveFails
https://sundials.readthedocs.io/en/v7.1.0/idas/Usage/FSA.html#c.IDAGetNumStepSensSolveFails

User Documentation for KINSOL, v7.1.0

14.13 Changes to SUNDIALS in release 6.1.1

New Feature

Added new Fortran example program, examples/arkode/F2003_serial/ark_kpr_mri_f2003.f90 demonstrat-
ing MRI capabilities.

Bug Fixes

Fixed exported SUNDIALSConfig.cmake.

Fixed Fortran interface to MRIStepInnerStepper and MRIStepCoupling structures and functions.

14.14 Changes to SUNDIALS in release 6.1.0

New Features

Added new reduction implementations for the CUDA and HIP vectors that use shared memory (local data storage)
instead of atomics. These new implementations are recommended when the target hardware does not provide atomic
support for the floating point precision that SUNDIALS is being built with. The HIP vector uses these by default, but
the N_VSetKernelExecPolicy_Cuda() and N_VSetKernelExecPolicy_Hip() functions can be used to choose
between different reduction implementations.

SUNDIALS::<lib> targets with no static/shared suffix have been added for use within the build directory (this mirrors
the targets exported on installation).

CMAKE_C_STANDARD is now set to 99 by default.

Bug Fixes

Fixed exported SUNDIALSConfig.cmake when profiling is enabled without Caliper.

Fixed sundials_export.h include in sundials_config.h.

Fixed memory leaks in the SuperLU_MT linear solver interface.

14.15 Changes to SUNDIALS in release 6.0.0

Breaking Changes

SUNContext Object Added

SUNDIALS v6.0.0 introduces a new SUNContext object on which all other SUNDIALS objects depend. As such, the
constructors for all SUNDIALS packages, vectors, matrices, linear solvers, nonlinear solvers, and memory helpers
have been updated to accept a context as the last input. Users upgrading to SUNDIALS v6.0.0 will need to call
SUNContext_Create() to create a context object with before calling any other SUNDIALS library function, and then
provide this object to other SUNDIALS constructors. The context object has been introduced to allow SUNDIALS to
provide new features, such as the profiling/instrumentation also introduced in this release, while maintaining thread-
safety. See the §4.2 for more details.

The script scripts/upgrade-to-sundials-6-from-5.sh has been provided with this release (and obtainable from
the GitHub release page) to help ease the transition to SUNDIALS v6.0.0. The script will add a SUNCTX_PLACEHOLDER
argument to all of the calls to SUNDIALS constructors that now require a SUNContext object. It can also update
deprecated SUNDIALS constants/types to the new names. It can be run like this:

./upgrade-to-sundials-6-from-5.sh <files to update>

326 Chapter 14. Changelog

https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/MRIStep/Custom_Inner_Stepper/Description.html#c.MRIStepInnerStepper
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/MRIStep/MRIStepCoupling.html#c.MRIStepCoupling

User Documentation for KINSOL, v7.1.0

Updated SUNMemoryHelper Function Signatures

The SUNMemoryHelper functions SUNMemoryHelper_Alloc(), SUNMemoryHelper_Dealloc(), and SUNMemory-
Helper_Copy() have been updated to accept an opaque handle as the last input. At a minimum, user-defined SUN-
MemoryHelper implementations will need to update these functions to accept the additional argument. Typically, this
handle is the execution stream (e.g., a CUDA/HIP stream or SYCL queue) for the operation. The CUDA, HIP, and
SYCL implementations have been updated accordingly. Additionally, the constructor SUNMemoryHelper_Sycl() has
been updated to remove the SYCL queue as an input.

Deprecated Functions Removed

The previously deprecated constructor N_VMakeWithManagedAllocator_Cuda and the function N_VSetCudaS-
tream_Cuda have been removed and replaced with N_VNewWithMemHelp_Cuda() and N_VSetKernelExecPol-
icy_Cuda() respectively.

The previously deprecated macros PVEC_REAL_MPI_TYPE and PVEC_INTEGER_MPI_TYPE have been removed and
replaced with MPI_SUNREALTYPE and MPI_SUNINDEXTYPE respectively.

The following previously deprecated SUNLinearSolver functions have been removed:

Removed Replacement
SUNBandLinearSolver SUNLinSol_Band()
SUNDenseLinearSolver SUNLinSol_Dense()
SUNKLU SUNLinSol_KLU()
SUNKLUReInit SUNLinSol_KLUReInit()
SUNKLUSetOrdering SUNLinSol_KLUSetOrdering()
SUNLapackBand SUNLinSol_LapackBand()
SUNLapackDense SUNLinSol_LapackDense()
SUNPCG SUNLinSol_PCG()
SUNPCGSetPrecType SUNLinSol_PCGSetPrecType()
SUNPCGSetMaxl SUNLinSol_PCGSetMaxl()
SUNSPBCGS SUNLinSol_SPBCGS()
SUNSPBCGSSetPrecType SUNLinSol_SPBCGSSetPrecType()
SUNSPBCGSSetMaxl SUNLinSol_SPBCGSSetMaxl()
SUNSPFGMR SUNLinSol_SPFGMR()
SUNSPFGMRSetPrecType SUNLinSol_SPFGMRSetPrecType()
SUNSPFGMRSetGSType SUNLinSol_SPFGMRSetGSType()
SUNSPFGMRSetMaxRestarts SUNLinSol_SPFGMRSetMaxRestarts()
SUNSPGMR SUNLinSol_SPGMR()
SUNSPGMRSetPrecType SUNLinSol_SPGMRSetPrecType()
SUNSPGMRSetGSType SUNLinSol_SPGMRSetGSType()
SUNSPGMRSetMaxRestarts SUNLinSol_SPGMRSetMaxRestarts()
SUNSPTFQMR SUNLinSol_SPTFQMR()
SUNSPTFQMRSetPrecType SUNLinSol_SPTFQMRSetPrecType()
SUNSPTFQMRSetMaxl SUNLinSol_SPTFQMRSetMaxl()
SUNSuperLUMT SUNLinSol_SuperLUMT()
SUNSuperLUMTSetOrdering SUNLinSol_SuperLUMTSetOrdering()

The deprecated functions MRIStepGetCurrentButcherTables and MRIStepWriteButcher and the utility func-
tions MRIStepSetTable and MRIStepSetTableNum have been removed. Users wishing to create an MRI-GARK
method from a Butcher table should use MRIStepCoupling_MIStoMRI() to create the corresponding MRI coupling
table and attach it with MRIStepSetCoupling().

The previously deprecated functions ARKStepSetMaxStepsBetweenLSet and ARKStepSetMaxStepsBetweenJac
have been removed and replaced with ARKStepSetLSetupFrequency() and ARKStepSetJacEvalFrequency()

14.15. Changes to SUNDIALS in release 6.0.0 327

https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/MRIStep/MRIStepCoupling.html#c.MRIStepCoupling_MIStoMRI
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/MRIStep/User_callable.html#c.MRIStepSetCoupling
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ARKStep/User_callable.html#c.ARKStepSetLSetupFrequency
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ARKStep/User_callable.html#c.ARKStepSetJacEvalFrequency

User Documentation for KINSOL, v7.1.0

respectively.

The previously deprecated function CVodeSetMaxStepsBetweenJac has been removed and replaced with CVode-
SetJacEvalFrequency().

The ARKODE, CVODE, IDA, and KINSOL Fortran 77 interfaces has been removed. See §4.7 and the F2003 example
programs for more details using the SUNDIALS Fortran 2003 module interfaces.

Namespace Changes

The CUDA, HIP, and SYCL execution policies have been moved from the sundials namespace to the sundi-
als::cuda, sundials::hip, and sundials::sycl namespaces respectively. Accordingly, the prefixes “Cuda”,
“Hip”, and “Sycl” have been removed from the execution policy classes and methods.

The Sundials namespace used by the Trilinos Tpetra N_Vector implementation has been replaced with the sundi-
als::trilinos::nvector_tpetra namespace.

Major Features

Profiling Capability

A capability to profile/instrument SUNDIALS library code has been added. This can be enabled with the CMake option
SUNDIALS_BUILD_WITH_PROFILING . A built-in profiler will be used by default, but the Caliper library can also be
used instead with the CMake option ENABLE_CALIPER . See the documentation section on profiling for more details.

Warning: Profiling will impact performance, and should be enabled judiciously.

IMEX MRI Methods and MRIStepInnerStepper Object

The MRIStep module has been extended to support implicit-explicit (ImEx) multirate infinitesimal generalized ad-
ditive Runge–Kutta (MRI-GARK) methods. As such, MRIStepCreate() has been updated to include arguments
for the slow explicit and slow implicit ODE right-hand side functions. MRIStepCreate() has also been updated to
require attaching an MRIStepInnerStepper for evolving the fast time scale. MRIStepReInit() has been similarly up-
dated to take explicit and implicit right-hand side functions as input. Codes using explicit or implicit MRI methods
will need to update MRIStepCreate() and MRIStepReInit() calls to pass NULL for either the explicit or implicit
right-hand side function as appropriate. If ARKStep is used as the fast time scale integrator, codes will need to call
ARKStepCreateMRIStepInnerStepper() to wrap the ARKStep memory as an MRIStepInnerStepper object. Ad-
ditionally, MRIStepGetNumRhsEvals() has been updated to return the number of slow implicit and explicit function
evaluations. The coupling table, MRIStepCoupling, and the functions MRIStepCoupling_Alloc() and MRIStep-
Coupling_Create() have also been updated to support IMEX-MRI-GARK methods.

New Features

Two new optional vector operations, N_VDotProdMultiLocal() and N_VDotProdMultiAllReduce(), have been
added to support low-synchronization methods for Anderson acceleration.

The implementation of solve-decoupled implicit MRI-GARK methods has been updated to remove extraneous slow
implicit function calls and reduce the memory requirements.

Added a new function CVodeGetLinSolveStats() to get the CVODES linear solver statistics as a group.

Added a new function, CVodeSetMonitorFn(), that takes a user-function to be called by CVODES after every nst
successfully completed time-steps. This is intended to provide a way of monitoring the CVODES statistics throughout
the simulation.

New orthogonalization methods were added for use within the KINSOL Anderson acceleration routine. See Anderson
Acceleration QR Factorization and KINSetOrthAA() for more details.

Deprecation Notice

328 Chapter 14. Changelog

https://sundials.readthedocs.io/en/v7.1.0/cvodes/Usage/SIM.html#c.CVodeSetJacEvalFrequency
https://sundials.readthedocs.io/en/v7.1.0/cvodes/Usage/SIM.html#c.CVodeSetJacEvalFrequency
https://github.com/LLNL/Caliper
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/MRIStep/User_callable.html#c.MRIStepCreate
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/MRIStep/User_callable.html#c.MRIStepCreate
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/MRIStep/User_callable.html#c.MRIStepReInit
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/MRIStep/User_callable.html#c.MRIStepCreate
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/MRIStep/User_callable.html#c.MRIStepReInit
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ARKStep/User_callable.html#c.ARKStepCreateMRIStepInnerStepper
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/MRIStep/User_callable.html#c.MRIStepGetNumRhsEvals
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/MRIStep/MRIStepCoupling.html#c.MRIStepCoupling
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/MRIStep/MRIStepCoupling.html#c.MRIStepCoupling_Alloc
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/MRIStep/MRIStepCoupling.html#c.MRIStepCoupling_Create
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/MRIStep/MRIStepCoupling.html#c.MRIStepCoupling_Create
https://sundials.readthedocs.io/en/v7.1.0/cvodes/Usage/SIM.html#c.CVodeGetLinSolveStats
https://sundials.readthedocs.io/en/v7.1.0/cvodes/Usage/SIM.html#c.CVodeSetMonitorFn

User Documentation for KINSOL, v7.1.0

The serial, PThreads, PETSc, hypre, Parallel, OpenMP_DEV, and OpenMP vector functions N_VCloneVectorAr-
ray_* and N_VDestroyVectorArray_* have been deprecated. The generic N_VCloneVectorArray() and N_VDe-
stroyVectorArray() functions should be used instead.

Many constants, types, and functions have been renamed so that they are properly namespaced. The old names have
been deprecated and will be removed in SUNDIALS v7.0.0.

The following constants, macros, and typedefs are now deprecated:

Deprecated Name New Name
realtype sunrealtype
booleantype sunbooleantype
RCONST SUN_RCONST
BIG_REAL SUN_BIG_REAL
SMALL_REAL SUN_SMALL_REAL
UNIT_ROUNDOFF SUN_UNIT_ROUNDOFF
PREC_NONE SUN_PREC_NONE
PREC_LEFT SUN_PREC_LEFT
PREC_RIGHT SUN_PREC_RIGHT
PREC_BOTH SUN_PREC_BOTH
MODIFIED_GS SUN_MODIFIED_GS
CLASSICAL_GS SUN_CLASSICAL_GS
ATimesFn SUNATimesFn
PSetupFn SUNPSetupFn
PSolveFn SUNPSolveFn
DlsMat SUNDlsMat
DENSE_COL SUNDLS_DENSE_COL
DENSE_ELEM SUNDLS_DENSE_ELEM
BAND_COL SUNDLS_BAND_COL
BAND_COL_ELEM SUNDLS_BAND_COL_ELEM
BAND_ELEM SUNDLS_BAND_ELEM
SDIRK_2_1_2 ARKODE_SDIRK_2_1_2
BILLINGTON_3_3_2 ARKODE_BILLINGTON_3_3_2
TRBDF2_3_3_2 ARKODE_TRBDF2_3_3_2
KVAERNO_4_2_3 ARKODE_KVAERNO_4_2_3
ARK324L2SA_DIRK_4_2_3 ARKODE_ARK324L2SA_DIRK_4_2_3
CASH_5_2_4 ARKODE_CASH_5_2_4
CASH_5_3_4 ARKODE_CASH_5_3_4
SDIRK_5_3_4 ARKODE_SDIRK_5_3_4
KVAERNO_5_3_4 ARKODE_KVAERNO_5_3_4
ARK436L2SA_DIRK_6_3_4 ARKODE_ARK436L2SA_DIRK_6_3_4
KVAERNO_7_4_5 ARKODE_KVAERNO_7_4_5
ARK548L2SA_DIRK_8_4_5 ARKODE_ARK548L2SA_DIRK_8_4_5
ARK437L2SA_DIRK_7_3_4 ARKODE_ARK437L2SA_DIRK_7_3_4
ARK548L2SAb_DIRK_8_4_5 ARKODE_ARK548L2SAb_DIRK_8_4_5
MIN_DIRK_NUM ARKODE_MIN_DIRK_NUM
MAX_DIRK_NUM ARKODE_MAX_DIRK_NUM
MIS_KW3 ARKODE_MIS_KW3
MRI_GARK_ERK33a ARKODE_MRI_GARK_ERK33a
MRI_GARK_ERK45a ARKODE_MRI_GARK_ERK45a
MRI_GARK_IRK21a ARKODE_MRI_GARK_IRK21a
MRI_GARK_ESDIRK34a ARKODE_MRI_GARK_ESDIRK34a
MRI_GARK_ESDIRK46a ARKODE_MRI_GARK_ESDIRK46a

continues on next page

14.15. Changes to SUNDIALS in release 6.0.0 329

User Documentation for KINSOL, v7.1.0

Table 14.1 – continued from previous page
Deprecated Name New Name
IMEX_MRI_GARK3a ARKODE_IMEX_MRI_GARK3a
IMEX_MRI_GARK3b ARKODE_IMEX_MRI_GARK3b
IMEX_MRI_GARK4 ARKODE_IMEX_MRI_GARK4
MIN_MRI_NUM ARKODE_MIN_MRI_NUM
MAX_MRI_NUM ARKODE_MAX_MRI_NUM
DEFAULT_MRI_TABLE_3 MRISTEP_DEFAULT_TABLE_3
DEFAULT_EXPL_MRI_TABLE_3 MRISTEP_DEFAULT_EXPL_TABLE_3
DEFAULT_EXPL_MRI_TABLE_4 MRISTEP_DEFAULT_EXPL_TABLE_4
DEFAULT_IMPL_SD_TABLE_2 MRISTEP_DEFAULT_IMPL_SD_TABLE_2
DEFAULT_IMPL_SD_TABLE_3 MRISTEP_DEFAULT_IMPL_SD_TABLE_3
DEFAULT_IMPL_SD_TABLE_4 MRISTEP_DEFAULT_IMPL_SD_TABLE_4
DEFAULT_IMEX_SD_TABLE_3 MRISTEP_DEFAULT_IMEX_SD_TABLE_3
DEFAULT_IMEX_SD_TABLE_4 MRISTEP_DEFAULT_IMEX_SD_TABLE_4
HEUN_EULER_2_1_2 ARKODE_HEUN_EULER_2_1_2
BOGACKI_SHAMPINE_4_2_3 ARKODE_BOGACKI_SHAMPINE_4_2_3
ARK324L2SA_ERK_4_2_3 ARKODE_ARK324L2SA_ERK_4_2_3
ZONNEVELD_5_3_4 ARKODE_ZONNEVELD_5_3_4
ARK436L2SA_ERK_6_3_4 ARKODE_ARK436L2SA_ERK_6_3_4
SAYFY_ABURUB_6_3_4 ARKODE_SAYFY_ABURUB_6_3_4
CASH_KARP_6_4_5 ARKODE_CASH_KARP_6_4_5
FEHLBERG_6_4_5 ARKODE_FEHLBERG_6_4_5
DORMAND_PRINCE_7_4_5 ARKODE_DORMAND_PRINCE_7_4_5
ARK548L2SA_ERK_8_4_5 ARKODE_ARK548L2SA_ERK_8_4_5
VERNER_8_5_6 ARKODE_VERNER_8_5_6
FEHLBERG_13_7_8 ARKODE_FEHLBERG_13_7_8
KNOTH_WOLKE_3_3 ARKODE_KNOTH_WOLKE_3_3
ARK437L2SA_ERK_7_3_4 ARKODE_ARK437L2SA_ERK_7_3_4
ARK548L2SAb_ERK_8_4_5 ARKODE_ARK548L2SAb_ERK_8_4_5
MIN_ERK_NUM ARKODE_MIN_ERK_NUM
MAX_ERK_NUM ARKODE_MAX_ERK_NUM
DEFAULT_ERK_2 ARKSTEP_DEFAULT_ERK_2
DEFAULT_ERK_3 ARKSTEP_DEFAULT_ERK_3
DEFAULT_ERK_4 ARKSTEP_DEFAULT_ERK_4
DEFAULT_ERK_5 ARKSTEP_DEFAULT_ERK_5
DEFAULT_ERK_6 ARKSTEP_DEFAULT_ERK_6
DEFAULT_ERK_8 ARKSTEP_DEFAULT_ERK_8
DEFAULT_DIRK_2 ARKSTEP_DEFAULT_DIRK_2
DEFAULT_DIRK_3 ARKSTEP_DEFAULT_DIRK_3
DEFAULT_DIRK_4 ARKSTEP_DEFAULT_DIRK_4
DEFAULT_DIRK_5 ARKSTEP_DEFAULT_DIRK_5
DEFAULT_ARK_ETABLE_3 ARKSTEP_DEFAULT_ARK_ETABLE_3
DEFAULT_ARK_ETABLE_4 ARKSTEP_DEFAULT_ARK_ETABLE_4
DEFAULT_ARK_ETABLE_5 ARKSTEP_DEFAULT_ARK_ETABLE_4
DEFAULT_ARK_ITABLE_3 ARKSTEP_DEFAULT_ARK_ITABLE_3
DEFAULT_ARK_ITABLE_4 ARKSTEP_DEFAULT_ARK_ITABLE_4
DEFAULT_ARK_ITABLE_5 ARKSTEP_DEFAULT_ARK_ITABLE_5
DEFAULT_ERK_2 ERKSTEP_DEFAULT_2
DEFAULT_ERK_3 ERKSTEP_DEFAULT_3
DEFAULT_ERK_4 ERKSTEP_DEFAULT_4
DEFAULT_ERK_5 ERKSTEP_DEFAULT_5

continues on next page

330 Chapter 14. Changelog

User Documentation for KINSOL, v7.1.0

Table 14.1 – continued from previous page
Deprecated Name New Name
DEFAULT_ERK_6 ERKSTEP_DEFAULT_6
DEFAULT_ERK_8 ERKSTEP_DEFAULT_8

In addition, the following functions are now deprecated (compile-time warnings will be printed if supported by the
compiler):

Deprecated Name New Name
DenseGETRF SUNDlsMat_DenseGETRF
DenseGETRS SUNDlsMat_DenseGETRS
denseGETRF SUNDlsMat_denseGETRF
denseGETRS SUNDlsMat_denseGETRS
DensePOTRF SUNDlsMat_DensePOTRF
DensePOTRS SUNDlsMat_DensePOTRS
densePOTRF SUNDlsMat_densePOTRF
densePOTRS SUNDlsMat_densePOTRS
DenseGEQRF SUNDlsMat_DenseGEQRF
DenseORMQR SUNDlsMat_DenseORMQR
denseGEQRF SUNDlsMat_denseGEQRF
denseORMQR SUNDlsMat_denseORMQR
DenseCopy SUNDlsMat_DenseCopy
denseCopy SUNDlsMat_denseCopy
DenseScale SUNDlsMat_DenseScale
denseScale SUNDlsMat_denseScale
denseAddIdentity SUNDlsMat_denseAddIdentity
DenseMatvec SUNDlsMat_DenseMatvec
denseMatvec SUNDlsMat_denseMatvec
BandGBTRF SUNDlsMat_BandGBTRF
bandGBTRF SUNDlsMat_bandGBTRF
BandGBTRS SUNDlsMat_BandGBTRS
bandGBTRS SUNDlsMat_bandGBTRS
BandCopy SUNDlsMat_BandCopy
bandCopy SUNDlsMat_bandCopy
BandScale SUNDlsMat_BandScale
bandScale SUNDlsMat_bandScale
bandAddIdentity SUNDlsMat_bandAddIdentity
BandMatvec SUNDlsMat_BandMatvec
bandMatvec SUNDlsMat_bandMatvec
ModifiedGS SUNModifiedGS
ClassicalGS SUNClassicalGS
QRfact SUNQRFact
QRsol SUNQRsol
DlsMat_NewDenseMat SUNDlsMat_NewDenseMat
DlsMat_NewBandMat SUNDlsMat_NewBandMat
DestroyMat SUNDlsMat_DestroyMat
NewIntArray SUNDlsMat_NewIntArray
NewIndexArray SUNDlsMat_NewIndexArray
NewRealArray SUNDlsMat_NewRealArray
DestroyArray SUNDlsMat_DestroyArray
AddIdentity SUNDlsMat_AddIdentity

continues on next page

14.15. Changes to SUNDIALS in release 6.0.0 331

User Documentation for KINSOL, v7.1.0

Table 14.2 – continued from previous page
Deprecated Name New Name
SetToZero SUNDlsMat_SetToZero
PrintMat SUNDlsMat_PrintMat
newDenseMat SUNDlsMat_newDenseMat
newBandMat SUNDlsMat_newBandMat
destroyMat SUNDlsMat_destroyMat
newIntArray SUNDlsMat_newIntArray
newIndexArray SUNDlsMat_newIndexArray
newRealArray SUNDlsMat_newRealArray
destroyArray SUNDlsMat_destroyArray

In addition, the entire sundials_lapack.h header file is now deprecated for removal in SUNDIALS v7.0.0. Note,
this header file is not needed to use the SUNDIALS LAPACK linear solvers.

Deprecated “bootstrap” and “minimum correction” predictors in ARKStep (options 4 and 5 to ARKStepSetPredic-
torMethod()) and the “bootstrap” predictor in MRIStep (option 4 to MRIStepSetPredictorMethod()). These
functions will output a deprecation warning message and will be removed in a future release.

14.16 Changes to SUNDIALS in release 5.8.0

New Features

The RAJA vector implementation has been updated to support the SYCL backend in addition to the CUDA and HIP
backend. Users can choose the backend when configuring SUNDIALS by using the SUNDIALS_RAJA_BACKENDS
CMake variable. This vector remains experimental and is subject to change from version to version.

New SUNMatrix and SUNLinearSolver implementation were added to interface with the Intel oneAPI Math Kernel
Library (oneMKL). Both the matrix and the linear solver support general dense linear systems as well as block diagonal
linear systems. See §8.9 for more details. This matrix is experimental and is subject to change from version to version.

Added a new optional function to the SUNLinearSolver API, SUNLinSolSetZeroGuess(), to indicate that the next
call to SUNLinSolSolve() will be made with a zero initial guess. SUNLinearSolver implementations that do not use
the SUNLinSolNewEmpty() constructor will, at a minimum, need set the setzeroguess function pointer in the linear
solver ops structure to NULL. The SUNDIALS iterative linear solver implementations have been updated to leverage
this new set function to remove one dot product per solve.

The time integrator packages (ARKODE, CVODE(S), and IDA(S)) all now support a new “matrix-embedded” SUN-
LinearSolver type. This type supports user-supplied SUNLinearSolver implementations that set up and solve the
specified linear system at each linear solve call. Any matrix-related data structures are held internally to the linear
solver itself, and are not provided by the SUNDIALS package.

Added functions to ARKODE and CVODE(S) for supplying an alternative right-hand side function and to IDA(S) for
supplying an alternative residual for use within nonlinear system function evaluations:

• ARKStepSetNlsRhsFn()

• MRIStepSetNlsRhsFn()

• CVodeSetNlsRhsFn()

• IDASetNlsResFn()

Support for user-defined inner (fast) integrators has been to the MRIStep module. See MRIStep Custom Inner Steppers
for more information on providing a user-defined integration method.

332 Chapter 14. Changelog

https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ARKStep/User_callable.html#c.ARKStepSetPredictorMethod
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ARKStep/User_callable.html#c.ARKStepSetPredictorMethod
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/MRIStep/User_callable.html#c.MRIStepSetPredictorMethod
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ARKStep/User_callable.html#c.ARKStepSetNlsRhsFn
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/MRIStep/User_callable.html#c.MRIStepSetNlsRhsFn
https://sundials.readthedocs.io/en/v7.1.0/cvodes/Usage/SIM.html#c.CVodeSetNlsRhsFn
https://sundials.readthedocs.io/en/v7.1.0/idas/Usage/SIM.html#c.IDASetNlsResFn
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/MRIStep/Custom_Inner_Stepper/index.html#arkode-usage-mristep-custominnerstepper

User Documentation for KINSOL, v7.1.0

Added specialized fused HIP kernels to CVODE which may offer better performance on smaller problems when using
CVODE with the HIP vector. See the optional input function CVodeSetUseIntegratorFusedKernels() for more
information. As with other SUNDIALS HIP features, this capability is considered experimental and may change from
version to version.

New KINSOL options have been added to apply a constant damping factor in the fixed point and Picard iterations
(see KINSetDamping()), to delay the start of Anderson acceleration with the fixed point and Picard iterations (see
KINSetDelayAA()), and to return the newest solution with the fixed point iteration (see KINSetReturnNewest()).

The installed SUNDIALSConfig.cmake file now supports the COMPONENTS option to find_package. The exported
targets no longer have IMPORTED_GLOBAL set.

Bug Fixes

A bug was fixed in SUNMatCopyOps() where the matrix-vector product setup function pointer was not copied.

A bug was fixed in the SPBCGS and SPTFQMR solvers for the case where a non-zero initial guess and a solution
scaling vector are provided. This fix only impacts codes using SPBCGS or SPTFQMR as standalone solvers as all
SUNDIALS packages utilize a zero initial guess.

A bug was fixed in the ARKODE stepper modules where the stop time may be passed after resetting the integrator.

A bug was fixed in IDASetJacTimesResFn() in IDAS where the supplied function was used in the dense finite
difference Jacobian computation rather than the finite difference Jacobian-vector product approximation.

A bug was fixed in the KINSOL Picard iteration where the value of KINSetMaxSetupCalls() would be ignored.

14.17 Changes to SUNDIALS in release 5.7.0

A new N_Vector implementation based on the SYCL abstraction layer has been added targeting Intel GPUs. At present
the only SYCL compiler supported is the DPC++ (Intel oneAPI) compiler. See §6.12 for more details. This vector is
considered experimental and is subject to major changes even in minor releases.

A new SUNMatrix and SUNLinearSolver implementation were added to interface with the MAGMA linear algebra
library. Both the matrix and the linear solver support general dense linear systems as well as block diagonal linear
systems, and both are targeted at GPUs (AMD or NVIDIA). See §8.8 for more details.

14.18 Changes to SUNDIALS in release 5.6.1

Fixed a CMake bug which caused an error if the CMAKE_CXX_STANDARD and SUNDIALS_RAJA_BACKENDS options
were not provided.

Fixed some compiler warnings when using the IBM XL compilers.

14.19 Changes to SUNDIALS in release 5.6.0

A new N_Vector implementation based on the AMD ROCm HIP platform has been added. This vector can target
NVIDIA or AMD GPUs. See §6.11 for more details. This vector is considered experimental and is subject to change
from version to version.

The RAJA vector implementation has been updated to support the HIP backend in addition to the CUDA backend. Users
can choose the backend when configuring SUNDIALS by using the SUNDIALS_RAJA_BACKENDS CMake variable. This
vector remains experimental and is subject to change from version to version.

14.17. Changes to SUNDIALS in release 5.7.0 333

https://sundials.readthedocs.io/en/v7.1.0/cvode/Usage/index.html#c.CVodeSetUseIntegratorFusedKernels
https://sundials.readthedocs.io/en/v7.1.0/idas/Usage/SIM.html#c.IDASetJacTimesResFn

User Documentation for KINSOL, v7.1.0

A new optional operation, N_VGetDeviceArrayPointer(), was added to the N_Vector API. This operation is useful
for vectors that utilize dual memory spaces, e.g. the native SUNDIALS CUDA N_Vector.

The SUNDIALS matrix and linear solver interfaces to the cuSparse matrix and cuSolver batched QR solver no longer
require using the CUDA N_Vector. Instead, they require that the vector utilized provides the N_VGetDeviceAr-
rayPointer() operation, and that the pointer returned by N_VGetDeviceArrayPointer() is a valid CUDA device
pointer.

14.20 Changes to SUNDIALS in release 5.5.0

Refactored the SUNDIALS build system. CMake 3.12.0 or newer is now required. Users will likely see deprecation
warnings, but otherwise the changes should be fully backwards compatible for almost all users. SUNDIALS now
exports CMake targets and installs a SUNDIALSConfig.cmake file.

Added support for SuperLU DIST 6.3.0 or newer.

14.21 Changes to SUNDIALS in release 5.4.0

Major Features

A new class, SUNMemoryHelper, was added to support GPU users who have complex memory management needs
such as using memory pools. This is paired with new constructors for the CUDA and RAJA vectors that accept a
SUNMemoryHelper object. Refer to §4.8, §9, §6.10 and §6.13 for more information.

Added full support for time-dependent mass matrices in ARKStep, and expanded existing non-identity mass matrix
infrastructure to support use of the fixed point nonlinear solver.

An interface between ARKStep and the XBraid multigrid reduction in time (MGRIT) library [1] has been added to
enable parallel-in-time integration. See the Multigrid Reduction in Time with XBraid section for more information
and the example codes in examples/arkode/CXX_xbraid. This interface required the addition of three new N_-
Vector operations to exchange vector data between computational nodes, see N_VBufSize(), N_VBufPack(), and
N_VBufUnpack(). These N_Vector operations are only used within the XBraid interface and need not be implemented
for any other context.

New Features

The RAJA vector has been updated to mirror the CUDA vector. Notably, the update adds managed memory support
to the RAJA vector. Users of the vector will need to update any calls to the N_VMake_Raja() function because that
signature was changed. This vector remains experimental and is subject to change from version to version.

The expected behavior of SUNNonlinSolGetNumIters() and SUNNonlinSolGetNumConvFails() in the SUNNon-
linearSolver API have been updated to specify that they should return the number of nonlinear solver iterations and
convergence failures in the most recent solve respectively rather than the cumulative number of iterations and failures
across all solves respectively. The API documentation and SUNDIALS provided SUNNonlinearSolver implemen-
tations have been updated accordingly. As before, the cumulative number of nonlinear iterations and failures may be
retrieved with the following functions:

• ARKStepGetNumNonlinSolvIters()

• ARKStepGetNumNonlinSolvConvFails()

• ARKStepGetNonlinSolvStats()

• MRIStepGetNumNonlinSolvIters()

• MRIStepGetNumNonlinSolvConvFails()

• MRIStepGetNonlinSolvStats()

334 Chapter 14. Changelog

https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ARKStep/XBraid.html#arkode-usage-arkstep-xbraid
https://sundials.readthedocs.io/en/v7.1.0/sunnonlinsol/SUNNonlinSol_API_link.html#c.SUNNonlinSolGetNumIters
https://sundials.readthedocs.io/en/v7.1.0/sunnonlinsol/SUNNonlinSol_API_link.html#c.SUNNonlinSolGetNumConvFails
https://sundials.readthedocs.io/en/v7.1.0/sunnonlinsol/SUNNonlinSol_API_link.html#c.SUNNonlinearSolver
https://sundials.readthedocs.io/en/v7.1.0/sunnonlinsol/SUNNonlinSol_API_link.html#c.SUNNonlinearSolver
https://sundials.readthedocs.io/en/v7.1.0/sunnonlinsol/SUNNonlinSol_API_link.html#c.SUNNonlinearSolver
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ARKStep/User_callable.html#c.ARKStepGetNumNonlinSolvIters
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ARKStep/User_callable.html#c.ARKStepGetNumNonlinSolvConvFails
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ARKStep/User_callable.html#c.ARKStepGetNonlinSolvStats
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/MRIStep/User_callable.html#c.MRIStepGetNumNonlinSolvIters
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/MRIStep/User_callable.html#c.MRIStepGetNumNonlinSolvConvFails
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/MRIStep/User_callable.html#c.MRIStepGetNonlinSolvStats

User Documentation for KINSOL, v7.1.0

• CVodeGetNumNonlinSolvIters()

• CVodeGetNumNonlinSolvConvFails()

• CVodeGetNonlinSolvStats()

• IDAGetNumNonlinSolvIters()

• IDAGetNumNonlinSolvConvFails()

• IDAGetNonlinSolvStats()

Added the following the following functions that advanced users might find useful when providing a custom SUNNon-
linSolSysFn():

• ARKStepComputeState()

• ARKStepGetNonlinearSystemData()

• MRIStepComputeState()

• MRIStepGetNonlinearSystemData()

• CVodeComputeState()

• CVodeGetNonlinearSystemData()

• IDAGetNonlinearSystemData()

Added new functions to CVODE(S), ARKODE, and IDA(S) to to specify the factor for converting between integrator
tolerances (WRMS norm) and linear solver tolerances (L2 norm) i.e., tol_L2 = nrmfac * tol_WRMS:

• ARKStepSetLSNormFactor()

• ARKStepSetMassLSNormFactor()

• MRIStepSetLSNormFactor()

• CVodeSetLSNormFactor()

• IDASetLSNormFactor()

Added new reset functions ARKStepReset(), ERKStepReset(), and MRIStepReset() to reset the stepper time
and state vector to user-provided values for continuing the integration from that point while retaining the integration
history. These function complement the reinitialization functions ARKStepReInit(), ERKStepReInit(), and MRIS-
tepReInit() which reinitialize the stepper so that the problem integration should resume as if started from scratch.

Updated the MRIStep time-stepping module in ARKODE to support higher-order MRI-GARK methods [47], including
methods that involve solve-decoupled, diagonally-implicit treatment of the slow time scale.

The function CVodeSetLSetupFrequency() has been added to CVODE(S) to set the frequency of calls to the linear
solver setup function.

The Trilinos Tpetra N_Vector interface has been updated to work with Trilinos 12.18+. This update changes the local
ordinal type to always be an int.

Added support for CUDA 11.

Bug Fixes

A minor inconsistency in CVODE(S) and a bug ARKODE when checking the Jacobian evaluation frequency has been
fixed. As a result codes using using a non-default Jacobian update frequency through a call to CVodeSetMaxSteps-
BetweenJac or ARKStepSetMaxStepsBetweenJac will need to increase the provided value by 1 to achieve the same
behavior as before.

In IDAS and CVODES, the functions for forward integration with checkpointing (IDASolveF(), CVodeF()) are now
subject to a restriction on the number of time steps allowed to reach the output time. This is the same restriction

14.21. Changes to SUNDIALS in release 5.4.0 335

https://sundials.readthedocs.io/en/v7.1.0/cvodes/Usage/SIM.html#c.CVodeGetNumNonlinSolvIters
https://sundials.readthedocs.io/en/v7.1.0/cvodes/Usage/SIM.html#c.CVodeGetNumNonlinSolvConvFails
https://sundials.readthedocs.io/en/v7.1.0/cvodes/Usage/SIM.html#c.CVodeGetNonlinSolvStats
https://sundials.readthedocs.io/en/v7.1.0/idas/Usage/SIM.html#c.IDAGetNumNonlinSolvIters
https://sundials.readthedocs.io/en/v7.1.0/idas/Usage/SIM.html#c.IDAGetNumNonlinSolvConvFails
https://sundials.readthedocs.io/en/v7.1.0/idas/Usage/SIM.html#c.IDAGetNonlinSolvStats
https://sundials.readthedocs.io/en/v7.1.0/sunnonlinsol/SUNNonlinSol_package_links.html#c.ARKStepComputeState
https://sundials.readthedocs.io/en/v7.1.0/sunnonlinsol/SUNNonlinSol_package_links.html#c.ARKStepGetNonlinearSystemData
https://sundials.readthedocs.io/en/v7.1.0/sunnonlinsol/SUNNonlinSol_package_links.html#c.MRIStepComputeState
https://sundials.readthedocs.io/en/v7.1.0/sunnonlinsol/SUNNonlinSol_package_links.html#c.MRIStepGetNonlinearSystemData
https://sundials.readthedocs.io/en/v7.1.0/sunnonlinsol/SUNNonlinSol_package_links.html#c.CVodeComputeState
https://sundials.readthedocs.io/en/v7.1.0/sunnonlinsol/SUNNonlinSol_package_links.html#c.CVodeGetNonlinearSystemData
https://sundials.readthedocs.io/en/v7.1.0/sunnonlinsol/SUNNonlinSol_package_links.html#c.IDAGetNonlinearSystemData
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ARKStep/User_callable.html#c.ARKStepSetLSNormFactor
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ARKStep/User_callable.html#c.ARKStepSetMassLSNormFactor
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/MRIStep/User_callable.html#c.MRIStepSetLSNormFactor
https://sundials.readthedocs.io/en/v7.1.0/cvodes/Usage/SIM.html#c.CVodeSetLSNormFactor
https://sundials.readthedocs.io/en/v7.1.0/idas/Usage/SIM.html#c.IDASetLSNormFactor
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ARKStep/User_callable.html#c.ARKStepReset
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ERKStep/User_callable.html#c.ERKStepReset
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/MRIStep/User_callable.html#c.MRIStepReset
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ARKStep/User_callable.html#c.ARKStepReInit
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ERKStep/User_callable.html#c.ERKStepReInit
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/MRIStep/User_callable.html#c.MRIStepReInit
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/MRIStep/User_callable.html#c.MRIStepReInit
https://sundials.readthedocs.io/en/v7.1.0/cvodes/Usage/SIM.html#c.CVodeSetLSetupFrequency
https://sundials.readthedocs.io/en/v7.1.0/idas/Usage/ADJ.html#c.IDASolveF
https://sundials.readthedocs.io/en/v7.1.0/cvodes/Usage/ADJ.html#c.CVodeF

User Documentation for KINSOL, v7.1.0

applied to IDASolve() and CVode(). The default maximum number of steps is 500, but this may be changed using
the CVodeSetMaxNumSteps() and IDASetMaxNumSteps() function. This change fixes a bug that could cause an
infinite loop in IDASolveF() and CVodeF(). This change may cause a runtime error in existing user code.

Fixed bug in using ERK method integration with static mass matrices.

Deprecation Notice

For greater clarity the following functions have been deprecated:

• CVodeSetMaxStepsBetweenJac

• ARKStepSetMaxStepsBetweenJac

• ARKStepSetMaxStepsBetweenLSet

The following functions should be used instead:

• CVodeSetJacEvalFrequency()

• ARKStepSetJacEvalFrequency()

• ARKStepSetLSetupFrequency()

14.22 Changes to SUNDIALS in release 5.3.0

Major Feature

Added support to CVODE for integrating IVPs with constraints using BDF methods and projecting the solution onto
the constraint manifold with a user defined projection function. This implementation is accompanied by additions to
user documentation and CVODE examples. See CVodeSetProjFn() for more information.

New Features

Added the ability to control the CUDA kernel launch parameters for the CUDA vector and spare matrix implementa-
tions. These implementations remain experimental and are subject to change from version to version. In addition, the
CUDA vector kernels were rewritten to be more flexible. Most users should see equivalent performance or some im-
provement, but a select few may observe minor performance degradation with the default settings. Users are encouraged
to contact the SUNDIALS team about any performance changes that they notice.

Added new capabilities for monitoring the solve phase in the Newton and fixed-point SUNNonlinearSolver, and the
SUNDIALS iterative linear solvers. SUNDIALS must be built with the CMake option SUNDIALS_BUILD_WITH_-
MONITORING to use these capabilities.

Added specialized fused CUDA kernels to CVODE which may offer better performance on smaller problems when
using CVODE with the CUDA vector. See the optional input function CVodeSetUseIntegratorFusedKernels()
for more information. As with other SUNDIALS CUDA features, this is feature is experimental and may change from
version to version.

Added a new function, CVodeSetMonitorFn(), that takes a user-function to be called by CVODE after every nst
successfully completed time-steps. This is intended to provide a way of monitoring the CVODE statistics throughout
the simulation.

Added a new function CVodeGetLinSolveStats() to get the CVODE linear solver statistics as a group.

Added the following optional functions to provide an alternative ODE right-hand side function (ARKODE and
CVODE(S)), DAE residual function (IDA(S)), or nonlinear system function (KINSOL) for use when computing
Jacobian-vector products with the internal difference quotient approximation:

• ARKStepSetJacTimesRhsFn()

• CVodeSetJacTimesRhsFn()

336 Chapter 14. Changelog

https://sundials.readthedocs.io/en/v7.1.0/idas/Usage/SIM.html#c.IDASolve
https://sundials.readthedocs.io/en/v7.1.0/cvodes/Usage/SIM.html#c.CVode
https://sundials.readthedocs.io/en/v7.1.0/cvodes/Usage/SIM.html#c.CVodeSetMaxNumSteps
https://sundials.readthedocs.io/en/v7.1.0/idas/Usage/SIM.html#c.IDASetMaxNumSteps
https://sundials.readthedocs.io/en/v7.1.0/idas/Usage/ADJ.html#c.IDASolveF
https://sundials.readthedocs.io/en/v7.1.0/cvodes/Usage/ADJ.html#c.CVodeF
https://sundials.readthedocs.io/en/v7.1.0/cvodes/Usage/SIM.html#c.CVodeSetJacEvalFrequency
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ARKStep/User_callable.html#c.ARKStepSetJacEvalFrequency
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ARKStep/User_callable.html#c.ARKStepSetLSetupFrequency
https://sundials.readthedocs.io/en/v7.1.0/cvodes/Usage/SIM.html#c.CVodeSetProjFn
https://sundials.readthedocs.io/en/v7.1.0/sunnonlinsol/SUNNonlinSol_API_link.html#c.SUNNonlinearSolver
https://sundials.readthedocs.io/en/v7.1.0/cvode/Usage/index.html#c.CVodeSetUseIntegratorFusedKernels
https://sundials.readthedocs.io/en/v7.1.0/cvodes/Usage/SIM.html#c.CVodeSetMonitorFn
https://sundials.readthedocs.io/en/v7.1.0/cvodes/Usage/SIM.html#c.CVodeGetLinSolveStats
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ARKStep/User_callable.html#c.ARKStepSetJacTimesRhsFn
https://sundials.readthedocs.io/en/v7.1.0/cvodes/Usage/SIM.html#c.CVodeSetJacTimesRhsFn

User Documentation for KINSOL, v7.1.0

• CVodeSetJacTimesRhsFnB()

• IDASetJacTimesResFn()

• IDASetJacTimesResFnB()

• KINSetJacTimesVecSysFn()

Bug Fixes

Fixed a bug in the iterative linear solvers where an error is not returned if the Atimes function is NULL or, if precondi-
tioning is enabled, the PSolve function is NULL.

Fixed a bug in ARKODE where the prototypes for ERKStepSetMinReduction() and ARKStepSetMinReduction()
were not included in arkode_erkstep.h and arkode_arkstep.h respectively.

Fixed a bug in ARKODE where inequality constraint checking would need to be disabled and then re-enabled to update
the inequality constraint values after resizing a problem. Resizing a problem will now disable constraints and a call
to ARKStepSetConstraints() or ERKStepSetConstraints() is required to re-enable constraint checking for the
new problem size.

14.23 Changes to SUNDIALS in release 5.2.0

New Features

The following functions were added to each of the time integration packages to enable or disable the scaling applied to
linear system solutions with matrix-based linear solvers to account for lagged matrix information:

• ARKStepSetLinearSolutionScaling()

• CVodeSetLinearSolutionScaling()

• CVodeSetLinearSolutionScalingB()

• IDASetLinearSolutionScaling()

• IDASetLinearSolutionScalingB()

When using a matrix-based linear solver with ARKODE, IDA(S), or BDF methods in CVODE(S) scaling is enabled
by default.

Added a new SUNMatrix implementation that interfaces to the sparse matrix implementation from the NVIDIA cuS-
PARSE library, see §7.7 for more details. In addition, the CUDA Sparse linear solver has been updated to use the new
matrix, as such, users of this matrix will need to update their code. This implementations are still considered to be
experimental, thus they are subject to breaking changes even in minor releases.

Added a new “stiff” interpolation module to ARKODE, based on Lagrange polynomial interpolation, that is acces-
sible to each of the ARKStep, ERKStep and MRIStep time-stepping modules. This module is designed to provide
increased interpolation accuracy when integrating stiff problems, as opposed to the ARKODE-standard Hermite in-
terpolation module that can suffer when the IVP right-hand side has large Lipschitz constant. While the Hermite
module remains the default, the new Lagrange module may be enabled using one of the routines ARKStepSetInter-
polantType(), ERKStepSetInterpolantType(), or MRIStepSetInterpolantType(). The serial example prob-
lem ark_brusselator.c has been converted to use this Lagrange interpolation module. Created accompanying rou-
tines ARKStepSetInterpolantDegree(), ARKStepSetInterpolantDegree() and ARKStepSetInterpolant-
Degree() to provide user control over these interpolating polynomials.

Added two new functions, ARKStepSetMinReduction() and ERKStepSetMinReduction(), to change the mini-
mum allowed step size reduction factor after an error test failure.

Bug Fixes

14.23. Changes to SUNDIALS in release 5.2.0 337

https://sundials.readthedocs.io/en/v7.1.0/cvodes/Usage/ADJ.html#c.CVodeSetJacTimesRhsFnB
https://sundials.readthedocs.io/en/v7.1.0/idas/Usage/SIM.html#c.IDASetJacTimesResFn
https://sundials.readthedocs.io/en/v7.1.0/idas/Usage/ADJ.html#c.IDASetJacTimesResFnB
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ERKStep/User_callable.html#c.ERKStepSetMinReduction
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ARKStep/User_callable.html#c.ARKStepSetMinReduction
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ARKStep/User_callable.html#c.ARKStepSetConstraints
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ERKStep/User_callable.html#c.ERKStepSetConstraints
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ARKStep/User_callable.html#c.ARKStepSetLinearSolutionScaling
https://sundials.readthedocs.io/en/v7.1.0/cvodes/Usage/SIM.html#c.CVodeSetLinearSolutionScaling
https://sundials.readthedocs.io/en/v7.1.0/cvodes/Usage/ADJ.html#c.CVodeSetLinearSolutionScalingB
https://sundials.readthedocs.io/en/v7.1.0/idas/Usage/SIM.html#c.IDASetLinearSolutionScaling
https://sundials.readthedocs.io/en/v7.1.0/idas/Usage/ADJ.html#c.IDASetLinearSolutionScalingB
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ARKStep/User_callable.html#c.ARKStepSetInterpolantType
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ARKStep/User_callable.html#c.ARKStepSetInterpolantType
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ERKStep/User_callable.html#c.ERKStepSetInterpolantType
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/MRIStep/User_callable.html#c.MRIStepSetInterpolantType
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ARKStep/User_callable.html#c.ARKStepSetInterpolantDegree
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ARKStep/User_callable.html#c.ARKStepSetInterpolantDegree
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ARKStep/User_callable.html#c.ARKStepSetInterpolantDegree
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ARKStep/User_callable.html#c.ARKStepSetInterpolantDegree
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ARKStep/User_callable.html#c.ARKStepSetMinReduction
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ERKStep/User_callable.html#c.ERKStepSetMinReduction

User Documentation for KINSOL, v7.1.0

Fixed a build system bug related to the Fortran 2003 interfaces when using the IBM XL compiler. When building
the Fortran 2003 interfaces with an XL compiler it is recommended to set CMAKE_Fortran_COMPILER to f2003,
xlf2003, or xlf2003_r.

Fixed a bug in how ARKODE interfaces with a user-supplied, iterative, unscaled linear solver. In this case, ARKODE
adjusts the linear solver tolerance in an attempt to account for the lack of support for left/right scaling matrices. Previ-
ously, ARKODE computed this scaling factor using the error weight vector, ewt; this fix changes that to the residual
weight vector, rwt, that can differ from ewt when solving problems with non-identity mass matrix.

Fixed a linkage bug affecting Windows users that stemmed from dllimport/dllexport attribute missing on some SUN-
DIALS API functions.

Fixed a memory leak in CVODES and IDAS from not deallocating the atolSmin0 and atolQSmin0 arrays.

Fixed a bug where a non-default value for the maximum allowed growth factor after the first step would be ignored.

Deprecation Notice

The routines ARKStepSetDenseOrder(), ARKStepSetDenseOrder() and ARKStepSetDenseOrder() have been
deprecated and will be removed in a future release. The new functions ARKStepSetInterpolantDegree(), ARK-
StepSetInterpolantDegree(), and ARKStepSetInterpolantDegree() should be used instead.

14.24 Changes to SUNDIALS in release 5.1.0

New Features

Added support for a user-supplied function to update the prediction for each implicit stage solution in ARKStep. If
supplied, this routine will be called after any existing ARKStep predictor algorithm completes, so that the predictor
may be modified by the user as desired. The new user-supplied routine has type ARKStagePredictFn, and may be set
by calling ARKStepSetStagePredictFn().

The MRIStep module has been updated to support attaching different user data pointers to the inner and outer integra-
tors. If applicable, user codes will need to add a call to ARKStepSetUserData() to attach their user data pointer to the
inner integrator memory as MRIStepSetUserData() will not set the pointer for both the inner and outer integrators.
The MRIStep examples have been updated to reflect this change.

Added support for damping when using Anderson acceleration in KINSOL. See the Mathematical Considerations and
the description of the KINSetDampingAA() function for more details.

Added support for constant damping to the fixed-point SUNNonlinearSolverwhen using Anderson acceleration. See
SUNNonlinSol_FixedPoint description and the SUNNonlinSolSetDamping_FixedPoint() for more details.

Added two utility functions, SUNDIALSFileOpen() and SUNDIALSFileClose() for creating/destroying file pointers.
These are useful when using the Fortran 2003 interfaces.

Added a new build system option, CUDA_ARCH, to specify the CUDA architecture to target.

Bug Fixes

Fixed a build system bug related to finding LAPACK/BLAS.

Fixed a build system bug related to checking if the KLU library works.

Fixed a build system bug related to finding PETSc when using the CMake variables PETSC_INCLUDES and PETSC_-
LIBRARIES instead of PETSC_DIR .

Fixed a bug in the Fortran 2003 interfaces to the ARKODE Butcher table routines and structure. This includes changing
the ARKodeButcherTable type to be a type(c_ptr) in Fortran.

338 Chapter 14. Changelog

https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ARKStep/User_callable.html#c.ARKStepSetDenseOrder
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ARKStep/User_callable.html#c.ARKStepSetDenseOrder
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ARKStep/User_callable.html#c.ARKStepSetDenseOrder
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ARKStep/User_callable.html#c.ARKStepSetInterpolantDegree
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ARKStep/User_callable.html#c.ARKStepSetInterpolantDegree
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ARKStep/User_callable.html#c.ARKStepSetInterpolantDegree
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ARKStep/User_callable.html#c.ARKStepSetInterpolantDegree
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/User_supplied.html#c.ARKStagePredictFn
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ARKStep/User_callable.html#c.ARKStepSetStagePredictFn
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ARKStep/User_callable.html#c.ARKStepSetUserData
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/MRIStep/User_callable.html#c.MRIStepSetUserData
https://sundials.readthedocs.io/en/v7.1.0/sunnonlinsol/SUNNonlinSol_API_link.html#c.SUNNonlinearSolver
https://sundials.readthedocs.io/en/v7.1.0/sunnonlinsol/SUNNonlinSol_links.html#sunnonlinsol-fixedpoint-math
https://sundials.readthedocs.io/en/v7.1.0/sunnonlinsol/SUNNonlinSol_links.html#c.SUNNonlinSolSetDamping_FixedPoint
https://sundials.readthedocs.io/en/v7.1.0/arkode/ARKodeButcherTable_link.html#c.ARKodeButcherTable

User Documentation for KINSOL, v7.1.0

14.25 Changes to SUNDIALS in release 5.0.0

Build System

Increased the minimum required CMake version to 3.5 for most SUNDIALS configurations, and 3.10 when CUDA or
OpenMP with device offloading are enabled.

The CMake option BLAS_ENABLE and the variable BLAS_LIBRARIES have been removed to simplify builds as SUN-
DIALS packages do not use BLAS directly. For third party libraries that require linking to BLAS, the path to the BLAS
library should be included in the _LIBRARIES variable for the third party library e.g., SUPERLUDIST_LIBRARIES when
enabling SuperLU_DIST.

NVector

Two new functions were added to aid in creating custom N_Vector objects. The constructor N_VNewEmpty() allocates
an “empty” generic N_Vector with the object’s content pointer and the function pointers in the operations structure
initialized to NULL. When used in the constructor for custom objects this function will ease the introduction of any
new optional operations to the N_Vector API by ensuring only required operations need to be set. Additionally, the
function N_VCopyOps() has been added to copy the operation function pointers between vector objects. When used in
clone routines for custom vector objects these functions also will ease the introduction of any new optional operations
to the N_Vector API by ensuring all operations are copied when cloning objects.

Added new N_Vector implementations, ManyVector and MPIManyVector, to support flexible partitioning of solution
data among different processing elements (e.g., CPU + GPU) or for multi-physics problems that couple distinct MPI-
based simulations together (see the §6.17 and §6.18 for more details). This implementation is accompanied by additions
to user documentation and SUNDIALS examples.

Additionally, an MPIPlusX vector implementation has been created to support the MPI+X paradigm where X is a
type of on-node parallelism (e.g., OpenMP, CUDA, etc.). The implementation is accompanied by additions to user
documentation and SUNDIALS examples.

One new required vector operation and ten new optional vector operations have been added to the N_Vector API.
The new required operation, N_VGetLength(), returns the global vector length. The optional operations have been
added to support the new MPIManyVector implementation. The operation N_VGetCommunicator() must be imple-
mented by subvectors that are combined to create an MPIManyVector, but is not used outside of this context. The
remaining nine operations are optional local reduction operations intended to eliminate unnecessary latency when per-
forming vector reduction operations (norms, etc.) on distributed memory systems. The optional local reduction vector
operations are N_VDotProdLocal, N_VMaxNormLocal, N_VMinLocal, N_VL1NormLocal, N_VWSqrSumLocal, N_-
VWSqrSumMaskLocal, N_VInvTestLocal, N_VConstrMaskLocal, and N_VMinQuotientLocal. If an N_Vector
implementation defines any of the local operations as NULL, then the MPIManyVector will call standard N_Vector
operations to complete the computation.

The *_MPICuda and *_MPIRaja functions have been removed from the CUDA and RAJA vector implementations
respectively. Accordingly, the nvector_mpicuda.h, nvector_mpiraja.h, libsundials_nvecmpicuda.lib, and
libsundials_nvecmpicudaraja.lib files have been removed. Users should use the MPI+X vector in conjunction
with the CUDA and RAJA vectors to replace the functionality. The necessary changes are minimal and should require
few code modifications. See the example programs in examples/ida/mpicuda and examples/ida/mpiraja for
examples of how to use the MPI+X vector with the CUDA and RAJA vectors, respectively.

Made performance improvements to the CUDA vector. Users who utilize a non-default stream should no longer see
default stream synchronizations after memory transfers.

Added a new constructor to the CUDA vector that allows a user to provide custom allocate and free functions for the
vector data array and internal reduction buffer.

Added three new N_Vector utility functions, N_VGetVecAtIndexVectorArray(), N_VSetVecAtIndexVectorAr-
ray(), and N_VNewVectorArray(), for working with N_Vector arrays when using the Fortran 2003 interfaces.

SUNMatrix

14.25. Changes to SUNDIALS in release 5.0.0 339

User Documentation for KINSOL, v7.1.0

Two new functions were added to aid in creating custom SUNMatrix objects. The constructor SUNMatNewEmpty()
allocates an “empty” generic SUNMatrix with the object’s content pointer and the function pointers in the operations
structure initialized to NULL. When used in the constructor for custom objects this function will ease the introduction of
any new optional operations to the SUNMatrix API by ensuring only required operations need to be set. Additionally,
the function SUNMatCopyOps() has been added to copy the operation function pointers between matrix objects. When
used in clone routines for custom matrix objects these functions also will ease the introduction of any new optional
operations to the SUNMatrix API by ensuring all operations are copied when cloning objects.

A new operation, SUNMatMatvecSetup(), was added to the SUNMatrix API to perform any setup necessary for
computing a matrix-vector product. This operation is useful for SUNMatrix implementations which need to prepare
the matrix itself, or communication structures before performing the matrix-vector product. Users who have imple-
mented a custom SUNMatrix will need to at least update their code to set the corresponding ops structure member,
matvecsetup, to NULL.

The generic SUNMatrix API now defines error codes to be returned by matrix operations. Operations which return an
integer flag indiciating success/failure may return different values than previously.

A new SUNMatrix (and SUNLinearSolver) implementation was added to facilitate the use of the SuperLU_DIST
library with SUNDIALS.

SUNLinearSolver

A new function was added to aid in creating custom SUNLinearSolver objects. The constructor SUNLinSol-
NewEmpty() allocates an “empty” generic SUNLinearSolver with the object’s content pointer and the function point-
ers in the operations structure initialized to NULL. When used in the constructor for custom objects this function will ease
the introduction of any new optional operations to the SUNLinearSolver API by ensuring only required operations
need to be set.

The return type of the SUNLinSolLastFlag in the SUNLinearSolver has changed from long int to sunindextype
to be consistent with the type used to store row indices in dense and banded linear solver modules.

Added a new optional operation to the SUNLinearSolver API, SUNLinSolGetID(), that returns a SUNLinear-
Solver_ID for identifying the linear solver module.

The SUNLinearSolver API has been updated to make the initialize and setup functions optional.

A new SUNLinearSolver (and SUNMatrix) implementation was added to facilitate the use of the SuperLU_DIST
library with SUNDIALS.

Added a new SUNLinearSolver implementation, cuSolverSp_batchQR, which leverages the NVIDIA cuSOLVER
sparse batched QR method for efficiently solving block diagonal linear systems on NVIDIA GPUs.

Added three new accessor functions to the KLU linear solver to provide user access to the underlying KLU solver
structures: SUNLinSol_KLUGetSymbolic(), SUNLinSol_KLUGetNumeric(), and SUNLinSol_KLUGetCommon().

SUNNonlinearSolver

A new function was added to aid in creating custom SUNNonlinearSolver objects. The constructor SUNNonlinSol-
NewEmpty() allocates an “empty” generic SUNNonlinearSolver with the object’s content pointer and the function
pointers in the operations structure initialized to NULL. When used in the constructor for custom objects this function
will ease the introduction of any new optional operations to the SUNNonlinearSolver API by ensuring only required
operations need to be set.

To facilitate the use of user supplied nonlinear solver convergence test functions the SUNNonlinSolSetConvTestFn()
function in the SUNNonlinearSolver API has been updated to take a void* data pointer as input. The supplied data
pointer will be passed to the nonlinear solver convergence test function on each call.

The inputs values passed to the first two inputs of the SUNNonlinSolSolve() function in the SUNNonlinearSolver
have been changed to be the predicted state and the initial guess for the correction to that state. Additionally, the
definitions of SUNNonlinSolLSetupFn() and SUNNonlinSolLSolveFn() in the SUNNonlinearSolver API have

340 Chapter 14. Changelog

https://sundials.readthedocs.io/en/v7.1.0/sunnonlinsol/SUNNonlinSol_API_link.html#c.SUNNonlinearSolver
https://sundials.readthedocs.io/en/v7.1.0/sunnonlinsol/SUNNonlinSol_API_link.html#c.SUNNonlinSolNewEmpty
https://sundials.readthedocs.io/en/v7.1.0/sunnonlinsol/SUNNonlinSol_API_link.html#c.SUNNonlinSolNewEmpty
https://sundials.readthedocs.io/en/v7.1.0/sunnonlinsol/SUNNonlinSol_API_link.html#c.SUNNonlinearSolver
https://sundials.readthedocs.io/en/v7.1.0/sunnonlinsol/SUNNonlinSol_API_link.html#c.SUNNonlinearSolver
https://sundials.readthedocs.io/en/v7.1.0/sunnonlinsol/SUNNonlinSol_API_link.html#c.SUNNonlinSolSetConvTestFn
https://sundials.readthedocs.io/en/v7.1.0/sunnonlinsol/SUNNonlinSol_API_link.html#c.SUNNonlinearSolver
https://sundials.readthedocs.io/en/v7.1.0/sunnonlinsol/SUNNonlinSol_API_link.html#c.SUNNonlinSolSolve
https://sundials.readthedocs.io/en/v7.1.0/sunnonlinsol/SUNNonlinSol_API_link.html#c.SUNNonlinearSolver
https://sundials.readthedocs.io/en/v7.1.0/sunnonlinsol/SUNNonlinSol_API_link.html#c.SUNNonlinearSolver

User Documentation for KINSOL, v7.1.0

been updated to remove unused input parameters. For more information on the nonlinear system formulation and the
API functions see Nonlinear Algebraic Solvers.

Added a new SUNNonlinearSolver implementation for interfacing with the PETSc SNES nonlinear solver.

New Features

A new linear solver interface functions, ARKLsLinSysFn and CVLsLinSysFn, as added as an alternative method for
evaluating the linear systems M − γJ or I − γJ .

Added the following functions to get the current state and gamma value to ARKStep, CVODE and CVODES that may
be useful to users who choose to provide their own nonlinear solver implementation:

• ARKStepGetCurrentState()

• ARKStepGetCurrentGamma()

• CVodeGetCurrentGamma()

• CVodeGetCurrentState()

• CVodeGetCurrentGamma()

• CVodeGetCurrentStateSens()

• CVodeGetCurrentSensSolveIndex()

• IDAGetCurrentCj()

• IDAGetCurrentY()

• IDAGetCurrentYp()

• IDAComputeY()

• IDAComputeYp()

Removed extraneous calls to N_VMin() for simulations where the scalar valued absolute tolerance, or all entries of
the vector-valued absolute tolerance array, are strictly positive. In this scenario ARKODE, CVODE(S), and IDA(S)
steppers will remove at least one global reduction per time step.

The ARKODE, CVODE(S), IDA(S), and KINSOL linear solver interfaces have been updated to only zero the Jacobian
matrix before calling a user-supplied Jacobian evaluation function when the attached linear solver has type SUNLIN-
EARSOLVER_DIRECT.

Added new Fortran 2003 interfaces to all of the SUNDIALS packages (ARKODE, CVODE(S), IDA(S), and KINSOL
as well as most of the N_Vector, SUNMatrix, SUNLinearSolver, and SUNNonlinearSolver implementations. See
§4.7 section for more details. These new interfaces were generated with SWIG-Fortran and provide a user an idiomatic
Fortran 2003 interface to most of the SUNDIALS C API.

The MRIStep module has been updated to support explicit, implicit, or IMEX methods as the fast integrator using the
ARKStep module. As a result some function signatures have been changed including MRIStepCreate() which now
takes an ARKStep memory structure for the fast integration as an input.

The reinitialization functions ERKStepReInit(), ARKStepReInit(), and MRIStepReInit() have been updated to
retain the minimum and maxiumum step size values from before reinitialization rather than resetting them to the default
values.

Added two new embedded ARK methods of orders 4 and 5 to ARKODE (from [39]).

Support for optional inequality constraints on individual components of the solution vector has been added the
ARKODE ERKStep and ARKStep modules. See the descriptions of ERKStepSetConstraints() and ARKStepSet-
Constraints() for more details. Note that enabling constraint handling requires the N_Vector operations N_VMin-
Quotient(), N_VConstrMask(), and N_VCompare() that were not previously required by ARKODE.

14.25. Changes to SUNDIALS in release 5.0.0 341

https://sundials.readthedocs.io/en/v7.1.0/sunnonlinsol/index.html#sunnonlinsol
https://sundials.readthedocs.io/en/v7.1.0/sunnonlinsol/SUNNonlinSol_API_link.html#c.SUNNonlinearSolver
https://sundials.readthedocs.io/en/v7.1.0/sunnonlinsol/SUNNonlinSol_links.html#sunnonlinsol-petscsnes
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/User_supplied.html#c.ARKLsLinSysFn
https://sundials.readthedocs.io/en/v7.1.0/cvodes/Usage/SIM.html#c.CVLsLinSysFn
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ARKStep/User_callable.html#c.ARKStepGetCurrentState
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ARKStep/User_callable.html#c.ARKStepGetCurrentGamma
https://sundials.readthedocs.io/en/v7.1.0/sunnonlinsol/SUNNonlinSol_package_links.html#c.CVodeGetCurrentGamma
https://sundials.readthedocs.io/en/v7.1.0/sunnonlinsol/SUNNonlinSol_package_links.html#c.CVodeGetCurrentState
https://sundials.readthedocs.io/en/v7.1.0/sunnonlinsol/SUNNonlinSol_package_links.html#c.CVodeGetCurrentGamma
https://sundials.readthedocs.io/en/v7.1.0/sunnonlinsol/SUNNonlinSol_package_links.html#c.CVodeGetCurrentStateSens
https://sundials.readthedocs.io/en/v7.1.0/sunnonlinsol/SUNNonlinSol_package_links.html#c.CVodeGetCurrentSensSolveIndex
https://sundials.readthedocs.io/en/v7.1.0/sunnonlinsol/SUNNonlinSol_package_links.html#c.IDAGetCurrentCj
https://sundials.readthedocs.io/en/v7.1.0/sunnonlinsol/SUNNonlinSol_package_links.html#c.IDAGetCurrentY
https://sundials.readthedocs.io/en/v7.1.0/sunnonlinsol/SUNNonlinSol_package_links.html#c.IDAGetCurrentYp
https://sundials.readthedocs.io/en/v7.1.0/sunnonlinsol/SUNNonlinSol_package_links.html#c.IDAComputeY
https://sundials.readthedocs.io/en/v7.1.0/sunnonlinsol/SUNNonlinSol_package_links.html#c.IDAComputeYp
https://sundials.readthedocs.io/en/v7.1.0/sunnonlinsol/SUNNonlinSol_API_link.html#c.SUNNonlinearSolver
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/MRIStep/User_callable.html#c.MRIStepCreate
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ERKStep/User_callable.html#c.ERKStepReInit
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ARKStep/User_callable.html#c.ARKStepReInit
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/MRIStep/User_callable.html#c.MRIStepReInit
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ERKStep/User_callable.html#c.ERKStepSetConstraints
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ARKStep/User_callable.html#c.ARKStepSetConstraints
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ARKStep/User_callable.html#c.ARKStepSetConstraints

User Documentation for KINSOL, v7.1.0

Add two new ‘Set’ functions to MRIStep, MRIStepSetPreInnerFn() and MRIStepSetPostInnerFn(), for per-
forming communication or memory transfers needed before or after the inner integration.

Bug Fixes

Fixed a bug in the build system that prevented the PThreads NVECTOR module from being built.

Fixed a memory leak in the PETSc N_Vector clone function.

Fixed a memeory leak in the ARKODE, CVODE, and IDA F77 interfaces when not using the default nonlinear solver.

Fixed a bug in the ARKStep time-stepping module in ARKODE that would result in an infinite loop if the nonlinear
solver failed to converge more than the maximum allowed times during a single step.

Fixed a bug in ARKODE that would result in a “too much accuracy requested” error when using fixed time step sizes
with explicit methods in some cases.

Fixed a bug in ARKStep where the mass matrix linear solver setup function was not called in the Matrix-free case.

Fixed a minor bug in ARKStep where an incorrect flag is reported when an error occurs in the mass matrix setup or
Jacobian-vector product setup functions.

Fixed a bug in the CVODE and CVODES constraint handling where the step size could be set below the minimum step
size.

Fixed a bug in the CVODE and CVODES nonlinear solver interfaces where the norm of the accumulated correction
was not updated when using a non-default convergence test function.

Fixed a bug in the CVODES cvRescale function where the loops to compute the array of scalars for the fused vector
scale operation stopped one iteration early.

Fixed a bug in CVODES and IDAS where CVodeF() and IDASolveF() would return the wrong flag under certain
circumstances.

Fixed a bug in CVODES and IDAS where CVodeF() and IDASolveF()would not return a root in NORMAL_STEPmode
if the root occurred after the desired output time.

Fixed a bug in the IDA and IDAS linear solver interfaces where an incorrect Jacobian-vector product increment was
used with iterative solvers other than SPGMR and SPFGMR.

Fixed a bug the IDAS IDAQuadReInitB() function where an incorrect memory structure was passed to
IDAQuadReInit().

Fixed a bug in the KINSOL linear solver interface where the auxiliary scalar sJpnorm was not computed when neces-
sary with the Picard iteration and the auxiliary scalar sFdotJp was unnecessarily computed in some cases.

14.26 Changes to SUNDIALS in release 4.1.0

Removed Implementation Headers

The implementation header files (*_impl.h) are no longer installed. This means users who are directly accessing or
manipulating package memory structures will need to update their code to use the package’s public API.

New Features

An additional N_Vector implementation was added for interfacing with the Tpetra vector from Trilinos library to
facilitate interoperability between SUNDIALS and Trilinos. This implementation is accompanied by additions to user
documentation and SUNDIALS examples.

Bug Fixes

The EXAMPLES_ENABLE_RAJA CMake option has been removed. The option EXAMPLES_ENABLE_CUDA enables all
examples that use CUDA including the RAJA examples with a CUDA back end (if RAJA is enabled).

342 Chapter 14. Changelog

https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/MRIStep/User_callable.html#c.MRIStepSetPreInnerFn
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/MRIStep/User_callable.html#c.MRIStepSetPostInnerFn
https://sundials.readthedocs.io/en/v7.1.0/cvodes/Usage/ADJ.html#c.CVodeF
https://sundials.readthedocs.io/en/v7.1.0/idas/Usage/ADJ.html#c.IDASolveF
https://sundials.readthedocs.io/en/v7.1.0/cvodes/Usage/ADJ.html#c.CVodeF
https://sundials.readthedocs.io/en/v7.1.0/idas/Usage/ADJ.html#c.IDASolveF
https://sundials.readthedocs.io/en/v7.1.0/idas/Usage/ADJ.html#c.IDAQuadReInitB
https://sundials.readthedocs.io/en/v7.1.0/idas/Usage/SIM.html#c.IDAQuadReInit

User Documentation for KINSOL, v7.1.0

Python is no longer required to run make test and make test_install.

A bug was fixed where a nonlinear solver object could be freed twice in some use cases.

Fixed a bug in ARKodeButcherTable_Write() when printing a Butcher table without an embedding.

14.27 Changes to SUNDIALS in release 4.0.2

Added information on how to contribute to SUNDIALS and a contributing agreement.

Moved the definitions of backwards compatibility functions for the prior direct linear solver (DLS) and scaled precon-
ditioned iterarive linear solvers (SPILS) to a source file. The symbols are now included in the appropriate package
library, e.g. libsundials_cvode.lib.

14.28 Changes to SUNDIALS in release 4.0.1

A bug in ARKODE where single precision builds would fail to compile has been fixed.

14.29 Changes to SUNDIALS in release 4.0.0

The direct and iterative linear solver interfaces in all SUNDIALS packages have been merged into a single unified linear
solver interface to support any valid SUNLinearSolver. This includes the DIRECT and ITERATIVE types as well as
the new MATRIX_ITERATIVE type. Details regarding how SUNDIALS packages utilize linear solvers of each type as
well as a discussion regarding the intended use cases for user-supplied linear solver implementations are included in
§8. All example programs have been updated to use the new unified linear solver interfaces.

The unified linear solver interface is very similar to the previous DLS (direct linear solver) and SPILS (scaled pre-
conditioned iterative linear solver) interface in each package. To minimize challenges in user migration to the unified
linear solver interfaces, the previous DLS and SPILS functions may still be used however, these are now deprecated
and will be removed in a future release. Additionally, that Fortran users will need to enlarge their array of optional
integer outputs, and update the indices that they query for certain linear solver related statistics.

The names of all SUNDIALS-provided SUNLinearSolver constructors have have been updated to follow the naming
convention SUNLinSol_* where * is the name of the linear solver. The new constructor names are:

• SUNLinSol_Band()

• SUNLinSol_Dense()

• SUNLinSol_KLU()

• SUNLinSol_LapackBand()

• SUNLinSol_LapackDense()

• SUNLinSol_PCG()

• SUNLinSol_SPBCGS()

• SUNLinSol_SPFGMR()

• SUNLinSol_SPGMR()

• SUNLinSol_SPTFQMR()

• SUNLinSol_SuperLUMT()

14.27. Changes to SUNDIALS in release 4.0.2 343

https://sundials.readthedocs.io/en/v7.1.0/arkode/ARKodeButcherTable_link.html#c.ARKodeButcherTable_Write

User Documentation for KINSOL, v7.1.0

Linear solver-specific “set” routine names have been similarly standardized. To minimize challenges in user migration
to the new names, the previous function names may still be used however, these are now deprecated and will be removed
in a future release. All example programs and the standalone linear solver examples have been updated to use the new
naming convention.

The SUNLinSol_Band() constructor has been simplified to remove the storage upper bandwidth argument.

SUNDIALS integrators (ARKODE, CVODE(S), and IDA(S)) have been updated to utilize generic nonlinear solvers
defined by the SUNNonlinearSolver API. This enables the addition of new nonlinear solver options and allows for
external or user-supplied nonlinear solvers. The nonlinear solver API and SUNDIALS provided implementations are
described in Nonlinear Algebraic Solvers and follow the same object oriented design used by the N_Vector, SUN-
Matrix, and SUNLinearSolver classes. Currently two nonlinear solver implementations are provided, Newton and
fixed-point. These replicate the previous integrator-specific implementations of Newton’s method and a fixed-point
iteration (previously referred to as a functional iteration), respectively. Note the new fixed-point implementation can
optionally utilize Anderson’s method to accelerate convergence. Example programs using each of these nonlinear
solvers in a standalone manner have been added and all example programs have been updated accordingly.

The SUNDIALS integrators (ARKODE, CVODE(S), and IDA(S)) all now use the Newton SUNNonlinearSolver by
default. Users that wish to use the fixed-point SUNNonlinearSolver will need to create the corresponding nonlinear
solver object and attach it to the integrator with the appropriate set function:

• ARKStepSetNonlinearSolver()

• CVodeSetNonlinearSolver()

• IDASetNonlinearSolver()

Functions for setting the nonlinear solver options or getting nonlinear solver statistics remain unchanged and internally
call generic SUNNonlinearSolver functions as needed.

With the introduction of the SUNNonlinearSolver class, the input parameter iter to CVodeCreate() has been
removed along with the function CVodeSetIterType and the constants CV_NEWTON and CV_FUNCTIONAL. While
SUNDIALS includes a fixed-point nonlinear solver, it is not currently supported in IDA.

Three fused vector operations and seven vector array operations have been added to the N_Vector API. These optional
operations are disabled by default and may be activated by calling vector specific routines after creating a vector (see
§6.1 for more details). The new operations are intended to increase data reuse in vector operations, reduce parallel
communication on distributed memory systems, and lower the number of kernel launches on systems with accelerators.
The fused operations are:

• N_VLinearCombination()

• N_VScaleAddMulti()

• N_VDotProdMulti()

and the vector array operations are:

• N_VLinearCombinationVectorArray()

• N_VScaleVectorArray()

• N_VConstVectorArray()

• N_VWrmsNormVectorArray()

• N_VWrmsNormMaskVectorArray()

• N_VScaleAddMultiVectorArray()

• N_VLinearCombinationVectorArray()

If an N_Vector implementation defines the implementation any of these operations as NULL, then standard vector
operations will automatically be called as necessary to complete the computation.

344 Chapter 14. Changelog

https://sundials.readthedocs.io/en/v7.1.0/sunnonlinsol/SUNNonlinSol_API_link.html#c.SUNNonlinearSolver
https://sundials.readthedocs.io/en/v7.1.0/sunnonlinsol/index.html#sunnonlinsol
https://sundials.readthedocs.io/en/v7.1.0/sunnonlinsol/SUNNonlinSol_links.html#sunnonlinsol-newton
https://sundials.readthedocs.io/en/v7.1.0/sunnonlinsol/SUNNonlinSol_links.html#sunnonlinsol-fixedpoint
https://sundials.readthedocs.io/en/v7.1.0/sunnonlinsol/SUNNonlinSol_links.html#sunnonlinsol-fixedpoint
https://sundials.readthedocs.io/en/v7.1.0/sunnonlinsol/SUNNonlinSol_links.html#sunnonlinsol-newton
https://sundials.readthedocs.io/en/v7.1.0/sunnonlinsol/SUNNonlinSol_API_link.html#c.SUNNonlinearSolver
https://sundials.readthedocs.io/en/v7.1.0/sunnonlinsol/SUNNonlinSol_links.html#sunnonlinsol-fixedpoint
https://sundials.readthedocs.io/en/v7.1.0/sunnonlinsol/SUNNonlinSol_API_link.html#c.SUNNonlinearSolver
https://sundials.readthedocs.io/en/v7.1.0/arkode/Usage/ARKStep/User_callable.html#c.ARKStepSetNonlinearSolver
https://sundials.readthedocs.io/en/v7.1.0/cvodes/Usage/SIM.html#c.CVodeSetNonlinearSolver
https://sundials.readthedocs.io/en/v7.1.0/idas/Usage/SIM.html#c.IDASetNonlinearSolver
https://sundials.readthedocs.io/en/v7.1.0/sunnonlinsol/SUNNonlinSol_API_link.html#c.SUNNonlinearSolver
https://sundials.readthedocs.io/en/v7.1.0/cvodes/Usage/SIM.html#c.CVodeCreate

User Documentation for KINSOL, v7.1.0

A new N_Vector implementation, OpenMPDEV , leveraging OpenMP device offloading has been added.

Multiple updates to the CUDA vector were made:

• Changed the N_VMake_Cuda() function to take a host data pointer and a device data pointer instead of an N_-
VectorContent_Cuda object.

• Changed N_VGetLength_Cuda to return the global vector length instead of the local vector length.

• Added N_VGetLocalLength_Cuda to return the local vector length.

• Added N_VGetMPIComm_Cuda to return the MPI communicator used.

• Removed the accessor functions in the suncudavec namespace.

• Added the ability to set the cudaStream_t used for execution of the CUDA kernels. See the function N_-
VSetCudaStreams_Cuda.

• Added N_VNewManaged_Cuda(), N_VMakeManaged_Cuda(), and N_VIsManagedMemory_Cuda() functions
to accommodate using managed memory with the CUDA vector.

Multiple updates to the RAJA vector were made:

• Changed N_VGetLength_Raja to return the global vector length instead of the local vector length.

• Added N_VGetLocalLength_Raja to return the local vector length.

• Added N_VGetMPIComm_Raja to return the MPI communicator used.

• Removed the accessor functions in the sunrajavec namespace.

Two changes were made in the ARKODE and CVODE(S) initial step size algorithm:

• Fixed an efficiency bug where an extra call to the RHS function was made.

• Changed the behavior of the algorithm if the max-iterations case is hit. Before the algorithm would exit with
the step size calculated on the penultimate iteration. Now it will exit with the step size calculated on the final
iteration.

Fortran 2003 interfaces to CVODE, the fixed-point and Newton nonlinear solvers, the dense, band, KLU, PCG, SP-
BCGS, SPFGMR, SPGMR, and SPTFQMR linear solvers, and the serial, PThreads, and OpenMP vectors have been
added.

The ARKODE library has been entirely rewritten to support a modular approach to one-step methods, which should
allow rapid research and development of novel integration methods without affecting existing solver functionality. To
support this, the existing ARK-based methods have been encapsulated inside the new ARKStep time-stepping module.
Two new time-stepping modules have been added:

• The ERKStep module provides an optimized implementation for explicit Runge–Kutta methods with reduced
storage and number of calls to the ODE right-hand side function.

• The MRIStep module implements two-rate explicit-explicit multirate infinitesimal step methods utilizing differ-
ent step sizes for slow and fast processes in an additive splitting.

This restructure has resulted in numerous small changes to the user interface, particularly the suite of “Set” routines for
user-provided solver parameters and “Get” routines to access solver statistics, that are now prefixed with the name of
time-stepping module (e.g., ARKStep or ERKStep) instead of ARKODE. Aside from affecting the names of these routines,
user-level changes have been kept to a minimum. However, we recommend that users consult both this documentation
and the ARKODE example programs for further details on the updated infrastructure.

As part of the ARKODE restructuring an ARKodeButcherTable structure has been added for storing Butcher tables.
Functions for creating new Butcher tables and checking their analytic order are provided along with other utility rou-
tines. For more details see the Butcher Table Data Structure section.

14.29. Changes to SUNDIALS in release 4.0.0 345

https://sundials.readthedocs.io/en/v7.1.0/arkode/ARKodeButcherTable_link.html#c.ARKodeButcherTable
https://sundials.readthedocs.io/en/v7.1.0/arkode/ARKodeButcherTable_link.html#arkodebutchertable

User Documentation for KINSOL, v7.1.0

ARKODE’s dense output infrastructure has been improved to support higher-degree Hermite polynomial interpolants
(up to degree 5) over the last successful time step.

14.30 Changes to SUNDIALS in release 3.2.1

Fixed a bug in the CUDA vector where the N_VInvTest() operation could write beyond the allocated vector data.

Fixed the library installation path for multiarch systems. This fix changes the default library installation path from
CMAKE_INSTALL_PREFIX/lib to CMAKE_INSTALL_PREFIX/CMAKE_INSTALL_LIBDIR. The default value library di-
rectory name is automatically set to lib, lib64, or lib/<multiarch-tuple> depending on the system, but maybe
be overridden by setting CMAKE_INSTALL_LIBDIR .

14.31 Changes to SUNDIALS in release 3.2.0

Library Name Change

Changed the name of the RAJA nvector library from libsundials_nvecraja.lib to libsundials_-
nveccudaraja.lib to better reflect that the RAJA vector only support the CUDA backend currently.

New Features

Added hybrid MPI+CUDA and MPI+RAJA vectors to allow use of more than one MPI rank when using a GPU system.
The vectors assume one GPU device per MPI rank.

Support for optional inequality constraints on individual components of the solution vector has been added to CVODE
and CVODES. For more details see the Mathematical Considerations and Optional input functions sections. Use
of CVodeSetConstraints() requires the N_Vector operations N_VMinQuotient(), N_VConstrMask(), and N_-
VCompare() that were not previously required by CVODE and CVODES.

CMake Updates

CMake 3.1.3 is now the minimum required CMake version.

Deprecated the behavior of the SUNDIALS_INDEX_TYPE CMake option and added the SUNDIALS_INDEX_SIZE CMake
option to select the sunindextype integer size.

The native CMake FindMPI module is now used to locate an MPI installation.

If MPI is enabled and MPI compiler wrappers are not set, the build system will check if CMAKE_<language>_COM-
PILER can compile MPI programs before trying to locate and use an MPI installation.

The previous options for setting MPI compiler wrappers and the executable for running MPI programs have been have
been deprecated. The new options that align with those used in native CMake FindMPI module are MPI_C_COMPILER ,
MPI_CXX_COMPILER , MPI_Fortran_COMPILER , and MPIEXEC_EXECUTABLE.

When a Fortran name-mangling scheme is needed (e.g., ENABLE_LAPACK is ON) the build system will infer the scheme
from the Fortran compiler. If a Fortran compiler is not available or the inferred or default scheme needs to be overridden,
the advanced options SUNDIALS_F77_FUNC_CASE and SUNDIALS_F77_FUNC_UNDERSCORES can be used to manually
set the name-mangling scheme and bypass trying to infer the scheme.

Parts of the main CMakeLists.txt file were moved to new files in the src and example directories to make the
CMake configuration file structure more modular.

Bug Fixes

Fixed a problem with setting sunindextype which would occur with some compilers (e.g. armclang) that do not
define __STDC_VERSION__.

Fixed a thread-safety issue in CVODES and IDAS when using adjoint sensitivity analysis.

346 Chapter 14. Changelog

https://sundials.readthedocs.io/en/v7.1.0/cvode/Mathematics_link.html#cvode-mathematics
https://sundials.readthedocs.io/en/v7.1.0/cvode/Usage/index.html#cvode-usage-cc-optional-input
https://sundials.readthedocs.io/en/v7.1.0/cvodes/Usage/SIM.html#c.CVodeSetConstraints

User Documentation for KINSOL, v7.1.0

Fixed a bug in IDAS where the saved residual value used in the nonlinear solve for consistent initial conditions was
passed as temporary workspace and could be overwritten.

14.32 Changes to SUNDIALS in release 3.1.2

CMake Updates

Updated the minimum required version of CMake to 2.8.12 and enabled using rpath by default to locate shared libraries
on OSX.

New Features

Added the function SUNSparseMatrix_Reallocate() to allow specification of the matrix nonzero storage.

Added named constants for the two reinitialization types for the KLU SUNLinearSolver.

Updated the SUNMatScaleAdd() and SUNMatScaleAddI() implementations in the sparse SUNMatrix to more op-
timally handle the case where the target matrix contained sufficient storage for the sum, but had the wrong sparsity
pattern. The sum now occurs in-place, by performing the sum backwards in the existing storage. However, it is still
more efficient if the user-supplied Jacobian routine allocates storage for the sum M + γJ or M + γJ manually (with
zero entries if needed).

The following examples from the usage notes page of the SUNDIALS website, and updated them to work with SUN-
DIALS 3.x:

• cvDisc_dns.c demonstrates using CVODE with discontinuous solutions or RHS.

• cvRoberts_dns_negsol.c illustrates the use of the RHS function return value to control unphysical negative
concentrations.

• cvRoberts_FSA_dns_Switch.c demonstrates switching on/off forward sensitivity computations. This exam-
ple came from the usage notes page of the SUNDIALS website.

Bug Fixes

Fixed a Windows specific problem where sunindextype was not correctly defined when using 64-bit integers. On
Windows sunindextype is now defined as the MSVC basic type __int64.

Fixed a bug in the full KLU SUNLinearSolver reinitialization approach where the sparse SUNMatrix pointer would go
out of scope on some architectures.

The misnamed function CVSpilsSetJacTimesSetupFnBS has been deprecated and replaced by CVSpilsSetJac-
TimesBS. The deprecated function CVSpilsSetJacTimesSetupFnBS will be removed in the next major release.

Changed LICENSE install path to instdir/include/sundials.

14.33 Changes to SUNDIALS in release 3.1.1

Bug Fixes

Fixed a minor bug in the CVODE and CVODES cvSLdet, where a return was missing in the error check for three
inconsistent roots.

Fixed a potential memory leak in the SPGMR and SPFGMR linear solvers. If “Initialize” was called multiple times
then the solver memory was reallocated (without being freed).

Fixed a minor bug in ARKReInit, where a flag was incorrectly set to indicate that the problem had been resized (instead
of just re-initialized).

Fixed C++11 compiler errors/warnings about incompatible use of string literals.

14.32. Changes to SUNDIALS in release 3.1.2 347

User Documentation for KINSOL, v7.1.0

Updated the KLU SUNLinearSolver to use a typedef for the precision-specific solve functions to avoid compiler warn-
ings.

Added missing typecasts for some (void*) pointers to avoid compiler warnings.

Fixed bug in the sparse SUNMatrix where int was used instead of sunindextype in one location.

Fixed a minor bug in KINPrintInfowhere a case was missing for KIN_REPTD_SYSFUNC_ERR leading to an undefined
info message.

Added missing #include <stdio.h> in N_Vector and SUNMatrix header files.

Added missing prototypes for ARKSpilsGetNumMTSetups in ARKODE and IDASpilsGetNumJTSetupEvals in IDA
and IDAS.

Fixed an indexing bug in the CUDA vector implementation of N_VWrmsNormMask() and revised the RAJA vector
implementation of N_VWrmsNormMask() to work with mask arrays using values other than zero or one. Replaced
double with realtype in the RAJA vector test functions.

Fixed compilation issue with GCC 7.3.0 and Fortran programs that do not require a SUNMatrix or SUNLinearSolver
e.g., iterative linear solvers, explicit methods in ARKODE, functional iteration in CVODE, etc.

14.34 Changes to SUNDIALS in release 3.1.0

Added N_Vector print functions that write vector data to a specified file (e.g., N_VPrintFile_Serial()).

Added make test and make test_install options to the build system for testing SUNDIALS after building with
make and installing with make install respectively.

14.35 Changes to SUNDIALS in release 3.0.0

Major Feature

Added new linear solver and matrix interfaces for all SUNDIALS packages and updated the existing linear solver and
matrix implementations. The goal of the redesign is to provide greater encapsulation and ease interfacing custom linear
solvers with linear solver libraries. Specific changes include:

• Added a SUNMatrix interface with three provided implementations: dense, banded, and sparse. These replicate
previous SUNDIALS direct (Dls) and sparse (Sls) matrix structures.

• Added example problems demonstrating use of the matrices.

• Added a SUNLinearSolver interface with eleven provided implementations: dense, banded, LAPACK dense,
LAPACK band, KLU, SuperLU_MT, SPGMR, SPBCGS, SPTFQMR, SPFGMR, PCG. These replicate previous
SUNDIALS generic linear solvers.

• Added example problems demonstrating use of the linear solvers.

• Expanded package-provided direct linear solver (Dls) interfaces and scaled, preconditioned, iterative linear solver
(Spils) interfaces to utilize SUNMatrix and SUNLinearSolver objects.

• Removed package-specific, linear solver-specific, solver modules (e.g., CVDENSE, KINBAND, IDAKLU, ARK-
SPGMR) since their functionality is entirely replicated by the generic Dls/Spils interfaces and SUNLinear-
Solver / SUNMatrix classes. The exception is CVDIAG, a diagonal approximate Jacobian solver available to
CVODE and CVODES.

• Converted all SUNDIALS example problems to utilize new the new matrix and linear solver objects, along with
updated Dls and Spils linear solver interfaces.

348 Chapter 14. Changelog

User Documentation for KINSOL, v7.1.0

• Added Spils interface routines to ARKODE, CVODE, CVODES, IDA and IDAS to allow specification of a user-
provided JTSetup routine. This change supports users who wish to set up data structures for the user-provided
Jacobian-times-vector (JTimes) routine, and where the cost of one JTSetup setup per Newton iteration can be
amortized between multiple JTimes calls.

Corresponding updates were made to all the example programs.

New Features

CUDA and RAJA N_Vector implementations to support GPU systems. These vectors are supplied to provide very basic
support for running on GPU architectures. Users are advised that these vectors both move all data to the GPU device
upon construction, and speedup will only be realized if the user also conducts the right-hand-side function evaluation
on the device. In addition, these vectors assume the problem fits on one GPU. For further information about RAJA,
users are referred to the RAJA web site.

Added the type sunindextype to support using 32-bit or 64-bit integer types for indexing arrays within all SUNDIALS
structures. sunindextype is defined to int32_t or int64_t when portable types are supported, otherwise it is
defined as int or long int. The Fortran interfaces continue to use long int for indices, except for the sparse matrix
interface that now uses sunindextype. Interfaces to PETSc, hypre, SuperLU_MT, and KLU have been updated with
32-bit or 64-bit capabilities depending how the user configures SUNDIALS.

To avoid potential namespace conflicts, the macros defining booleantype values TRUE and FALSE have been changed
to SUNTRUE and SUNFALSE respectively.

Temporary vectors were removed from preconditioner setup and solve routines for all packages. It is assumed that all
necessary data for user-provided preconditioner operations will be allocated and stored in user-provided data structures.

The file include/sundials_fconfig.h was added. This file contains SUNDIALS type information for use in For-
tran programs.

Added support for many xSDK-compliant build system keys. For more information on on xSDK compliance the xSDK
policies. The xSDK is a movement in scientific software to provide a foundation for the rapid and efficient production
of high-quality, sustainable extreme-scale scientific applications. For more information visit the xSDK web site.

Added functions SUNDIALSGetVersion() and SUNDIALSGetVersionNumber() to get SUNDIALS release version
information at runtime.

Added comments to arkode_butcher.c regarding which methods should have coefficients accurate enough for use
in quad precision.

Build System

Renamed CMake options to enable/disable examples for greater clarity and added option to enable/disable Fortran 77
examples:

• Changed EXAMPLES_ENABLE to EXAMPLES_ENABLE_C

• Changed CXX_ENABLE to EXAMPLES_ENABLE_CXX

• Changed F90_ENABLE to EXAMPLES_ENABLE_F90

• Added EXAMPLES_ENABLE_F77 option

Added separate BLAS_ENABLE and BLAS_LIBRARIES CMake variables.

Fixed minor CMake bugs and included additional error checking during CMake configuration.

Bug Fixes

ARKODE

Fixed RCONST usage in arkode_butcher.c.

Fixed bug in arkInitialSetup to ensure the mass matrix vector product is set up before the “msetup” routine is
called.

14.35. Changes to SUNDIALS in release 3.0.0 349

https://software.llnl.gov/RAJA/
https://xsdk.info/policies/
https://xsdk.info/policies/
https://xsdk.info

User Documentation for KINSOL, v7.1.0

Fixed ARKODE printf-related compiler warnings when building SUNDIALS with extended precision.

CVODE and CVODES

CVodeFree() now calls lfree unconditionally (if non-NULL).

IDA and IDAS

Added missing prototype for IDASetMaxBacksIC() in ida.h and idas.h.

KINSOL

Corrected KINSOL Fortran name translation for FKIN_SPFGMR.

Renamed KINLocalFn and KINCommFn to KINBBDLocalFn and KINBBDCommFn respectively in the BBD precondi-
tioner module for consistency with other SUNDIALS solvers.

14.36 Changes to SUNDIALS in release 2.7.0

New Features and Enhancements

Two additional N_Vector implementations were added – one for hypre parallel vectors and one for PETSc vectors.
These additions are accompanied by additions to various interface functions and to user documentation.

Added a new N_Vector function, N_VGetVectorID(), that returns an identifier for the vector.

The sparse matrix structure was enhanced to support both CSR and CSC matrix storage formats.

Various additions were made to the KLU and SuperLU_MT sparse linear solver interfaces, including support for the
CSR matrix format when using KLU.

In all packages, the linear solver and preconditioner free routines were updated to return an integer.

In all packages, example codes were updated to use N_VGetArrayPointer_* rather than the NV_DATA macro when
using the native vectors shipped with SUNDIALS.

Additional example programs were added throughout including new examples utilizing the OpenMP vector.

ARKODE

The ARKODE implicit predictor algorithms were updated: methods 2 and 3 were improved slightly, a new predictor
approach was added, and the default choice was modified.

The handling of integer codes for specifying built-in ARKODE Butcher tables was enhanced. While a global numbering
system is still used, methods now have #defined names to simplify the user interface and to streamline incorporation
of new Butcher tables into ARKODE.

The maximum number of Butcher table stages was increased from 8 to 15 to accommodate very high order methods,
and an 8th-order adaptive ERK method was added.

Support was added for the explicit and implicit methods in an additive Runge–Kutta method with different stage times
to support new SSP-ARK methods.

The FARKODE interface was extended to include a routine to set scalar/array-valued residual tolerances, to support
Fortran applications with non-identity mass-matrices.

IDA and IDAS

The optional input function IDASetMaxBacksIC() was added to set the maximum number of linesearch backtracks
in the initial condition calculation.

Bug Fixes

Various minor fixes to installation-related files.

350 Chapter 14. Changelog

https://sundials.readthedocs.io/en/v7.1.0/cvodes/Usage/SIM.html#c.CVodeFree
https://sundials.readthedocs.io/en/v7.1.0/idas/Usage/SIM.html#c.IDASetMaxBacksIC
https://sundials.readthedocs.io/en/v7.1.0/idas/Usage/SIM.html#c.IDASetMaxBacksIC

User Documentation for KINSOL, v7.1.0

Fixed some examples with respect to the change to use new macro/function names e.g., SUNRexp, etc.

In all packages, a memory leak was fixed in the banded preconditioner and banded-block-diagonal preconditioner
interfaces.

Corrected name N_VCloneEmptyVectorArray to N_VCloneVectorArrayEmpty in all documentation files.

Various corrections were made to the interfaces to the sparse solvers KLU and SuperLU_MT.

For each linear solver, the various solver performance counters are now initialized to 0 in both the solver specification
function and in the solver linit function. This ensures that these solver counters are initialized upon linear solver
instantiation as well as at the beginning of the problem solution.

ARKODE

The missing ARKSpilsGetNumMtimesEvals function was added – this had been included in the previous documen-
tation but had not been implemented.

The choice of the method vs embedding the Billington and TRBDF2 explicit Runge–Kutta methods were swapped,
since in those the lower-order coefficients result in an A-stable method, while the higher-order coefficients do not. This
change results in significantly improved robustness when using those methods.

A bug was fixed for the situation where a user supplies a vector of absolute tolerances, and also uses the vector Resize
functionality.

A bug was fixed wherein a user-supplied Butcher table without an embedding is supplied, and the user is running with
either fixed time steps (or they do adaptivity manually); previously this had resulted in an error since the embedding
order was below 1.

CVODE

Corrections were made to three Fortran interface functions.

In FCVODE, fixed argument order bugs in the FCVKLU and FCVSUPERLUMT linear solver interfaces.

Added missing Fortran interface routines for supplying a sparse Jacobian routine with sparse direct solvers.

CVODES

A bug was fixed in the interpolation functions used in solving backward problems for adjoint sensitivity analysis.

In the interpolation routines for backward problems, added logic to bypass sensitivity interpolation if input sensitivity
argument is NULL.

Changed each the return type of *FreeB functions to int and added return(0) to each.

IDA

Corrections were made to three Fortran interface functions.

Corrected the output from the idaFoodWeb_bnd.c example, the wrong component was printed in PrintOutput.

IDAS

In the interpolation routines for backward problems, added logic to bypass sensitivity interpolation if input sensitivity
argument is NULL.

Changed each the return type of *FreeB functions to int and added return(0) to each.

Corrections were made to three Fortran interface functions.

Added missing Fortran interface routines for supplying a sparse Jacobian routine with sparse direct solvers.

KINSOL

The Picard iteration return was chanegd to always return the newest iterate upon success.

14.36. Changes to SUNDIALS in release 2.7.0 351

User Documentation for KINSOL, v7.1.0

A minor bug in the line search was fixed to prevent an infinite loop when the beta condition fails and lambda is below
the minimum size.

Corrections were made to three Fortran interface functions.

The functions FKINCREATE and FKININIT were added to split the FKINMALLOC routine into two pieces. FKINMALLOC
remains for backward compatibility, but documentation for it has been removed.

Added missing Fortran interface routines for supplying a sparse Jacobian routine with sparse direct solvers.

Matlab Interfaces Removed

Removed the Matlab interface from distribution as it has not been updated since 2009.

14.37 Changes to SUNDIALS in release 2.6.2

New Features and Enhancements

Various minor fixes to installation-related files

In KINSOL and ARKODE, updated the Anderson acceleration implementation with QR updating.

In CVODES and IDAS, added ReInit and SetOrdering wrappers for backward problems.

In IDAS, fixed for-loop bugs in IDAAckpntAllocVectors that could lead to a memory leak.

Bug Fixes

Updated the BiCGStab linear solver to remove a redundant dot product call.

Fixed potential memory leak in KLU ReInit functions in all solvers.

In ARKODE, fixed a bug in the Cash-Karp Butcher table where the method and embedding coefficient were swapped.

In ARKODE, fixed error in arkDoErrorTest in recovery after failure.

In CVODES, added CVKLUB prototype and corrected CVSuperLUMTB prototype.

In the CVODES and IDAS header files, corrected documentation of backward integration functions, especially the
which argument.

In IDAS, added missing backward problem support functions IDALapackDenseB, IDALapackDenseFreeB, IDALa-
packBandB, and IDALapackBandFreeB.

In IDAS, made SuperLUMT call for backward problem consistent with CVODES.

In CVODE, IDA, and ARKODE, fixed Fortran interfaces to enable calls to GetErrWeights, GetEstLocalErrors,
and GetDky within a time step.

14.38 Changes to SUNDIALS in release 2.6.1

Fixed loop limit bug in SlsAddMat function.

In all six solver interfaces to KLU and SuperLUMT, added #include lines, and removed redundant KLU structure
allocations.

Minor bug fixes in ARKODE.

352 Chapter 14. Changelog

User Documentation for KINSOL, v7.1.0

14.39 Changes to SUNDIALS in release 2.6.0

Autotools Build Option Removed

With this version of SUNDIALS, support and documentation of the Autotools mode of installation is being dropped,
in favor of the CMake mode, which is considered more widely portable.

New Package: ARKODE

Addition of ARKODE package of explicit, implicit, and additive Runge-Kutta methods for ODEs. This package API
is close to CVODE so switching between the two should be straightforward. Thanks go to Daniel Reynolds for the
addition of this package.

New Features and Enhancements

Added OpenMP and Pthreads N_Vector implementations for thread-parallel computing environments.

Two major additions were made to the linear system solvers available in all packages. First, in the serial case, an
interface to the sparse direct solver KLU was added. Second, an interface to SuperLU_MT, the multi-threaded version
of SuperLU, was added as a thread-parallel sparse direct solver option, to be used with the serial version of the N_-
Vector module. As part of these additions, a sparse matrix (CSC format) structure was added to CVODE.

KINSOL

Two major additions were made to the globalization strategy options (KINSol argument strategy). One is fixed-point
iteration, and the other is Picard iteration. Both can be accelerated by use of the Anderson acceleration method. See
the relevant paragraphs in Chapter Mathematical Considerations.

An interface to the Flexible GMRES iterative linear solver was added.

Bug Fixes

In order to avoid possible name conflicts, the mathematical macro and function names MIN, MAX, SQR, RAbs, RSqrt,
RExp, RPowerI, and RPowerRwere changed to SUNMIN, SUNMAX, SUNSQR, SUNRabs, SUNRsqrt, SUNRexp, SRpowerI,
and SUNRpowerR, respectively. These names occur in both the solver and example programs.

In the LAPACK banded linear solver interfaces, the line smu = MIN(N-1,mu+ml) was changed to smu = mu + ml
to correct an illegal input error for to DGBTRF and DGBTRS.

In all Fortran examples, integer declarations were revised so that those which must match a C type long int are
declared INTEGER*8, and a comment was added about the type match. All other integer declarations are just INTEGER.
Corresponding minor corrections were made to the user guide.

CVODE and CVODES

In cvRootFind, a minor bug was corrected, where the input array was ignored, and a line was added to break out of
root-search loop if the initial interval size is below the tolerance ttol.

Two minor bugs were fixed regarding the testing of input on the first call to CVode – one involving tstop and one
involving the initialization of *tret.

The example program cvAdvDiff_diag_p was added to illustrate the use of in parallel.

In the FCVODE optional input routines FCVSETIIN and FCVSETRIN, the optional fourth argument key_length was
removed, with hardcoded key string lengths passed to all tests.

In order to eliminate or minimize the differences between the sources for private functions in CVODE and CVODES,
the names of many private functions were changed from CV* to cv* and a few other names were also changed.

An option was added in the case of Adjoint Sensitivity Analysis with dense or banded Jacobian. With a call to
CVDlsSetDenseJacFnBS or CVDlsSetBandJacFnBS, the user can specify a user-supplied Jacobian function of type
CVDls***JacFnBS, for the case where the backward problem depends on the forward sensitivities.

In CVodeQuadSensInit, the line cv_mem->cv_fQS_data = ... was corrected (missing Q).

14.39. Changes to SUNDIALS in release 2.6.0 353

User Documentation for KINSOL, v7.1.0

In the CVODES User Guide, a paragraph was added in Section 6.2.1 on CVodeAdjReInit, and a paragraph was added
in Section 6.2.9 on CVodeGetAdjY. In the example cvsRoberts_ASAi_dns, the output was revised to include the use
of CVodeGetAdjY.

For the Adjoint Sensitivity Analysis case in which the backward problem depends on the forward sensitivities, options
have been added to allow for user-supplied pset, psolve, and jtimes functions.

In the example cvsHessian_ASA_FSA, an error was corrected in the function fB2, y2 in place of y3 in the third term
of Ith(yBdot,6).

IDA and IDAS

In IDARootfind, a minor bug was corrected, where the input array rootdir was ignored, and a line was added to
break out of root-search loop if the initial interval size is below the tolerance ttol.

A minor bug was fixed regarding the testing of the input tstop on the first call to IDASolve().

In the FIDA optional input routines FIDASETIIN, FIDASETRIN, and FIDASETVIN, the optional fourth argument key_-
length was removed, with hardcoded key string lengths passed to all strncmp tests.

An option was added in the case of Adjoint Sensitivity Analysis with dense or banded Jacobian. With a call to
IDADlsSetDenseJacFnBS or IDADlsSetBandJacFnBS, the user can specify a user-supplied Jacobian function of
type IDADls***JacFnBS, for the case where the backward problem depends on the forward sensitivities.

KINSOL

In function KINStop, two return values were corrected to make the values of uu and fval consistent.

A bug involving initialization of mxnewtstep was fixed. The error affects the case of repeated user calls to KINSol
with no intervening call to KINSetMaxNewtonStep.

A bug in the increments for difference quotient Jacobian approximations was fixed in function kinDlsBandDQJac.

In the FKINSOL module, an incorrect return value ier in FKINfunc was fixed.

In the FKINSOL optional input routines FKINSETIIN, FKINSETRIN, and FKINSETVIN, the optional fourth argument
key_length was removed, with hardcoded key string lengths passed to all strncmp tests.

14.40 Changes to SUNDIALS in release 2.5.0

Integer Type Change

One significant design change was made with this release, the problem size and its relatives, bandwidth parameters,
related internal indices, pivot arrays, and the optional output lsflag have all been changed from type int to type long
int, except for the problem size and bandwidths in user calls to routines specifying BLAS/LAPACK routines for the
dense/band linear solvers. The function NewIntArray is replaced by a pair NewIntArray / NewLintArray, for int
and long int arrays, respectively.

Bug Fixes

In the installation files, we modified the treatment of the macro SUNDIALS_USE_GENERIC_MATH, so that the parameter
GENERIC_MATH_LIB is either defined (with no value) or not defined.

In all packages, after the solver memory is created, it is set to zero before being filled.

In each linear solver interface function, the linear solver memory is freed on an error return, and the function now
includes a line setting to NULL the main memory pointer to the linear solver memory.

Rootfinding

In CVODE(S) and IDA(S), in the functions Rcheck1 and Rcheck2, when an exact zero is found, the array glo of g
values at the left endpoint is adjusted, instead of shifting the t location tlo slightly.

354 Chapter 14. Changelog

https://sundials.readthedocs.io/en/v7.1.0/idas/Usage/SIM.html#c.IDASolve

User Documentation for KINSOL, v7.1.0

CVODE and CVODES

In CVSetTqBDF, the logic was changed to avoid a divide by zero.

In a minor change to the CVODES user interface, the type of the index which was changed from long int to int.

Errors in the logic for the integration of backward problems in CVODES were identified and fixed.

IDA and IDAS

To be consistent with IDAS, IDA uses the function IDAGetDky for optional output retrieval.

A memory leak was fixed in two of the IDASp***Free functions.

A missing vector pointer setting was added in IDASensLineSrch.

In IDACompleteStep, conditionals around lines loading a new column of three auxiliary divided difference arrays,
for a possible order increase, were fixed.

KINSOL

Three major logic bugs were fixed - involving updating the solution vector, updating the linesearch parameter, and a
missing error return.

Three minor errors were fixed - involving setting etachoice in the Matlab/KINSOL interface, a missing error case in
KINPrintInfo, and avoiding an exponential overflow in the evaluation of omega.

14.41 Changes to SUNDIALS in release 2.4.0

Added a CMake-based build option in addition to the one based on autotools.

The user interface has been further refined. Some of the API changes involve:

(a) a reorganization of all linear solver modules into two families (besides the existing family of scaled preconditioned
iterative linear solvers, the direct solvers, including new LAPACK-based ones, were also organized into a direct
family);

(b) maintaining a single pointer to user data, optionally specified through a Set-type function; and

(c) a general streamlining of the preconditioner modules distributed with the solvers.

Added interfaces to LAPACK linear solvers for dense and banded matrices to all packages.

An option was added to specify which direction of zero-crossing is to be monitored while performing rootfinding in
CVODE(S) and IDA(S).

CVODES includes several new features related to sensitivity analysis, among which are:

(a) support for integration of quadrature equations depending on both the states and forward sensitivity (and thus
support for forward sensitivity analysis of quadrature equations),

(b) support for simultaneous integration of multiple backward problems based on the same underlying ODE (e.g.,
for use in an forward-over-adjoint method for computing second order derivative information),

(c) support for backward integration of ODEs and quadratures depending on both forward states and sensitivities
(e.g., for use in computing second-order derivative information), and

(d) support for reinitialization of the adjoint module.

Moreover, the prototypes of all functions related to integration of backward problems were modified to support the
simultaneous integration of multiple problems.

All backward problems defined by the user are internally managed through a linked list and identified in the user
interface through a unique identifier.

14.41. Changes to SUNDIALS in release 2.4.0 355

User Documentation for KINSOL, v7.1.0

14.42 Changes to SUNDIALS in release 2.3.0

New Features and Enhancements

The main changes in this release involve a rearrangement of the entire SUNDIALS source tree. At the user interface
level, the main impact is in the mechanism of including SUNDIALS header files which must now include the relative
path e.g., #include <cvode/cvode.h> as all exported header files are now installed in separate subdirectories of the
installation include directory.

The functions in the generic dense linear solver (sundials_dense and sundials_smalldense) were modified to
work for rectangular m × n matrices (m ≤ n), while the factorization and solution functions were renamed to
DenseGETRF / denGETRF and DenseGETRS / denGETRS, respectively. The factorization and solution functions in
the generic band linear solver were renamed BandGBTRF and BandGBTRS, respectively.

In IDA, the user interface to the consistent initial conditions calculations was modified. The IDACalcIC() arguments
t0, yy0, and yp0 were removed and a new function, IDAGetConsistentIC() is provided.

Bug Fixes

In the CVODES adjoint solver module, the following two bugs were fixed:

• In CVodeF the solver was sometimes incorrectly taking an additional step before returning control to the user (in
CV_NORMAL mode) thus leading to a failure in the interpolated output function.

• In CVodeB, while searching for the current check point, the solver was sometimes reaching outside the integration
interval resulting in a segmentation fault.

In IDA, a bug was fixed in the internal difference-quotient dense and banded Jacobian approximations, related to
the estimation of the perturbation (which could have led to a failure of the linear solver when zero components with
sufficiently small absolute tolerances were present).

14.43 Changes to SUNDIALS in release 2.2.0

New Header Files Names

To reduce the possibility of conflicts, the names of all header files have been changed by adding unique prefixes (e.g.,
cvode_ and sundials_). When using the default installation procedure, the header files are exported under various
subdirectories of the target include directory. For more details see Appendix §10.

Build System Changes

Updated configure script and Makefiles for Fortran examples to avoid C++ compiler errors (now use CC and MPICC to
link only if necessary).

The shared object files are now linked into each SUNDIALS library rater than into a separate libsundials_shared
library.

New Features and Enhancements

Deallocation functions now take the address of the respective memory block pointer as the input argument.

Interfaces to the Scaled Preconditioned Bi-CGstab (SPBCG) and Scaled Preconditioned Transpose-Free Quasi-
Minimal Residual (SPTFQMR) linear solver modules have been added to all packages. At the same time, function
type names for Scaled Preconditioned Iterative Linear Solvers were added for the user-supplied Jacobian-times-vector
and preconditioner setup and solve functions. Additionally, in KINSOL interfaces have been added to the SUNDIALS
DENSE, and BAND linear solvers and include support for nonlinear residual monitoring which can be used to control
Jacobian updating.

A new interpolation method was added to the CVODES adjoint module. The function CVadjMalloc has an additional
argument which can be used to select the desired interpolation scheme.

356 Chapter 14. Changelog

https://sundials.readthedocs.io/en/v7.1.0/idas/Usage/SIM.html#c.IDACalcIC
https://sundials.readthedocs.io/en/v7.1.0/idas/Usage/SIM.html#c.IDAGetConsistentIC

User Documentation for KINSOL, v7.1.0

FIDA, a Fortran-C interface module, was added.

The rootfinding feature was added to IDA, whereby the roots of a set of given functions may be computed during the
integration of the DAE system.

In IDA a user-callable routine was added to access the estimated local error vector.

In the KINSOL Fortran interface module, FKINSOL, optional inputs are now set using FKINSETIIN (integer inputs),
FKINSETRIN (real inputs), and FKINSETVIN (vector inputs). Optional outputs are still obtained from the IOUT and
ROUT arrays which are owned by the user and passed as arguments to FKINMALLOC.

14.44 Changes to SUNDIALS in release 2.1.1

The function N_VCloneEmpty was added to the global vector operations table.

A minor bug was fixed in the interpolation functions of the adjoint CVODES module.

14.45 Changes to SUNDIALS in release 2.1.0

The user interface has been further refined. Several functions used for setting optional inputs were combined into a
single one.

In CVODE(S) and IDA, an optional user-supplied routine for setting the error weight vector was added.

Additionally, to resolve potential variable scope issues, all SUNDIALS solvers release user data right after its use.

The build systems has been further improved to make it more robust.

14.46 Changes to SUNDIALS in release 2.0.2

Fixed autoconf-related bug to allow configuration with the PGI Fortran compiler.

Modified the build system to use customized detection of the Fortran name mangling scheme (autoconf’s AC_F77_-
WRAPPERS routine is problematic on some platforms).

A bug was fixed in the CVode function that was potentially leading to erroneous behavior of the rootfinding procedure
on the integration first step.

A new chapter in the User Guide was added - with constants that appear in the user interface.

14.47 Changes to SUNDIALS in release 2.0.1

Build System

Changed the order of compiler directives in header files to avoid compilation errors when using a C++ compiler.

Changed the method of generating sundials_config.h to avoid potential warnings of redefinition of preprocessor
symbols.

New Features

In CVODES the option of activating and deactivating forward sensitivity calculations on successive runs without mem-
ory allocation and deallocation.

Bug Fixes

14.44. Changes to SUNDIALS in release 2.1.1 357

User Documentation for KINSOL, v7.1.0

In CVODES bug fixes related to forward sensitivity computations (possible loss of accuracy on a BDF order increase
and incorrect logic in testing user-supplied absolute tolerances) were made.

14.48 Changes to SUNDIALS in release 2.0.0

Installation of all of SUNDIALS packages has been completely redesigned and is now based on configure scripts.

The major changes from the previous version involve a redesign of the user interface across the entire SUNDIALS
suite. We have eliminated the mechanism of providing optional inputs and extracting optional statistics from the solver
through the iopt and ropt arrays. Instead, packages now provide Set functions to change the default values for various
quantities controlling the solver and Get functions to extract statistics after return from the main solver routine.

Additionally, the interfaces to several user-supplied routines (such as those providing Jacobians and preconditioner in-
formation) were simplified by reducing the number of arguments. The same information that was previously accessible
through such arguments can now be obtained through Get-type functions.

In CVODE and CVODES a rootfinding feature was added, whereby the roots of a set of given functions may be com-
puted during the integration of the ODE system.

Changes to the NVector:

• Removed machEnv, redefined table of vector operations (now contained in the N_Vector structure itself).

• All SUNDIALS functions create new N_Vector variables through cloning, using an N_Vector passed by the
user as a template.

• A particular vector implementation is supposed to provide user-callable constructor and destructor functions.

• Removed the following functions from the structure of vector operations: N_VNew, N_VNew_S, N_VFree, N_-
VFree_S, N_VMake, N_VDispose, N_VGetData, N_VSetData, N_VConstrProdPos, and N_VOneMask.

• Added the following functions to the structure of vector operations: N_VClone, N_VDestroy, N_VSpace, N_-
VGetArrayPointer, N_VSetArrayPointer, and N_VWrmsNormMask.

• Note that nvec_ser and nvec_par are now separate modules outside the shared SUNDIALS module.

Changes to the linear solvers:

• In SPGMR, added a dummy N_Vector argument to be used as a template for cloning.

• In SPGMR, removed N (problem dimension) from the argument list of SpgmrMalloc.

• Replaced iterativ.{c,h} with iterative.{c,h}.

• Modified constant names in iterative.h (preconditioner types are prefixed with PREC_).

• Changed numerical values for MODIFIED_GS (from 0 to 1) and CLASSICAL_GS (from 1 to 2).

Changes to sundialsmath submodule:

• Replaced the internal routine for estimating unit roundoff with definition of unit roundoff from float.h.

• Modified functions to call the appropriate math routines given the precision level specified by the user.

Changes to sundialstypes submodule:

• Removed integertype.

• Added definitions for BIG_REAL, SMALL_REAL, and UNIT_ROUNDOFF using values from float.h based on the
precision.

• Changed definition of macro RCONST to depend on the precision level specified by the user.

358 Chapter 14. Changelog

Bibliography

[1] Xbraid: parallel multigrid in time. http://llnl.gov/casc/xbraid.

[2] AMD ROCm Documentation. https://rocmdocs.amd.com/en/latest/index.html.

[3] Intel oneAPI Programming Guide. https://software.intel.com/content/www/us/en/develop/documentation/
oneapi-programming-guide/top.html.

[4] KLU Sparse Matrix Factorization Library. http://faculty.cse.tamu.edu/davis/suitesparse.html.

[5] NVIDIA CUDA Programming Guide. https://docs.nvidia.com/cuda/index.html.

[6] NVIDIA cuSOLVER Programming Guide. https://docs.nvidia.com/cuda/cusolver/index.html.

[7] NVIDIA cuSPARSE Programming Guide. https://docs.nvidia.com/cuda/cusparse/index.html.

[8] SuperLU_DIST Parallel Sparse Matrix Factorization Library. https://portal.nersc.gov/project/sparse/superlu/
#superlu_dist.

[9] SuperLU_MT Threaded Sparse Matrix Factorization Library. https://portal.nersc.gov/project/sparse/superlu/
#superlu_mt.

[10] Kasia Świrydowicz, Julien Langou, Shreyas Ananthan, Ulrike Yang, and Stephen Thomas. Low synchroniza-
tion gram-schmidt and gmres algorithms. Numerical Linear Algebra with Applications, 28(2):e2343, Oct 2021.
doi:10.1002/nla.2343.

[11] D. G. Anderson. Iterative procedures for nonlinear integral equations. J. Assoc. Comput. Machinery, 12:547–560,
1965. doi:10.1145/321296.321305.

[12] Hartwig Anzt, Terry Cojean, Goran Flegar, Fritz Göbel, Thomas Grützmacher, Pratik Nayak, Tobias Ribizel,
Yuhsiang Mike Tsai, and Enrique S. Quintana-Ortí. Ginkgo: A Modern Linear Operator Algebra Framework for
High Performance Computing. ACM Transactions on Mathematical Software, 48(1):2:1–2:33, February 2022.
URL: https://doi.org/10.1145/3480935 (visited on 2022-02-17), doi:10.1145/3480935.

[13] Cody J Balos, David J Gardner, Carol S Woodward, and Daniel R Reynolds. Enabling GPU accel-
erated computing in the SUNDIALS time integration library. Parallel Computing, 108:102836, 2021.
doi:10.1016/j.parco.2021.102836.

[14] David Boehme, Todd Gamblin, David Beckingsale, Peer-Timo Bremer, Alfredo Gimenez, Matthew LeGendre,
Olga Pearce, and Martin Schulz. Caliper: performance introspection for hpc software stacks. In SC'16: Pro-
ceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis,
550–560. IEEE, 2016. doi:10.1109/SC.2016.46.

[15] P. N. Brown. A local convergence theory for combined inexact-Newton/finite difference projection methods. SIAM
J. Numer. Anal., 24(2):407–434, 1987. doi:10.1137/0724031.

[16] P. N. Brown and A. C. Hindmarsh. Reduced storage matrix methods in stiff ODE systems. J. Appl. Math. & Comp.,
31:49–91, 1989. doi:10.1016/0096-3003(89)90110-0.

[17] P. N. Brown and Y. Saad. Hybrid Krylov Methods for Nonlinear Systems of Equations. SIAM J. Sci. Stat. Comput.,
11:450–481, 1990. doi:10.1137/0911026.

359

http://llnl.gov/casc/xbraid
https://rocmdocs.amd.com/en/latest/index.html
https://software.intel.com/content/www/us/en/develop/documentation/oneapi-programming-guide/top.html
https://software.intel.com/content/www/us/en/develop/documentation/oneapi-programming-guide/top.html
http://faculty.cse.tamu.edu/davis/suitesparse.html
https://docs.nvidia.com/cuda/index.html
https://docs.nvidia.com/cuda/cusolver/index.html
https://docs.nvidia.com/cuda/cusparse/index.html
https://portal.nersc.gov/project/sparse/superlu/#superlu_dist
https://portal.nersc.gov/project/sparse/superlu/#superlu_dist
https://portal.nersc.gov/project/sparse/superlu/#superlu_mt
https://portal.nersc.gov/project/sparse/superlu/#superlu_mt
https://doi.org/10.1002/nla.2343
https://doi.org/10.1145/321296.321305
https://doi.org/10.1145/3480935
https://doi.org/10.1145/3480935
https://doi.org/10.1016/j.parco.2021.102836
https://doi.org/10.1109/SC.2016.46
https://doi.org/10.1137/0724031
https://doi.org/10.1016/0096-3003(89)90110-0
https://doi.org/10.1137/0911026

User Documentation for KINSOL, v7.1.0

[18] G. D. Byrne. Pragmatic Experiments with Krylov Methods in the Stiff ODE Setting. In J.R. Cash and I. Gladwell,
editors, Computational Ordinary Differential Equations, 323–356. Oxford, 1992. Oxford University Press.

[19] Aaron M. Collier and Radu Serban. Example Programs for KINSOL v7.1.0. Technical Report UCRL-SM-208114,
LLNL, 2024.

[20] T. A. Davis and P. N. Ekanathan. Algorithm 907: KLU, a direct sparse solver for circuit simulation problems.
ACM Trans. Math. Softw., 37(3):1–17, 2010. doi:10.1145/1824801.1824814.

[21] R. S. Dembo, S. C. Eisenstat, and T. Steihaug. Inexact Newton Methods. SIAM J. Numer. Anal., 19(2):400–408,
1982. doi:10.1137/0719025.

[22] J. W. Demmel, J. R. Gilbert, and X. S. Li. An Asynchronous Parallel Supernodal Algorithm for Sparse Gaussian
Elimination. SIAM J. Matrix Analysis and Applications, 20(4):915–952, 1999. doi:10.1137/S0895479897317685.

[23] J. E. Dennis and R. B. Schnabel. Numerical Methods for Unconstrained Optimization and Nonlinear Equations.
SIAM, Philadelphia, 1996. doi:10.1137/1.9781611971200.

[24] M.R. Dorr, J.-L. Fattebert, M.E. Wickett, J.F. Belak, and P.E.A. Turchi. A numerical algorithm for the solution
of a phase-field model of polycrystalline materials. Journal of Computational Physics, 229(3):626–641, 2010.
doi:10.1016/j.jcp.2009.09.041.

[25] H. Carter Edwards, Christian R. Trott, and Daniel Sunderland. Kokkos: enabling manycore performance
portability through polymorphic memory access patterns. Journal of Parallel and Distributed Computing,
74(12):3202–3216, 2014. doi:10.1016/j.jpdc.2014.07.003.

[26] S. C. Eisenstat and H. F. Walker. Choosing the Forcing Terms in an Inexact Newton Method. SIAM J. Sci. Comput.,
17(1):16–32, 1996. doi:10.1137/0917003.

[27] H. Fang and Y. Saad. Two classes of secant methods for nonlinear acceleration. Numer. Linear Algebra Appl.,
16(3):197–221, 2009. doi:10.1002/nla.617.

[28] R. W. Freund. A Transpose-Free Quasi-Minimal Residual Algorithm for Non-Hermitian Linear Systems. SIAM
J. Sci. Comp., 14(2):470–482, 1993. doi:10.1137/0914029.

[29] F. X. Giraldo, J. F. Kelly, and E. M. Constantinescu. Implicit-explicit formulations of a three-dimensional nonhy-
drostatic unified model of the atmosphere (numa). SIAM Journal on Scientific Computing, 35(5):B1162–B1194,
2013. doi:10.1137/120876034.

[30] Laura Grigori, James W. Demmel, and Xiaoye S. Li. Parallel symbolic factorization for sparse LU with static
pivoting. SIAM J. Scientific Computing, 29(3):1289–1314, 2007. doi:10.1137/050638102.

[31] Vicente Hernández, José E Román, and Andrés Tomás. A parallel variant of the gram-schmidt process with
reorthogonalization. In PARCO, 221–228. 2005.

[32] M. R. Hestenes and E. Stiefel. Methods of Conjugate Gradients for Solving Linear Systems. J. Research of the
National Bureau of Standards, 49(6):409–436, 1952. doi:10.6028/jres.049.044.

[33] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker, and C. S. Woodward. SUN-
DIALS: Suite of nonlinear and differential/algebraic equation solvers. ACM Trans. Math. Softw., pages 363–396,
2005. doi:10.1145/1089014.1089020.

[34] Alan C. Hindmarsh and Radu Serban. Example Programs for CVODE v7.1.0. Technical Report, LLNL, 2024.
UCRL-SM-208110.

[35] Seth R. Johnson, Andrey Prokopenko, and Katherine J. Evans. Automated fortran-c++ bindings
for large-scale scientific applications. Computing in Science & Engineering, 22(5):84–94, 2020.
doi:10.1109/MCSE.2019.2924204.

[36] C. T. Kelley. Iterative Methods for Solving Linear and Nonlinear Equations. SIAM, Philadelphia, 1995.
doi:10.1137/1.9781611970944.

360 Bibliography

https://doi.org/10.1145/1824801.1824814
https://doi.org/10.1137/0719025
https://doi.org/10.1137/S0895479897317685
https://doi.org/10.1137/1.9781611971200
https://doi.org/10.1016/j.jcp.2009.09.041
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1137/0917003
https://doi.org/10.1002/nla.617
https://doi.org/10.1137/0914029
https://doi.org/10.1137/120876034
https://doi.org/10.1137/050638102
https://doi.org/10.6028/jres.049.044
https://doi.org/10.1145/1089014.1089020
https://doi.org/10.1109/MCSE.2019.2924204
https://doi.org/10.1137/1.9781611970944

User Documentation for KINSOL, v7.1.0

[37] C.A. Kennedy and M.H. Carpenter. Diagonally implicit Runge–Kutta methods for ordinary differential equations.
a review. Technical Report TM-2016-219173, NASA, 2016.

[38] C.A. Kennedy and M.H. Carpenter. Diagonally implicit Runge–Kutta methods for stiff ODEs. Applied Numerical
Mathematics, 146():221–244, 2019. doi:10.1016/j.apnum.2019.07.008.

[39] C.A. Kennedy and M.H. Carpenter. Higher-order additive runge-kutta schemes for ordinary differential equations.
Applied Numerical Mathematics, 136:183–205, 2019. doi:10.1016/j.apnum.2018.10.007.

[40] X. S. Li. An overview of SuperLU: algorithms, implementation, and user interface. ACM Trans. Math. Softw.,
31(3):302–325, September 2005. doi:10.1145/1089014.1089017.

[41] X.S. Li, J.W. Demmel, J.R. Gilbert, L. Grigori, M. Shao, and I. Yamazaki. SuperLU Users' Guide. Technical Re-
port LBNL-44289, Lawrence Berkeley National Laboratory, September 1999. http://crd.lbl.gov/\protect\unhbox\
voidb@x\penalty\@M\xiaoye/SuperLU/. Last update: August 2011.

[42] Xiaoye S. Li and James W. Demmel. SuperLU_DIST: A scalable distributed-memory sparse direct
solver for unsymmetric linear systems. ACM Trans. Mathematical Software, 29(2):110–140, June 2003.
doi:10.1145/779359.779361.

[43] P. A. Lott, H. F. Walker, C. S. Woodward, and U. M. Yang. An accelerated Picard method for nonlinear systems
related to variably saturated flow. Adv. Wat. Resour., 38:92–101, 2012. doi:10.1016/j.advwatres.2011.12.013.

[44] J. M. Ortega and W. C. Rheinbolt. Iterative solution of nonlinear equations in several variables. SIAM, Philadel-
phia, 2000. Originally published in 1970 by Academic Press. doi:10.1137/1.9780898719468.

[45] Y. Saad. A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci. Comput., 14(2):461–469, 1993.
doi:10.1137/0914028.

[46] Y. Saad and M. H. Schultz. GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric
Linear Systems. SIAM J. Sci. Stat. Comp., 7(3):856–869, 1986. doi:10.1137/0907058.

[47] A. Sandu. A class of multirate infinitesimal gark methods. SIAM Journal of Numerical Analysis, 57(5):2300–2327,
2019. doi:10.1137/18M1205492.

[48] Stanimire Tomov, Jack Dongarra, and Marc Baboulin. Towards dense linear algebra for hybrid GPU accelerated
manycore systems. Parallel Computing, 36(5-6):232–240, June 2010. doi:10.1016/j.parco.2009.12.005.

[49] Christian Trott, Luc Berger-Vergiat, David Poliakoff, Sivasankaran Rajamanickam, Damien Lebrun-Grandie,
Jonathan Madsen, Nader Al Awar, Milos Gligoric, Galen Shipman, and Geoff Womeldorff. The kokkos ecosys-
tem: comprehensive performance portability for high performance computing. Computing in Science Engineer-
ing, 23(5):10–18, 2021. doi:10.1109/MCSE.2021.3098509.

[50] Christian R. Trott, Damien Lebrun-Grandié, Daniel Arndt, Jan Ciesko, Vinh Dang, Nathan Ellingwood, Rahulku-
mar Gayatri, Evan Harvey, Daisy S. Hollman, Dan Ibanez, Nevin Liber, Jonathan Madsen, Jeff Miles, David
Poliakoff, Amy Powell, Sivasankaran Rajamanickam, Mikael Simberg, Dan Sunderland, Bruno Turcksin, and
Jeremiah Wilke. Kokkos 3: programming model extensions for the exascale era. IEEE Transactions on Parallel
and Distributed Systems, 33(4):805–817, 2022. doi:10.1109/TPDS.2021.3097283.

[51] H. A. Van Der Vorst. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Non-
symmetric Linear Systems. SIAM J. Sci. Stat. Comp., 13(2):631–644, 1992. doi:10.1137/0913035.

[52] H. F. Walker and P. Ni. Anderson Acceleration for Fixed-Point Iterations. SIAM Jour. Num. Anal.,
49(4):1715–1735, 2011. doi:10.1137/10078356X.

Bibliography 361

https://doi.org/10.1016/j.apnum.2019.07.008
https://doi.org/10.1016/j.apnum.2018.10.007
https://doi.org/10.1145/1089014.1089017
http://crd.lbl.gov/\protect \unhbox \voidb@x \penalty \@M \ xiaoye/SuperLU/
http://crd.lbl.gov/\protect \unhbox \voidb@x \penalty \@M \ xiaoye/SuperLU/
https://doi.org/10.1145/779359.779361
https://doi.org/10.1016/j.advwatres.2011.12.013
https://doi.org/10.1137/1.9780898719468
https://doi.org/10.1137/0914028
https://doi.org/10.1137/0907058
https://doi.org/10.1137/18M1205492
https://doi.org/10.1016/j.parco.2009.12.005
https://doi.org/10.1109/MCSE.2021.3098509
https://doi.org/10.1109/TPDS.2021.3097283
https://doi.org/10.1137/0913035
https://doi.org/10.1137/10078356X

User Documentation for KINSOL, v7.1.0

362 Bibliography

Index

Symbols
_generic_N_Vector (C struct), 85
_generic_N_Vector.content (C member), 85
_generic_N_Vector.ops (C member), 85
_generic_N_Vector.sunctx (C member), 85
_generic_N_Vector_Ops (C struct), 85
_generic_N_Vector_Ops.nvabs (C member), 86
_generic_N_Vector_Ops.nvaddconst (C member),

86
_generic_N_Vector_Ops.nvbufpack (C member), 88
_generic_N_Vector_Ops.nvbufsize (C member), 88
_generic_N_Vector_Ops.nvbufunpack (C member),

88
_generic_N_Vector_Ops.nvclone (C member), 86
_generic_N_Vector_Ops.nvcloneempty (C mem-

ber), 86
_generic_N_Vector_Ops.nvcompare (C member), 87
_generic_N_Vector_Ops.nvconst (C member), 86
_generic_N_Vector_Ops.nvconstrmask (C mem-

ber), 87
_generic_N_Vector_Ops.nvconstrmasklocal (C

member), 88
_generic_N_Vector_Ops.nvconstvectorarray (C

member), 87
_generic_N_Vector_Ops.nvdestroy (C member), 86
_generic_N_Vector_Ops.nvdiv (C member), 86
_generic_N_Vector_Ops.nvdotprod (C member), 87
_generic_N_Vector_Ops.nvdotprodlocal (C mem-

ber), 88
_generic_N_Vector_Ops.nvdotprodmulti (C mem-

ber), 87
_generic_N_Vector_-

Ops.nvdotprodmultiallreduce (C mem-
ber), 88

_generic_N_Vector_Ops.nvdotprodmultilocal (C
member), 88

_generic_N_Vector_Ops.nvgetarraypointer (C
member), 86

_generic_N_Vector_Ops.nvgetcommunicator (C
member), 86

_generic_N_Vector_-
Ops.nvgetdevicearraypointer (C mem-
ber), 86

_generic_N_Vector_Ops.nvgetlength (C member),
86

_generic_N_Vector_Ops.nvgetlocallength (C
member), 86

_generic_N_Vector_Ops.nvgetvectorid (C mem-
ber), 86

_generic_N_Vector_Ops.nvinv (C member), 86
_generic_N_Vector_Ops.nvinvtest (C member), 87
_generic_N_Vector_Ops.nvinvtestlocal (C mem-

ber), 88
_generic_N_Vector_Ops.nvl1norm (C member), 87
_generic_N_Vector_Ops.nvl1normlocal (C mem-

ber), 88
_generic_N_Vector_Ops.nvlinearcombination (C

member), 87
_generic_N_Vector_-

Ops.nvlinearcombinationvectorarray
(C member), 88

_generic_N_Vector_Ops.nvlinearsum (C member),
86

_generic_N_Vector_-
Ops.nvlinearsumvectorarray (C member),
87

_generic_N_Vector_Ops.nvmaxnorm (C member), 87
_generic_N_Vector_Ops.nvmaxnormlocal (C mem-

ber), 88
_generic_N_Vector_Ops.nvmin (C member), 87
_generic_N_Vector_Ops.nvminlocal (C member),

88
_generic_N_Vector_Ops.nvminquotient (C mem-

ber), 87
_generic_N_Vector_Ops.nvminquotientlocal (C

member), 88
_generic_N_Vector_Ops.nvprint (C member), 88
_generic_N_Vector_Ops.nvprintfile (C member),

88
_generic_N_Vector_Ops.nvprod (C member), 86
_generic_N_Vector_Ops.nvscale (C member), 86
_generic_N_Vector_Ops.nvscaleaddmulti (C mem-

ber), 87
_generic_N_Vector_-

Ops.nvscaleaddmultivectorarray (C
member), 88

_generic_N_Vector_Ops.nvscalevectorarray (C
member), 87

_generic_N_Vector_Ops.nvsetarraypointer (C
member), 86

363

User Documentation for KINSOL, v7.1.0

_generic_N_Vector_Ops.nvspace (C member), 86
_generic_N_Vector_Ops.nvwl2norm (C member), 87
_generic_N_Vector_Ops.nvwrmsnorm (C member),

87
_generic_N_Vector_Ops.nvwrmsnormmask (C mem-

ber), 87
_generic_N_Vector_-

Ops.nvwrmsnormmaskvectorarray (C
member), 87

_generic_N_Vector_Ops.nvwrmsnormvectorarray
(C member), 87

_generic_N_Vector_Ops.nvwsqrsumlocal (C mem-
ber), 88

_generic_N_Vector_Ops.nvwsqrsummasklocal (C
member), 88

_generic_SUNLinearSolver (C struct), 211
_generic_SUNLinearSolver.content (C member),

211
_generic_SUNLinearSolver.ops (C member), 211
_generic_SUNLinearSolver.sunctx (C member),

211
_generic_SUNLinearSolver_Ops (C struct), 211
_generic_SUNLinearSolver_Ops.free (C member),

212
_generic_SUNLinearSolver_Ops.getid (C mem-

ber), 211
_generic_SUNLinearSolver_Ops.gettype (C mem-

ber), 211
_generic_SUNLinearSolver_Ops.initialize (C

member), 211
_generic_SUNLinearSolver_Ops.lastflag (C mem-

ber), 211
_generic_SUNLinearSolver_Ops.numiters (C mem-

ber), 211
_generic_SUNLinearSolver_Ops.resid (C mem-

ber), 212
_generic_SUNLinearSolver_Ops.resnorm (C mem-

ber), 211
_generic_SUNLinearSolver_Ops.setatimes (C

member), 211
_generic_SUNLinearSolver_-

Ops.setpreconditioner (C member),
211

_generic_SUNLinearSolver_-
Ops.setscalingvectors (C member),
211

_generic_SUNLinearSolver_Ops.setup (C mem-
ber), 211

_generic_SUNLinearSolver_Ops.setzeroguess (C
member), 211

_generic_SUNLinearSolver_Ops.solve (C mem-
ber), 211

_generic_SUNLinearSolver_Ops.space (C mem-
ber), 212

_generic_SUNMatrix (C struct), 163
_generic_SUNMatrix.content (C member), 163
_generic_SUNMatrix.ops (C member), 163
_generic_SUNMatrix.sunctx (C member), 163
_generic_SUNMatrix_Ops (C struct), 163
_generic_SUNMatrix_Ops.clone (C member), 164
_generic_SUNMatrix_Ops.copy (C member), 164
_generic_SUNMatrix_Ops.destroy (C member), 164
_generic_SUNMatrix_Ops.getid (C member), 164
_generic_SUNMatrix_Ops.matvec (C member), 164
_generic_SUNMatrix_Ops.matvecsetup (C mem-

ber), 164
_generic_SUNMatrix_Ops.scaleadd (C member),

164
_generic_SUNMatrix_Ops.scaleaddi (C member),

164
_generic_SUNMatrix_Ops.space (C member), 164
_generic_SUNMatrix_Ops.zero (C member), 164

C
ccmake, 277
cmake, 281
CMake options

adiak_DIR, 292
AMDGPU_TARGETS, 286
BUILD_ARKODE, 281
BUILD_CVODE, 281
BUILD_CVODES, 281
BUILD_FORTRAN_MODULE_INTERFACE, 285
BUILD_IDA, 281
BUILD_IDAS, 281
BUILD_KINSOL, 281
BUILD_SHARED_LIBS, 281
BUILD_STATIC_LIBS, 282
CALIPER_DIR, 291
CMAKE_BUILD_TYPE, 282
CMAKE_C_COMPILER, 282
CMAKE_C_EXTENSIONS, 282
CMAKE_C_FLAGS, 282
CMAKE_C_FLAGS_DEBUG, 282
CMAKE_C_FLAGS_MINSIZEREL, 282
CMAKE_C_FLAGS_RELEASE, 282
CMAKE_C_STANDARD, 282
CMAKE_CUDA_ARCHITECTURES, 284
CMAKE_CXX_COMPILER, 282
CMAKE_CXX_EXTENSIONS, 283
CMAKE_CXX_FLAGS, 283
CMAKE_CXX_FLAGS_DEBUG, 283
CMAKE_CXX_FLAGS_MINSIZEREL, 283
CMAKE_CXX_FLAGS_RELEASE, 283
CMAKE_CXX_STANDARD, 283
CMAKE_Fortran_COMPILER, 283
CMAKE_Fortran_FLAGS, 283
CMAKE_Fortran_FLAGS_DEBUG, 283

364 Index

User Documentation for KINSOL, v7.1.0

CMAKE_Fortran_FLAGS_MINSIZEREL, 283
CMAKE_Fortran_FLAGS_RELEASE, 283
CMAKE_INSTALL_LIBDIR, 284
CMAKE_INSTALL_PREFIX, 284
ENABLE_ADIAK, 292
ENABLE_CALIPER, 291
ENABLE_CUDA, 284
ENABLE_GINKGO, 286
ENABLE_HIP, 286
ENABLE_HYPRE, 287
ENABLE_KLU, 287
ENABLE_KOKKOS, 286
ENABLE_KOKKOS_KERNELS, 286
ENABLE_LAPACK, 287
ENABLE_MAGMA, 287
ENABLE_MPI, 288
ENABLE_ONEMKL, 288
ENABLE_OPENMP, 289
ENABLE_PETSC, 289
ENABLE_PTHREAD, 289
ENABLE_RAJA, 289
ENABLE_SUPERLUDIST, 290
ENABLE_SUPERLUMT, 291
ENABLE_SYCL, 291
ENABLE_XBRAID, 293
EXAMPLES_ENABLE_C, 284
EXAMPLES_ENABLE_CUDA, 284
EXAMPLES_ENABLE_CXX, 284
EXAMPLES_ENABLE_F2003, 284
EXAMPLES_INSTALL, 284
EXAMPLES_INSTALL_PATH, 285
Ginkgo_DIR, 286
HYPRE_INCLUDE_DIR, 287
HYPRE_LIBRARY, 287
KLU_INCLUDE_DIR, 287
KLU_LIBRARY_DIR, 287
Kokkos_DIR, 286
KokkosKernels_DIR, 286
LAPACK_LIBRARIES, 287
MAGMA_DIR, 288
MPI_C_COMPILER, 288
MPI_CXX_COMPILER, 288
MPI_Fortran_COMPILER, 288
MPIEXEC_EXECUTABLE, 288
ONEMKL_DIR, 289
PETSC_DIR, 289
PETSC_INCLUDES, 289
PETSC_LIBRARIES, 289
SUNDIALS_BUILD_WITH_MONITORING, 285
SUNDIALS_BUILD_WITH_PROFILING, 285
SUNDIALS_ENABLE_ERROR_CHECKS, 286
SUNDIALS_ENABLE_EXTERNAL_ADDONS, 286
SUNDIALS_GINKGO_BACKENDS, 286
SUNDIALS_INDEX_SIZE, 292

SUNDIALS_INDEX_TYPE, 292
SUNDIALS_INSTALL_CMAKEDIR, 293
SUNDIALS_LAPACK_CASE, 292
SUNDIALS_LAPACK_UNDERSCORES, 292
SUNDIALS_LOGGING_LEVEL, 285
SUNDIALS_MAGMA_BACKENDS, 288
SUNDIALS_MATH_LIBRARY, 293
SUNDIALS_ONEMKL_USE_GETRF_LOOP, 289
SUNDIALS_ONEMKL_USE_GETRS_LOOP, 289
SUNDIALS_PRECISION, 292
SUNDIALS_RAJA_BACKENDS, 290
SUNDIALS_SYCL_2020_UNSUPPORTED, 291
SUPERLUDIST_DIR, 290
SUPERLUDIST_INCLUDE_DIR, 290
SUPERLUDIST_INCLUDE_DIRS, 290
SUPERLUDIST_LIBRARIES, 290
SUPERLUDIST_LIBRARY_DIR, 290
SUPERLUDIST_OpenMP, 290
SUPERLUMT_INCLUDE_DIR, 291
SUPERLUMT_LIBRARY_DIR, 291
SUPERLUMT_THREAD_TYPE, 291
USE_XSDK_DEFAULTS, 293
XBRAID_DIR, 293
XBRAID_INCLUDES, 293
XBRAID_LIBRARIES, 293

cmake-gui, 277
CopyFromDevice (C++ function), 145
CopyToDevice (C++ function), 145

D
DenseLinearSolver (C++ class), 260
DenseLinearSolver::~DenseLinearSolver (C++

function), 261
DenseLinearSolver::Convert (C++ function), 261
DenseLinearSolver::DenseLinearSolver (C++

function), 260, 261
DenseLinearSolver::operator SUNLinearSolver

(C++ function), 261
DenseLinearSolver::operator= (C++ function), 261
DenseMatrix (C++ class), 199
DenseMatrix::~DenseMatrix (C++ function), 200
DenseMatrix::BlockCols (C++ function), 200
DenseMatrix::BlockRows (C++ function), 200
DenseMatrix::Blocks (C++ function), 200
DenseMatrix::Cols (C++ function), 200
DenseMatrix::Convert (C++ function), 201
DenseMatrix::DenseMatrix (C++ function), 199, 200
DenseMatrix::exec_space (C++ type), 199
DenseMatrix::ExecSpace (C++ function), 200
DenseMatrix::member_type (C++ type), 199
DenseMatrix::memory_space (C++ type), 199
DenseMatrix::operator SUNMatrix (C++ function),

200, 201
DenseMatrix::operator= (C++ function), 200

Index 365

User Documentation for KINSOL, v7.1.0

DenseMatrix::range_policy (C++ type), 199
DenseMatrix::Rows (C++ function), 200
DenseMatrix::size_type (C++ type), 199
DenseMatrix::team_policy (C++ type), 199
DenseMatrix::View (C++ function), 200
DenseMatrix::view_type (C++ type), 199

G
GetDenseMat (C++ function), 201
GetVec (C++ function), 145

K
KINBBDCommFn (C type), 81
KINBBDLocalFn (C type), 81
KINBBDPrecGetNumGfnEvals (C function), 83
KINBBDPrecGetWorkSpace (C function), 83
KINBBDPrecInit (C function), 82
KINCreate (C function), 52
KINFree (C function), 52
KINGetFuncNorm (C function), 70
KINGetJac (C function), 72
KINGetJacNumIters (C function), 72
KINGetLastLinFlag (C function), 75
KINGetLinReturnFlagName (C function), 76
KINGetLinWorkSpace (C function), 73
KINGetNumBacktrackOps (C function), 70
KINGetNumBetaCondFails (C function), 70
KINGetNumFuncEvals (C function), 70
KINGetNumJacEvals (C function), 73
KINGetNumJtimesEvals (C function), 75
KINGetNumLinConvFails (C function), 74
KINGetNumLinFuncEvals (C function), 73
KINGetNumLinIters (C function), 74
KINGetNumNonlinSolvIters (C function), 70
KINGetNumPrecEvals (C function), 74
KINGetNumPrecSolves (C function), 74
KINGetReturnFlagName (C function), 72
KINGetStepLength (C function), 71
KINGetUserData (C function), 71
KINGetWorkSpace (C function), 69
KINInit (C function), 52
KINLsJacFn (C type), 77
KINLsJacTimesVecFn (C type), 78
KINLsPrecSetupFn (C type), 79
KINLsPrecSolveFn (C type), 79
KINPrintAllStats (C function), 71
KINSetConstraints (C function), 63
KINSetDamping (C function), 64
KINSetDampingAA (C function), 65
KINSetDelayAA (C function), 65
KINSetEtaConstValue (C function), 59
KINSetEtaForm (C function), 59
KINSetEtaParams (C function), 60
KINSetFuncNormTol (C function), 62

KINSetJacFn (C function), 66
KINSetJacTimesVecFn (C function), 66
KINSetJacTimesVecSysFn (C function), 67
KINSetLinearSolver (C function), 53
KINSetMAA (C function), 64
KINSetMaxBetaFails (C function), 61
KINSetMaxNewtonStep (C function), 61
KINSetMaxSetupCalls (C function), 58
KINSetMaxSubSetupCalls (C function), 58
KINSetNoInitSetup (C function), 57
KINSetNoMinEps (C function), 61
KINSetNoResMon (C function), 57
KINSetNumMaxIters (C function), 57
KINSetOrthAA (C function), 65
KINSetPreconditioner (C function), 68
KINSetRelErrFunc (C function), 62
KINSetResMonConstValue (C function), 60
KINSetResMonParams (C function), 60
KINSetReturnNewest (C function), 63
KINSetScaledStepTol (C function), 62
KINSetSysFunc (C function), 63
KINSetUserData (C function), 56
KINSol (C function), 54
KINSysFn (C type), 76

M
Matrix (C++ class), 197
Matrix::~Matrix (C++ function), 197
Matrix::Convert (C++ function), 197
Matrix::GkoExec (C++ function), 197
Matrix::GkoMtx (C++ function), 197
Matrix::GkoSize (C++ function), 197
Matrix::Matrix (C++ function), 197
Matrix::operator SUNMatrix (C++ function), 197
Matrix::operator= (C++ function), 197

N
N_VAbs (C function), 96
N_VAddConst (C function), 96
N_VBufPack (C function), 105
N_VBufSize (C function), 105
N_VBufUnpack (C function), 105
N_VClone (C function), 93
N_VCloneEmpty (C function), 93
N_VCloneVectorArray (C function), 89
N_VCloneVectorArrayEmpty (C function), 90
N_VCompare (C function), 98
N_VConst (C function), 95
N_VConstrMask (C function), 98
N_VConstrMaskLocal (C function), 103
N_VConstVectorArray (C function), 100
N_VCopyFromDevice_Cuda (C function), 127
N_VCopyFromDevice_Hip (C function), 132
N_VCopyFromDevice_OpenMPDEV (C function), 147

366 Index

User Documentation for KINSOL, v7.1.0

N_VCopyFromDevice_Raja (C function), 142
N_VCopyFromDevice_Sycl (C++ function), 137
N_VCopyOps (C function), 92
N_VCopyToDevice_Cuda (C function), 127
N_VCopyToDevice_Hip (C function), 132
N_VCopyToDevice_OpenMPDEV (C function), 147
N_VCopyToDevice_Raja (C function), 141
N_VCopyToDevice_Sycl (C++ function), 137
N_VDestroy (C function), 94
N_VDestroyVectorArray (C function), 90
N_VDiv (C function), 95
N_VDotProd (C function), 96
N_VDotProdLocal (C function), 102
N_VDotProdMulti (C function), 99
N_VDotProdMultiAllReduce (C function), 104
N_VDotProdMultiLocal (C function), 104
N_Vector (C type), 85
N_Vector_ID (C enum), 92
N_Vector_Ops (C type), 85
N_VEnableConstVectorArray_Cuda (C function), 128
N_VEnableConstVectorArray_Hip (C function), 132
N_VEnableConstVectorArray_ManyVector (C func-

tion), 152
N_VEnableConstVectorArray_MPIManyVector (C

function), 156
N_VEnableConstVectorArray_OpenMP (C function),

116
N_VEnableConstVectorArray_OpenMPDEV (C func-

tion), 148
N_VEnableConstVectorArray_Parallel (C func-

tion), 113
N_VEnableConstVectorArray_ParHyp (C function),

122
N_VEnableConstVectorArray_Petsc (C function),

124
N_VEnableConstVectorArray_Pthreads (C func-

tion), 120
N_VEnableConstVectorArray_Raja (C function), 142
N_VEnableConstVectorArray_Serial (C function),

109
N_VEnableConstVectorArray_Sycl (C++ function),

138
N_VEnableDotProdMulti_Cuda (C function), 127
N_VEnableDotProdMulti_Hip (C function), 132
N_VEnableDotProdMulti_ManyVector (C function),

152
N_VEnableDotProdMulti_MPIManyVector (C func-

tion), 156
N_VEnableDotProdMulti_OpenMP (C function), 116
N_VEnableDotProdMulti_OpenMPDEV (C function),

148
N_VEnableDotProdMulti_Parallel (C function), 112
N_VEnableDotProdMulti_ParHyp (C function), 122
N_VEnableDotProdMulti_Petsc (C function), 124

N_VEnableDotProdMulti_Pthreads (C function), 119
N_VEnableDotProdMulti_Serial (C function), 109
N_VEnableFusedOps_Cuda (C function), 127
N_VEnableFusedOps_Hip (C function), 132
N_VEnableFusedOps_ManyVector (C function), 152
N_VEnableFusedOps_MPIManyVector (C function),

155
N_VEnableFusedOps_OpenMP (C function), 116
N_VEnableFusedOps_OpenMPDEV (C function), 148
N_VEnableFusedOps_Parallel (C function), 112
N_VEnableFusedOps_ParHyp (C function), 122
N_VEnableFusedOps_Petsc (C function), 124
N_VEnableFusedOps_Pthreads (C function), 119
N_VEnableFusedOps_Raja (C function), 142
N_VEnableFusedOps_Serial (C function), 109
N_VEnableFusedOps_Sycl (C++ function), 137
N_VEnableLinearCombination_Cuda (C function),

127
N_VEnableLinearCombination_Hip (C function), 132
N_VEnableLinearCombination_ManyVector (C func-

tion), 152
N_VEnableLinearCombination_MPIManyVector (C

function), 156
N_VEnableLinearCombination_OpenMP (C function),

116
N_VEnableLinearCombination_OpenMPDEV (C func-

tion), 148
N_VEnableLinearCombination_Parallel (C func-

tion), 112
N_VEnableLinearCombination_ParHyp (C function),

122
N_VEnableLinearCombination_Petsc (C function),

124
N_VEnableLinearCombination_Pthreads (C func-

tion), 119
N_VEnableLinearCombination_Raja (C function),

142
N_VEnableLinearCombination_Serial (C function),

109
N_VEnableLinearCombination_Sycl (C++ function),

137
N_VEnableLinearCombinationVectorArray_Cuda

(C function), 128
N_VEnableLinearCombinationVectorArray_Hip (C

function), 133
N_VEnableLinearCombinationVectorArray_-

OpenMP (C function), 116
N_VEnableLinearCombinationVectorArray_Open-

MPDEV (C function), 148
N_VEnableLinearCombinationVectorArray_Par-

allel (C function), 113
N_VEnableLinearCombinationVectorArray_-

ParHyp (C function), 122
N_VEnableLinearCombinationVectorArray_Petsc

Index 367

User Documentation for KINSOL, v7.1.0

(C function), 124
N_VEnableLinearCombinationVectorArray_-

Pthreads (C function), 120
N_VEnableLinearCombinationVectorArray_Raja

(C function), 142
N_VEnableLinearCombinationVectorArray_Se-

rial (C function), 109
N_VEnableLinearCombinationVectorArray_Sycl

(C++ function), 138
N_VEnableLinearSumVectorArray_Cuda (C func-

tion), 127
N_VEnableLinearSumVectorArray_Hip (C function),

132
N_VEnableLinearSumVectorArray_ManyVector (C

function), 152
N_VEnableLinearSumVectorArray_MPIManyVector

(C function), 156
N_VEnableLinearSumVectorArray_OpenMP (C func-

tion), 116
N_VEnableLinearSumVectorArray_OpenMPDEV (C

function), 148
N_VEnableLinearSumVectorArray_Parallel (C

function), 112
N_VEnableLinearSumVectorArray_ParHyp (C func-

tion), 122
N_VEnableLinearSumVectorArray_Petsc (C func-

tion), 124
N_VEnableLinearSumVectorArray_Pthreads (C

function), 120
N_VEnableLinearSumVectorArray_Raja (C func-

tion), 142
N_VEnableLinearSumVectorArray_Serial (C func-

tion), 109
N_VEnableLinearSumVectorArray_Sycl (C++ func-

tion), 138
N_VEnableScaleAddMulti_Cuda (C function), 127
N_VEnableScaleAddMulti_Hip (C function), 132
N_VEnableScaleAddMulti_ManyVector (C function),

152
N_VEnableScaleAddMulti_MPIManyVector (C func-

tion), 156
N_VEnableScaleAddMulti_OpenMP (C function), 116
N_VEnableScaleAddMulti_OpenMPDEV (C function),

148
N_VEnableScaleAddMulti_Parallel (C function),

112
N_VEnableScaleAddMulti_ParHyp (C function), 122
N_VEnableScaleAddMulti_Petsc (C function), 124
N_VEnableScaleAddMulti_Pthreads (C function),

119
N_VEnableScaleAddMulti_Raja (C function), 142
N_VEnableScaleAddMulti_Serial (C function), 109
N_VEnableScaleAddMulti_Sycl (C++ function), 137
N_VEnableScaleAddMultiVectorArray_Cuda (C

function), 128
N_VEnableScaleAddMultiVectorArray_Hip (C func-

tion), 133
N_VEnableScaleAddMultiVectorArray_OpenMP (C

function), 116
N_VEnableScaleAddMultiVectorArray_OpenMPDEV

(C function), 148
N_VEnableScaleAddMultiVectorArray_Parallel

(C function), 113
N_VEnableScaleAddMultiVectorArray_ParHyp (C

function), 122
N_VEnableScaleAddMultiVectorArray_Petsc (C

function), 124
N_VEnableScaleAddMultiVectorArray_Pthreads

(C function), 120
N_VEnableScaleAddMultiVectorArray_Raja (C

function), 142
N_VEnableScaleAddMultiVectorArray_Serial (C

function), 109
N_VEnableScaleAddMultiVectorArray_Sycl (C++

function), 138
N_VEnableScaleVectorArray_Cuda (C function), 127
N_VEnableScaleVectorArray_Hip (C function), 132
N_VEnableScaleVectorArray_ManyVector (C func-

tion), 152
N_VEnableScaleVectorArray_MPIManyVector (C

function), 156
N_VEnableScaleVectorArray_OpenMP (C function),

116
N_VEnableScaleVectorArray_OpenMPDEV (C func-

tion), 148
N_VEnableScaleVectorArray_Parallel (C func-

tion), 112
N_VEnableScaleVectorArray_ParHyp (C function),

122
N_VEnableScaleVectorArray_Petsc (C function),

124
N_VEnableScaleVectorArray_Pthreads (C func-

tion), 120
N_VEnableScaleVectorArray_Raja (C function), 142
N_VEnableScaleVectorArray_Serial (C function),

109
N_VEnableScaleVectorArray_Sycl (C++ function),

138
N_VEnableWrmsNormMaskVectorArray_Cuda (C func-

tion), 128
N_VEnableWrmsNormMaskVectorArray_Hip (C func-

tion), 133
N_VEnableWrmsNormMaskVectorArray_ManyVector

(C function), 152
N_VEnableWrmsNormMaskVectorArray_MPI-

ManyVector (C function), 156
N_VEnableWrmsNormMaskVectorArray_OpenMP (C

function), 116

368 Index

User Documentation for KINSOL, v7.1.0

N_VEnableWrmsNormMaskVectorArray_OpenMPDEV
(C function), 148

N_VEnableWrmsNormMaskVectorArray_Parallel (C
function), 113

N_VEnableWrmsNormMaskVectorArray_ParHyp (C
function), 122

N_VEnableWrmsNormMaskVectorArray_Petsc (C
function), 124

N_VEnableWrmsNormMaskVectorArray_Pthreads (C
function), 120

N_VEnableWrmsNormMaskVectorArray_Serial (C
function), 109

N_VEnableWrmsNormVectorArray_Cuda (C function),
128

N_VEnableWrmsNormVectorArray_Hip (C function),
132

N_VEnableWrmsNormVectorArray_ManyVector (C
function), 152

N_VEnableWrmsNormVectorArray_MPIManyVector
(C function), 156

N_VEnableWrmsNormVectorArray_OpenMP (C func-
tion), 116

N_VEnableWrmsNormVectorArray_OpenMPDEV (C
function), 148

N_VEnableWrmsNormVectorArray_Parallel (C func-
tion), 113

N_VEnableWrmsNormVectorArray_ParHyp (C func-
tion), 122

N_VEnableWrmsNormVectorArray_Petsc (C func-
tion), 124

N_VEnableWrmsNormVectorArray_Pthreads (C func-
tion), 120

N_VEnableWrmsNormVectorArray_Serial (C func-
tion), 109

N_VFreeEmpty (C function), 91
N_VGetArrayPointer (C function), 94
N_VGetArrayPointer_MPIPlusX (C function), 158
N_VGetCommunicator (C function), 94
N_VGetDeviceArrayPointer (C function), 94
N_VGetDeviceArrayPointer_Cuda (C function), 126
N_VGetDeviceArrayPointer_Hip (C function), 131
N_VGetDeviceArrayPointer_OpenMPDEV (C func-

tion), 147
N_VGetDeviceArrayPointer_Raja (C function), 141
N_VGetDeviceArrayPointer_Sycl (C++ function),

136
N_VGetHostArrayPointer_Cuda (C function), 126
N_VGetHostArrayPointer_Hip (C function), 131
N_VGetHostArrayPointer_OpenMPDEV (C function),

147
N_VGetHostArrayPointer_Raja (C function), 141
N_VGetHostArrayPointer_Sycl (C++ function), 136
N_VGetLength (C function), 95
N_VGetLocalLength (C function), 95

N_VGetLocalLength_MPIPlusX (C function), 157
N_VGetLocalLength_Parallel (C function), 112
N_VGetLocalVector_MPIPlusX (C function), 157
N_VGetNumSubvectors_ManyVector (C function), 152
N_VGetNumSubvectors_MPIManyVector (C function),

155
N_VGetSubvector_ManyVector (C function), 151
N_VGetSubvector_MPIManyVector (C function), 155
N_VGetSubvectorArrayPointer_ManyVector (C

function), 151
N_VGetSubvectorArrayPointer_MPIManyVector (C

function), 155
N_VGetSubvectorLocalLength_ManyVector (C func-

tion), 151
N_VGetSubvectorLocalLength_MPIManyVector (C

function), 155
N_VGetVecAtIndexVectorArray (C function), 90
N_VGetVector_ParHyp (C function), 121
N_VGetVector_Petsc (C function), 124
N_VGetVector_Trilinos (C++ function), 149
N_VGetVectorID (C function), 93
N_VInv (C function), 96
N_VInvTest (C function), 98
N_VInvTestLocal (C function), 103
N_VIsManagedMemory_Cuda (C function), 126
N_VIsManagedMemory_Hip (C function), 131
N_VIsManagedMemory_Raja (C function), 141
N_VIsManagedMemory_Sycl (C++ function), 137
N_VL1Norm (C function), 98
N_VL1NormLocal (C function), 102
N_VLinearCombination (C function), 99
N_VLinearCombinationVectorArray (C function),

101
N_VLinearSum (C function), 95
N_VLinearSumVectorArray (C function), 100
N_VMake_Cuda (C function), 126
N_VMake_Hip (C function), 131
N_VMake_MPIManyVector (C function), 154
N_VMake_MPIPlusX (C function), 157
N_VMake_OpenMP (C function), 115
N_VMake_OpenMPDEV (C function), 147
N_VMake_Parallel (C function), 112
N_VMake_ParHyp (C function), 121
N_VMake_Petsc (C function), 123
N_VMake_Pthreads (C function), 119
N_VMake_Raja (C function), 141
N_VMake_Serial (C function), 108
N_VMake_Sycl (C++ function), 136
N_VMake_Trilinos (C++ function), 150
N_VMakeManaged_Cuda (C function), 126
N_VMakeManaged_Hip (C function), 131
N_VMakeManaged_Raja (C function), 141
N_VMakeManaged_Sycl (C++ function), 136

Index 369

User Documentation for KINSOL, v7.1.0

N_VMakeWithManagedAllocator_Cuda (C function),
126

N_VMaxNorm (C function), 97
N_VMaxNormLocal (C function), 102
N_VMin (C function), 97
N_VMinLocal (C function), 102
N_VMinQuotient (C function), 98
N_VMinQuotientLocal (C function), 104
N_VNew_Cuda (C function), 126
N_VNew_Hip (C function), 131
N_VNew_ManyVector (C function), 151
N_VNew_MPIManyVector (C function), 154
N_VNew_OpenMP (C function), 115
N_VNew_OpenMPDEV (C function), 147
N_VNew_Parallel (C function), 112
N_VNew_Pthreads (C function), 119
N_VNew_Raja (C function), 141
N_VNew_Serial (C function), 108
N_VNew_Sycl (C++ function), 136
N_VNewEmpty (C function), 91
N_VNewEmpty_Cuda (C function), 126
N_VNewEmpty_Hip (C function), 131
N_VNewEmpty_OpenMP (C function), 115
N_VNewEmpty_OpenMPDEV (C function), 147
N_VNewEmpty_Parallel (C function), 112
N_VNewEmpty_ParHyp (C function), 121
N_VNewEmpty_Petsc (C function), 123
N_VNewEmpty_Pthreads (C function), 119
N_VNewEmpty_Raja (C function), 141
N_VNewEmpty_Serial (C function), 108
N_VNewEmpty_Sycl (C++ function), 136
N_VNewManaged_Cuda (C function), 126
N_VNewManaged_Hip (C function), 131
N_VNewManaged_Raja (C function), 141
N_VNewManaged_Sycl (C++ function), 136
N_VNewVectorArray (C function), 90
N_VNewWithMemHelp_Cuda (C function), 126
N_VNewWithMemHelp_Hip (C function), 131
N_VNewWithMemHelp_Raja (C function), 141
N_VNewWithMemHelp_Sycl (C++ function), 136
N_VPrint (C function), 105
N_VPrint_Cuda (C function), 127
N_VPrint_Hip (C function), 132
N_VPrint_OpenMP (C function), 115
N_VPrint_OpenMPDEV (C function), 147
N_VPrint_Parallel (C function), 112
N_VPrint_ParHyp (C function), 121
N_VPrint_Petsc (C function), 124
N_VPrint_Pthreads (C function), 119
N_VPrint_Raja (C function), 142
N_VPrint_Serial (C function), 108
N_VPrint_Sycl (C++ function), 137
N_VPrintFile (C function), 105
N_VPrintFile_Cuda (C function), 127

N_VPrintFile_Hip (C function), 132
N_VPrintFile_OpenMP (C function), 116
N_VPrintFile_OpenMPDEV (C function), 147
N_VPrintFile_Parallel (C function), 112
N_VPrintFile_ParHyp (C function), 122
N_VPrintFile_Petsc (C function), 124
N_VPrintFile_Pthreads (C function), 119
N_VPrintFile_Raja (C function), 142
N_VPrintFile_Serial (C function), 108
N_VPrintFile_Sycl (C++ function), 137
N_VProd (C function), 95
N_VScale (C function), 96
N_VScaleAddMulti (C function), 99
N_VScaleAddMultiVectorArray (C function), 101
N_VScaleVectorArray (C function), 100
N_VSetArrayPointer (C function), 94
N_VSetArrayPointer_MPIPlusX (C function), 158
N_VSetDeviceArrayPointer_Sycl (C++ function),

136
N_VSetHostArrayPointer_Sycl (C++ function), 136
N_VSetKernelExecPolicy_Cuda (C function), 126
N_VSetKernelExecPolicy_Hip (C function), 131
N_VSetKernelExecPolicy_Sycl (C++ function), 137
N_VSetSubvectorArrayPointer_ManyVector (C

function), 152
N_VSetSubvectorArrayPointer_MPIManyVector (C

function), 155
N_VSetVecAtIndexVectorArray (C function), 91
N_VSpace (C function), 94
N_VWL2Norm (C function), 97
N_VWrmsNorm (C function), 97
N_VWrmsNormMask (C function), 97
N_VWrmsNormMaskVectorArray (C function), 101
N_VWrmsNormVectorArray (C function), 100
N_VWSqrSumLocal (C function), 103
N_VWSqrSumMaskLocal (C function), 103
NV_COMM_P (C macro), 111
NV_CONTENT_OMP (C macro), 114
NV_CONTENT_OMPDEV (C macro), 146
NV_CONTENT_P (C macro), 110
NV_CONTENT_PT (C macro), 118
NV_CONTENT_S (C macro), 107
NV_DATA_DEV_OMPDEV (C macro), 146
NV_DATA_HOST_OMPDEV (C macro), 146
NV_DATA_OMP (C macro), 114
NV_DATA_P (C macro), 111
NV_DATA_PT (C macro), 118
NV_DATA_S (C macro), 107
NV_GLOBLENGTH_P (C macro), 111
NV_Ith_OMP (C macro), 115
NV_Ith_P (C macro), 111
NV_Ith_PT (C macro), 118
NV_Ith_S (C macro), 108
NV_LENGTH_OMP (C macro), 115

370 Index

User Documentation for KINSOL, v7.1.0

NV_LENGTH_OMPDEV (C macro), 147
NV_LENGTH_PT (C macro), 118
NV_LENGTH_S (C macro), 108
NV_LOCLENGTH_P (C macro), 111
NV_NUM_THREADS_OMP (C macro), 115
NV_NUM_THREADS_PT (C macro), 118
NV_OWN_DATA_OMP (C macro), 114
NV_OWN_DATA_OMPDEV (C macro), 146
NV_OWN_DATA_P (C macro), 110
NV_OWN_DATA_PT (C macro), 118
NV_OWN_DATA_S (C macro), 107

S
SM_COLS_B (C macro), 183
SM_COLS_D (C macro), 169
SM_COLUMN_B (C macro), 183
SM_COLUMN_D (C macro), 169
SM_COLUMN_ELEMENT_B (C macro), 183
SM_COLUMNS_B (C macro), 182
SM_COLUMNS_D (C macro), 168
SM_COLUMNS_S (C macro), 190
SM_CONTENT_B (C macro), 180
SM_CONTENT_D (C macro), 168
SM_CONTENT_S (C macro), 190
SM_DATA_B (C macro), 182
SM_DATA_D (C macro), 169
SM_DATA_S (C macro), 192
SM_ELEMENT_B (C macro), 183
SM_ELEMENT_D (C macro), 169
SM_INDEXPTRS_S (C macro), 192
SM_INDEXVALS_S (C macro), 192
SM_LBAND_B (C macro), 182
SM_LDATA_B (C macro), 182
SM_LDATA_D (C macro), 168
SM_LDIM_B (C macro), 182
SM_NNZ_S (C macro), 190
SM_NP_S (C macro), 192
SM_ROWS_B (C macro), 180
SM_ROWS_D (C macro), 168
SM_ROWS_S (C macro), 190
SM_SPARSETYPE_S (C macro), 192
SM_SUBAND_B (C macro), 182
SM_UBAND_B (C macro), 182
SUN_COMM_NULL (C macro), 20
SUN_LOGLEVEL_ALL (C enumerator), 29
SUN_LOGLEVEL_DEBUG (C enumerator), 29
SUN_LOGLEVEL_ERROR (C enumerator), 29
SUN_LOGLEVEL_INFO (C enumerator), 29
SUN_LOGLEVEL_NONE (C enumerator), 29
SUN_LOGLEVEL_WARNING (C enumerator), 29
SUN_OUTPUTFORMAT_CSV (C enumerator), 19
SUN_OUTPUTFORMAT_TABLE (C enumerator), 19
SUNAbortErrHandlerFn (C function), 27
SUNATimesFn (C type), 209

SUNBandMatrix (C function), 183
SUNBandMatrix_Cols (C function), 184
SUNBandMatrix_Column (C function), 184
SUNBandMatrix_Columns (C function), 184
SUNBandMatrix_Data (C function), 184
SUNBandMatrix_LData (C function), 184
SUNBandMatrix_LDim (C function), 184
SUNBandMatrix_LowerBandwidth (C function), 184
SUNBandMatrix_Print (C function), 184
SUNBandMatrix_Rows (C function), 184
SUNBandMatrix_StoredUpperBandwidth (C func-

tion), 184
SUNBandMatrix_UpperBandwidth (C function), 184
SUNBandMatrixStorage (C function), 183
sunbooleantype (C type), 19
SUNComm (C type), 20
SUNContext (C type), 20
SUNContext_ClearErrHandlers (C function), 21
SUNContext_Create (C function), 20
SUNContext_Free (C function), 20
SUNContext_GetLastError (C function), 21
SUNContext_GetLogger (C function), 22
SUNContext_GetProfiler (C function), 22
SUNContext_PeekLastError (C function), 21
SUNContext_PopErrHandler (C function), 21
SUNContext_PushErrHandler (C function), 21
SUNContext_SetLogger (C function), 22
SUNContext_SetProfiler (C function), 22
SUNCudaBlockReduceAtomicExecPolicy (C++ func-

tion), 130
SUNCudaBlockReduceExecPolicy (C++ function), 129
SUNCudaExecPolicy (C++ type), 128
SUNCudaGridStrideExecPolicy (C++ function), 129
SUNCudaThreadDirectExecPolicy (C++ function),

129
SUNDenseMatrix (C function), 169
SUNDenseMatrix_Cols (C function), 170
SUNDenseMatrix_Column (C function), 170
SUNDenseMatrix_Columns (C function), 170
SUNDenseMatrix_Data (C function), 170
SUNDenseMatrix_LData (C function), 170
SUNDenseMatrix_Print (C function), 169
SUNDenseMatrix_Rows (C function), 169
sundials::cuda::ExecPolicy (C++ class), 128
sundials::cuda::ExecPolicy::~ExecPolicy

(C++ function), 129
sundials::cuda::ExecPolicy::atomic (C++ func-

tion), 129
sundials::cuda::ExecPolicy::blockSize (C++

function), 128
sundials::cuda::ExecPolicy::clone (C++ func-

tion), 128
sundials::cuda::ExecPolicy::clone_new_-

stream (C++ function), 129

Index 371

User Documentation for KINSOL, v7.1.0

sundials::cuda::ExecPolicy::ExecPolicy (C++
function), 128

sundials::cuda::ExecPolicy::gridSize (C++
function), 128

sundials::cuda::ExecPolicy::stream (C++ func-
tion), 128

sundials::ginkgo::LinearSolver (C++ class), 258
sundials::ginkgo::LinearSolver::~LinearSolver

(C++ function), 258
sundials::ginkgo::LinearSolver::Convert

(C++ function), 259
sundials::ginkgo::LinearSolver::GkoExec

(C++ function), 259
sundials::ginkgo::LinearSolver::GkoFactory

(C++ function), 259
sundials::ginkgo::LinearSolver::GkoSolver

(C++ function), 259
sundials::ginkgo::LinearSolver::LinearSolver

(C++ function), 258
sundials::ginkgo::LinearSolver::NumIters

(C++ function), 259
sundials::ginkgo::LinearSolver::operator

SUNLinearSolver (C++ function), 259
sundials::ginkgo::LinearSolver::operator=

(C++ function), 258
sundials::ginkgo::LinearSolver::ResNorm

(C++ function), 259
sundials::ginkgo::LinearSolver::Setup (C++

function), 259
sundials::ginkgo::LinearSolver::Solve (C++

function), 259
sundials::hip::ExecPolicy (C++ class), 133
sundials::hip::ExecPolicy::~ExecPolicy (C++

function), 133
sundials::hip::ExecPolicy::atomic (C++ func-

tion), 133
sundials::hip::ExecPolicy::blockSize (C++

function), 133
sundials::hip::ExecPolicy::clone (C++ func-

tion), 133
sundials::hip::ExecPolicy::clone_new_stream

(C++ function), 133
sundials::hip::ExecPolicy::ExecPolicy (C++

function), 133
sundials::hip::ExecPolicy::gridSize (C++

function), 133
sundials::hip::ExecPolicy::stream (C++ func-

tion), 133
sundials::sycl::ExecPolicy (C++ class), 138
sundials::sycl::ExecPolicy::~ExecPolicy

(C++ function), 138
sundials::sycl::ExecPolicy::blockSize (C++

function), 138
sundials::sycl::ExecPolicy::clone (C++ func-

tion), 138
sundials::sycl::ExecPolicy::gridSize (C++

function), 138
SUNDIALSFileClose (C function), 43
SUNDIALSFileOpen (C function), 43
SUNDIALSGetVersion (C function), 35
SUNDIALSGetVersionNumber (C function), 36
SUNErrCode (C type), 25
SUNErrHandlerFn (C type), 26
SUNFALSE (C macro), 19
SUNGetErrMsg (C function), 26
SUNHipBlockReduceAtomicExecPolicy (C++ func-

tion), 135
SUNHipBlockReduceExecPolicy (C++ function), 134
SUNHipExecPolicy (C++ type), 133
SUNHipGridStrideExecPolicy (C++ function), 134
SUNHipThreadDirectExecPolicy (C++ function), 134
sunindextype (C type), 19
SUNLinearSolver (C type), 211
SUNLinearSolver_ID (C enum), 214
SUNLinearSolver_Ops (C type), 211
SUNLinearSolver_Type (C enum), 204
SUNLinearSolver_Type.SUNLINEARSOLVER_DIRECT

(C enumerator), 204
SUNLinearSolver_Type.SUNLINEARSOLVER_ITERA-

TIVE (C enumerator), 205
SUNLinearSolver_Type.SUNLINEARSOLVER_MA-

TRIX_EMBEDDED (C enumerator), 205
SUNLinearSolver_Type.SUNLINEARSOLVER_MA-

TRIX_ITERATIVE (C enumerator), 205
SUNLinSol_Band (C function), 219
SUNLinSol_cuSolverSp_batchQR (C function), 256
SUNLinSol_cuSolverSp_batchQR_GetDescription

(C function), 256
SUNLinSol_cuSolverSp_batchQR_GetDeviceSpace

(C function), 256
SUNLinSol_cuSolverSp_batchQR_SetDescription

(C function), 256
SUNLinSol_Dense (C function), 220
SUNLinSol_KLU (C function), 222
SUNLinSol_KLUGetCommon (C function), 223
SUNLinSol_KLUGetCommon.sun_klu_common (C

type), 223
SUNLinSol_KLUGetNumeric (C function), 223
SUNLinSol_KLUGetNumeric.sun_klu_numeric (C

type), 223
SUNLinSol_KLUGetSymbolic (C function), 223
SUNLinSol_KLUGetSymbolic.sun_klu_symbolic (C

type), 223
SUNLinSol_KLUReInit (C function), 222
SUNLinSol_KLUSetOrdering (C function), 223
SUNLinSol_LapackBand (C function), 225
SUNLinSol_LapackDense (C function), 227
SUNLinSol_MagmaDense (C function), 229

372 Index

User Documentation for KINSOL, v7.1.0

SUNLinSol_MagmaDense_SetAsync (C function), 229
SUNLinSol_OneMklDense (C function), 231
SUNLinSol_PCG (C function), 232
SUNLinSol_PCGSetMaxl (C function), 233
SUNLinSol_PCGSetPrecType (C function), 233
SUNLinSol_SPBCGS (C function), 235
SUNLinSol_SPBCGSSetMaxl (C function), 236
SUNLinSol_SPBCGSSetPrecType (C function), 236
SUNLinSol_SPFGMR (C function), 239
SUNLinSol_SPFGMRSetGSType (C function), 240
SUNLinSol_SPFGMRSetMaxRestarts (C function), 240
SUNLinSol_SPFGMRSetPrecType (C function), 239
SUNLinSol_SPGMR (C function), 243
SUNLinSol_SPGMRSetGSType (C function), 243
SUNLinSol_SPGMRSetMaxRestarts (C function), 244
SUNLinSol_SPGMRSetPrecType (C function), 243
SUNLinSol_SPTFQMR (C function), 246
SUNLinSol_SPTFQMRSetMaxl (C function), 247
SUNLinSol_SPTFQMRSetPrecType (C function), 247
SUNLinSol_SuperLUDIST (C function), 250
SUNLinSol_SuperLUDIST_GetBerr (C function), 250
SUNLinSol_SuperLUDIST_GetGridinfo (C function),

250
SUNLinSol_SuperLUDIST_GetLUstruct (C function),

250
SUNLinSol_SuperLUDIST_GetScalePermstruct (C

function), 251
SUNLinSol_SuperLUDIST_GetSOLVEstruct (C func-

tion), 251
SUNLinSol_SuperLUDIST_GetSuperLUOptions (C

function), 251
SUNLinSol_SuperLUDIST_GetSuperLUStat (C func-

tion), 251
SUNLinSol_SuperLUMT (C function), 253
SUNLinSol_SuperLUMTSetOrdering (C function), 253
SUNLinSolFree (C function), 206
SUNLinSolFreeEmpty (C function), 213
SUNLinSolGetID (C function), 205
SUNLinSolGetType (C function), 205
SUNLinSolInitialize (C function), 205
SUNLinSolLastFlag (C function), 208
SUNLinSolNewEmpty (C function), 213
SUNLinSolNumIters (C function), 208
SUNLinSolResid (C function), 208
SUNLinSolResNorm (C function), 208
SUNLinSolSetATimes (C function), 207
SUNLinSolSetPreconditioner (C function), 207
SUNLinSolSetScalingVectors (C function), 207
SUNLinSolSetup (C function), 205
SUNLinSolSetZeroGuess (C function), 207
SUNLinSolSolve (C function), 206
SUNLinSolSpace (C function), 208
SUNLogErrHandlerFn (C function), 27
SUNLogger (C type), 29

SUNLogger_Create (C function), 29
SUNLogger_CreateFromEnv (C function), 29
SUNLogger_Destroy (C function), 31
SUNLogger_Flush (C function), 31
SUNLogger_GetOutputRank (C function), 31
SUNLogger_QueueMsg (C function), 30
SUNLogger_SetDebugFilename (C function), 30
SUNLogger_SetErrorFilename (C function), 30
SUNLogger_SetInfoFilename (C function), 30
SUNLogger_SetWarningFilename (C function), 30
SUNLogLevel (C enum), 29
SUNMatClone (C function), 166
SUNMatCopy (C function), 166
SUNMatCopyOps (C function), 165
SUNMatDestroy (C function), 166
SUNMatFreeEmpty (C function), 165
SUNMatGetID (C function), 166
SUNMatMatvec (C function), 167
SUNMatMatvecSetup (C function), 167
SUNMatNewEmpty (C function), 165
SUNMatrix (C type), 163
SUNMatrix_cuSparse_BlockColumns (C function),

187
SUNMatrix_cuSparse_BlockData (C function), 187
SUNMatrix_cuSparse_BlockNNZ (C function), 187
SUNMatrix_cuSparse_BlockRows (C function), 187
SUNMatrix_cuSparse_Columns (C function), 186
SUNMatrix_cuSparse_CopyFromDevice (C function),

187
SUNMatrix_cuSparse_CopyToDevice (C function),

187
SUNMatrix_cuSparse_Data (C function), 187
SUNMatrix_cuSparse_IndexPointers (C function),

187
SUNMatrix_cuSparse_IndexValues (C function), 187
SUNMatrix_cuSparse_MakeCSR (C function), 186
SUNMatrix_cuSparse_MatDescr (C function), 187
SUNMatrix_cuSparse_NewBlockCSR (C function), 186
SUNMatrix_cuSparse_NewCSR (C function), 186
SUNMatrix_cuSparse_NNZ (C function), 186
SUNMatrix_cuSparse_NumBlocks (C function), 187
SUNMatrix_cuSparse_Rows (C function), 186
SUNMatrix_cuSparse_SetFixedPattern (C func-

tion), 187
SUNMatrix_cuSparse_SetKernelExecPolicy (C

function), 188
SUNMatrix_cuSparse_SparseType (C function), 186
SUNMatrix_ID (C type), 165
SUNMatrix_MagmaDense (C function), 171
SUNMatrix_MagmaDense_Block (C function), 173
SUNMatrix_MagmaDense_BlockColumn (C function),

173
SUNMatrix_MagmaDense_BlockColumns (C function),

172

Index 373

User Documentation for KINSOL, v7.1.0

SUNMatrix_MagmaDense_BlockData (C function), 173
SUNMatrix_MagmaDense_BlockRows (C function), 172
SUNMatrix_MagmaDense_Column (C function), 173
SUNMatrix_MagmaDense_Columns (C function), 172
SUNMatrix_MagmaDense_CopyFromDevice (C func-

tion), 174
SUNMatrix_MagmaDense_CopyToDevice (C function),

174
SUNMatrix_MagmaDense_Data (C function), 173
SUNMatrix_MagmaDense_LData (C function), 172
SUNMatrix_MagmaDense_NumBlocks (C function), 173
SUNMatrix_MagmaDense_Rows (C function), 172
SUNMatrix_MagmaDenseBlock (C function), 171
SUNMatrix_OneMklDense (C++ function), 175
SUNMatrix_OneMklDense_Block (C function), 178
SUNMatrix_OneMklDense_BlockColumn (C function),

178
SUNMatrix_OneMklDense_BlockColumns (C func-

tion), 177
SUNMatrix_OneMklDense_BlockData (C function),

178
SUNMatrix_OneMklDense_BlockLData (C function),

178
SUNMatrix_OneMklDense_BlockRows (C function),

177
SUNMatrix_OneMklDense_Column (C function), 177
SUNMatrix_OneMklDense_Columns (C function), 176
SUNMatrix_OneMklDense_CopyFromDevice (C func-

tion), 179
SUNMatrix_OneMklDense_CopyToDevice (C func-

tion), 179
SUNMatrix_OneMklDense_Data (C function), 177
SUNMatrix_OneMklDense_LData (C function), 177
SUNMatrix_OneMklDense_NumBlocks (C function),

177
SUNMatrix_OneMklDense_Rows (C function), 176
SUNMatrix_OneMklDenseBlock (C++ function), 176
SUNMatrix_SLUNRloc (C function), 195
SUNMatrix_SLUNRloc_OwnData (C function), 195
SUNMatrix_SLUNRloc_Print (C function), 195
SUNMatrix_SLUNRloc_ProcessGrid (C function), 195
SUNMatrix_SLUNRloc_SuperMatrix (C function), 195
SUNMatScaleAdd (C function), 167
SUNMatScaleAddI (C function), 167
SUNMatSpace (C function), 166
SUNMatZero (C function), 166
SUNMemory (C type), 263
SUNMemory.SUNMemory_ (C struct), 263
SUNMemory.SUNMemory_.bytes (C member), 263
SUNMemory.SUNMemory_.own (C member), 263
SUNMemory.SUNMemory_.ptr (C member), 263
SUNMemory.SUNMemory_.type (C member), 263
SUNMemoryHelper (C type), 264
SUNMemoryHelper.SUNMemoryHelper_ (C struct), 264

SUNMemoryHelper.SUNMemoryHelper_.content (C
member), 264

SUNMemoryHelper.SUNMemoryHelper_.ops (C mem-
ber), 264

SUNMemoryHelper.SUNMemoryHelper_.sunctx (C
member), 264

SUNMemoryHelper_Alias (C function), 266
SUNMemoryHelper_Alloc (C function), 265
SUNMemoryHelper_Alloc_Cuda (C function), 269
SUNMemoryHelper_Alloc_Hip (C function), 271
SUNMemoryHelper_Alloc_Sycl (C function), 273
SUNMemoryHelper_Clone (C function), 267
SUNMemoryHelper_Copy (C function), 265
SUNMemoryHelper_Copy_Cuda (C function), 269
SUNMemoryHelper_Copy_Hip (C function), 271
SUNMemoryHelper_Copy_Sycl (C function), 273
SUNMemoryHelper_CopyAsync (C function), 267
SUNMemoryHelper_CopyAsync_Cuda (C function), 270
SUNMemoryHelper_CopyAsync_Hip (C function), 271
SUNMemoryHelper_CopyAsync_Sycl (C function), 274
SUNMemoryHelper_CopyOps (C function), 266
SUNMemoryHelper_Cuda (C function), 268
SUNMemoryHelper_Dealloc (C function), 265
SUNMemoryHelper_Dealloc_Cuda (C function), 269
SUNMemoryHelper_Dealloc_Hip (C function), 271
SUNMemoryHelper_Dealloc_Sycl (C function), 273
SUNMemoryHelper_Destroy (C function), 268
SUNMemoryHelper_GetAllocStats (C function), 267
SUNMemoryHelper_GetAllocStats_Cuda (C func-

tion), 270
SUNMemoryHelper_GetAllocStats_Hip (C function),

272
SUNMemoryHelper_GetAllocStats_Sycl (C func-

tion), 274
SUNMemoryHelper_Hip (C function), 270
SUNMemoryHelper_NewEmpty (C function), 266
SUNMemoryHelper_Ops (C type), 264
SUNMemoryHelper_Ops.SUNMemoryHelper_Ops_ (C

struct), 264
SUNMemoryHelper_Ops.SUNMemoryHelper_Ops_-

.alloc (C member), 264
SUNMemoryHelper_Ops.SUNMemoryHelper_Ops_-

.clone (C member), 264
SUNMemoryHelper_Ops.SUNMemoryHelper_Ops_-

.copy (C member), 264
SUNMemoryHelper_Ops.SUNMemoryHelper_Ops_-

.copyasync (C member), 264
SUNMemoryHelper_Ops.SUNMemoryHelper_Ops_-

.dealloc (C member), 264
SUNMemoryHelper_Ops.SUNMemoryHelper_Ops_-

.destroy (C member), 264
SUNMemoryHelper_Ops.SUNMemoryHelper_Ops_-

.getallocstats (C member), 264
SUNMemoryHelper_Sycl (C function), 272

374 Index

User Documentation for KINSOL, v7.1.0

SUNMemoryHelper_Wrap (C function), 266
SUNMemoryNewEmpty (C function), 263
SUNMemoryType (C enum), 263
SUNMemoryType.SUNMEMTYPE_DEVICE (C enumerator),

264
SUNMemoryType.SUNMEMTYPE_HOST (C enumerator),

264
SUNMemoryType.SUNMEMTYPE_PINNED (C enumerator),

264
SUNMemoryType.SUNMEMTYPE_UVM (C enumerator), 264
SUNMPIAbortErrHandlerFn (C function), 27
SUNOutputFormat (C enum), 19
SUNProfiler (C type), 33
SUNProfiler_Begin (C function), 33
SUNProfiler_Create (C function), 33
SUNProfiler_End (C function), 34
SUNProfiler_Free (C function), 33
SUNProfiler_GetElapsedTime (C function), 34
SUNProfiler_GetTimerResolution (C function), 34
SUNProfiler_Print (C function), 34
SUNProfiler_Reset (C function), 34
SUNPSetupFn (C type), 209
SUNPSolveFn (C type), 209
sunrealtype (C type), 18
SUNSparseFromBandMatrix (C function), 193
SUNSparseFromDenseMatrix (C function), 193
SUNSparseMatrix (C function), 192
SUNSparseMatrix_Columns (C function), 193
SUNSparseMatrix_Data (C function), 194
SUNSparseMatrix_IndexPointers (C function), 194
SUNSparseMatrix_IndexValues (C function), 194
SUNSparseMatrix_NNZ (C function), 193
SUNSparseMatrix_NP (C function), 193
SUNSparseMatrix_Print (C function), 193
SUNSparseMatrix_Realloc (C function), 193
SUNSparseMatrix_Reallocate (C function), 193
SUNSparseMatrix_Rows (C function), 193
SUNSparseMatrix_SparseType (C function), 193
SUNSyclBlockReduceExecPolicy (C++ function), 140
SUNSyclExecPolicy (C++ type), 138
SUNSyclGridStrideExecPolicy (C++ function), 139
SUNSyclThreadDirectExecPolicy (C++ function),

139
SUNTRUE (C macro), 19

V
Vector (C++ class), 144
Vector::~Vector (C++ function), 145
Vector::Convert (C++ function), 145
Vector::exec_space (C++ type), 144
Vector::host_view_type (C++ type), 144
Vector::HostView (C++ function), 145
Vector::Length (C++ function), 145
Vector::memory_space (C++ type), 144

Vector::operator N_Vector (C++ function), 145
Vector::operator= (C++ function), 145
Vector::range_policy (C++ type), 144
Vector::size_type (C++ type), 144
Vector::Vector (C++ function), 144, 145
Vector::View (C++ function), 145
Vector::view_type (C++ type), 144
vector_type (C++ type), 149

Index 375

	Introduction
	Historical Background
	Changes to SUNDIALS in release 7.1.0
	Reading this User Guide
	SUNDIALS License and Notices
	BSD 3-Clause License
	Additional Notice
	SUNDIALS Release Numbers

	Acknowledgments

	Mathematical Considerations
	Basic Newton iteration
	Newton method variants
	Jacobian information update strategy
	Scaling
	Globalization strategy
	Nonlinear iteration stopping criteria
	Additional constraints
	Residual monitoring for Modified Newton method
	Stopping criteria for iterative linear solvers
	Difference quotient Jacobian approximations
	Basic Fixed Point iteration
	Anderson Acceleration
	Anderson Acceleration QR Factorization
	Fixed-point - Anderson Acceleration Stopping Criterion
	Picard - Anderson Acceleration Stopping Criterion

	Code Organization
	Getting Started
	Data Types
	Floating point types
	Integer types used for indexing
	Boolean type
	Output formatting type
	MPI types

	The SUNContext Type
	Implications for task-based programming and multi-threading
	Convenience class for C++ Users

	Error Checking
	Error Handler Functions

	Status and Error Logging
	Enabling Logging
	Logger API
	Example Usage

	Performance Profiling
	Enabling Profiling
	Profiler API
	Example Usage
	Other Considerations

	Getting Version Information
	Fortran Interface
	Data Types
	Notable Fortran/C usage differences
	Creating generic SUNDIALS objects
	Arrays and pointers
	Passing procedure pointers and user data
	Passing NULL to optional parameters
	Working with N_Vector arrays
	Providing file pointers

	Important notes on portability
	Common Issues

	Features for GPU Accelerated Computing
	SUNDIALS GPU Programming Model
	Steps for Using GPU Accelerated SUNDIALS

	Using KINSOL for the Solution of Nonlinear Systems
	Access to library and header files
	A skeleton of the user’s main program
	User-callable functions
	KINSOL initialization and deallocation functions
	Linear solver specification functions
	KINSOL solver function
	Optional input functions
	Linear solver interface optional input functions

	Optional output functions
	Main solver optional output functions
	KINLS linear solver interface optional output functions

	User-supplied functions
	Problem defining function
	Jacobian construction (matrix-based linear solvers)
	Jacobian-vector product (matrix-free linear solvers)
	Preconditioner solve (iterative linear solvers)
	Preconditioner setup (iterative linear solvers)

	A parallel band-block-diagonal preconditioner module
	Alternative to KINSOL for difficult systems

	Vector Data Structures
	Description of the NVECTOR Modules
	NVECTOR Utility Functions
	Implementing a custom NVECTOR
	Support for complex-valued vectors

	Description of the NVECTOR operations
	Standard vector operations
	Fused operations
	Vector array operations
	Local reduction operations
	Single Buffer Reduction Operations
	Exchange operations
	Output operations

	NVECTOR functions used by KINSOL
	The NVECTOR_SERIAL Module
	NVECTOR_SERIAL accessor macros
	NVECTOR_SERIAL functions
	NVECTOR_SERIAL Fortran Interface

	The NVECTOR_PARALLEL Module
	NVECTOR_PARALLEL accessor macros
	NVECTOR_PARALLEL functions
	NVECTOR_PARALLEL Fortran Interface

	The NVECTOR_OPENMP Module
	NVECTOR_OPENMP accessor macros
	NVECTOR_OPENMP functions
	NVECTOR_OPENMP Fortran Interface

	The NVECTOR_PTHREADS Module
	NVECTOR_PTHREADS accessor macros
	NVECTOR_PTHREADS functions
	NVECTOR_PTHREADS Fortran Interface

	The NVECTOR_PARHYP Module
	NVECTOR_PARHYP functions

	The NVECTOR_PETSC Module
	NVECTOR_PETSC functions

	The NVECTOR_CUDA Module
	NVECTOR_CUDA functions
	The SUNCudaExecPolicy Class

	The NVECTOR_HIP Module
	NVECTOR_HIP functions
	The SUNHipExecPolicy Class

	The NVECTOR_SYCL Module
	NVECTOR_SYCL functions
	The SUNSyclExecPolicy Class

	The NVECTOR_RAJA Module
	NVECTOR_RAJA functions

	The NVECTOR_KOKKOS Module
	Using NVECTOR_KOKKOS
	NVECTOR_KOKKOS API

	The NVECTOR_OPENMPDEV Module
	NVECTOR_OPENMPDEV accessor macros
	NVECTOR_OPENMPDEV functions

	The NVECTOR_TRILINOS Module
	NVECTOR_TRILINOS functions

	The NVECTOR_MANYVECTOR Module
	NVECTOR_MANYVECTOR structure
	NVECTOR_MANYVECTOR functions

	The NVECTOR_MPIMANYVECTOR Module
	NVECTOR_MPIMANYVECTOR structure
	NVECTOR_MPIMANYVECTOR functions

	The NVECTOR_MPIPLUSX Module
	NVECTOR_MPIPLUSX structure
	NVECTOR_MPIPLUSX functions

	NVECTOR Examples

	Matrix Data Structures
	Description of the SUNMATRIX Modules
	Description of the SUNMATRIX operations
	The SUNMATRIX_DENSE Module
	The SUNMATRIX_MAGMADENSE Module
	SUNMATRIX_MAGMADENSE Functions
	SUNMATRIX_MAGMADENSE Usage Notes

	The SUNMATRIX_ONEMKLDENSE Module
	SUNMATRIX_ONEMKLDENSE Functions
	Constructors
	Access Matrix Dimensions
	Access Matrix Block Dimensions
	Access Matrix Data
	Access Matrix Block Data
	Copy Data

	SUNMATRIX_ONEMKLDENSE Usage Notes

	The SUNMATRIX_BAND Module
	The SUNMATRIX_CUSPARSE Module
	SUNMATRIX_CUSPARSE Description
	SUNMATRIX_CUSPARSE Functions
	SUNMATRIX_CUSPARSE Usage Notes

	The SUNMATRIX_SPARSE Module
	The SUNMATRIX_SLUNRLOC Module
	SUNMATRIX_SLUNRLOC Functions

	The SUNMATRIX_GINKGO Module
	Compatible Vectors
	Using SUNMATRIX_GINKGO
	SUNMATRIX_GINKGO API

	The SUNMATRIX_KOKKOSDENSE Module
	Using SUNMATRIX_KOKKOSDENSE
	SUNMATRIX_KOKKOSDENSE API

	SUNMATRIX Examples
	SUNMatrix functions used by KINSOL

	Linear Algebraic Solvers
	The SUNLinearSolver API
	SUNLinearSolver core functions
	SUNLinearSolver “set” functions
	SUNLinearSolver “get” functions
	Functions provided by SUNDIALS packages
	SUNLinearSolver return codes
	The generic SUNLinearSolver module
	Compatibility of SUNLinearSolver modules
	Implementing a custom SUNLinearSolver module
	Intended use cases
	Direct linear solvers
	Matrix-free iterative linear solvers
	Matrix-based iterative linear solvers (reusing A)
	Matrix-based iterative linear solvers (current A)
	Application-specific linear solvers with embedded matrix structure

	KINSOL SUNLinearSolver interface
	Lagged matrix information
	Iterative linear solver tolerance
	Matrix-embedded solver incompatibility

	The SUNLinSol_Band Module
	SUNLinSol_Band Usage
	SUNLinSol_Band Description

	The SUNLinSol_Dense Module
	SUNLinSol_Dense Usage
	SUNLinSol_Dense Description

	The SUNLinSol_KLU Module
	SUNLinSol_KLU Usage
	SUNLinSol_KLU Description

	The SUNLinSol_LapackBand Module
	SUNLinSol_LapackBand Usage
	SUNLinSol_LapackBand Description

	The SUNLinSol_LapackDense Module
	SUNLinSol_LapackDense Usage
	SUNLinSol_LapackDense Description

	The SUNLinSol_MagmaDense Module
	SUNLinearSolver_MagmaDense Description
	SUNLinearSolver_MagmaDense Functions
	SUNLinearSolver_MagmaDense Content

	The SUNLinSol_OneMklDense Module
	SUNLinearSolver_OneMklDense Functions
	SUNLinearSolver_OneMklDense Usage Notes

	The SUNLinSol_PCG Module
	SUNLinSol_PCG Usage
	SUNLinSol_PCG Description

	The SUNLinSol_SPBCGS Module
	SUNLinSol_SPBCGS Usage
	SUNLinSol_SPBCGS Description

	The SUNLinSol_SPFGMR Module
	SUNLinSol_SPFGMR Usage
	SUNLinSol_SPFGMR Description

	The SUNLinSol_SPGMR Module
	SUNLinSol_SPGMR Usage
	SUNLinSol_SPGMR Description

	The SUNLinSol_SPTFQMR Module
	SUNLinSol_SPTFQMR Usage
	SUNLinSol_SPTFQMR Description

	The SUNLinSol_SuperLUDIST Module
	SUNLinSol_SuperLUDIST Usage
	SUNLinSol_SuperLUDIST Description

	The SUNLinSol_SuperLUMT Module
	SUNLinSol_SuperLUMT Usage
	SUNLinSol_SuperLUMT Description

	The SUNLinSol_cuSolverSp_batchQR Module
	SUNLinSol_cuSolverSp_batchQR description
	SUNLinSol_cuSolverSp_batchQR functions
	SUNLinSol_cuSolverSp_batchQR content

	The SUNLINEARSOLVER_GINKGO Module
	Using SUNLINEARSOLVER_GINKGO
	SUNLINEARSOLVER_GINKGO API

	The SUNLINEARSOLVER_KOKKOSDENSE Module
	Using SUNLINEARSOLVER_KOKKOSDENSE
	SUNLINEARSOLVER_KOKKOSDENSE API

	SUNLinearSolver Examples

	Tools for Memory Management
	The SUNMemoryHelper API
	Implementation defined operations
	Utility Functions
	Implementation overridable operations with defaults
	Implementing a custom SUNMemoryHelper

	The SUNMemoryHelper_Cuda Implementation
	SUNMemoryHelper_Cuda API Functions

	The SUNMemoryHelper_Hip Implementation
	SUNMemoryHelper_Hip API Functions

	The SUNMemoryHelper_Sycl Implementation
	SUNMemoryHelper_Sycl API Functions

	Acquiring SUNDIALS
	Building and Installing with CMake
	Configuring, building, and installing on Unix-like systems
	Building with the GUI
	Building from the command line

	Configuration options
	Configuration examples
	Working with external Libraries
	Building with Ginkgo
	Building with Kokkos
	Building with LAPACK
	Building with KLU
	Building with SuperLU_DIST
	Building with SuperLU_MT
	Building with PETSc
	Building with hypre
	Building with MAGMA
	Building with oneMKL for SYCL
	Building with CUDA
	Building with HIP
	Building with RAJA
	Building with XBraid

	Testing the build and installation
	Building and Running Examples
	Configuring, building, and installing on Windows
	Installed libraries and exported header files
	Using SUNDIALS in your project
	Using SUNDIALS as a Third Party Library in other CMake Projects
	Table of SUNDIALS libraries and header files
	Installing SUNDIALS on HPC Clusters
	Frontier

	Building with SUNDIALS Addons

	KINSOL Constants
	KINSOL input constants
	KINSOL output constants

	Release History
	Changelog
	Changes to SUNDIALS in release 7.1.0
	Changes to SUNDIALS in release 7.0.0
	Changes to SUNDIALS in release 6.7.0
	Changes to SUNDIALS in release 6.6.2
	Changes to SUNDIALS in release 6.6.1
	Changes to SUNDIALS in release 6.6.0
	Changes to SUNDIALS in release 6.5.1
	Changes to SUNDIALS in release 6.5.0
	Changes to SUNDIALS in release 6.4.1
	Changes to SUNDIALS in release 6.4.0
	Changes to SUNDIALS in release 6.3.0
	Changes to SUNDIALS in release 6.2.0
	Changes to SUNDIALS in release 6.1.1
	Changes to SUNDIALS in release 6.1.0
	Changes to SUNDIALS in release 6.0.0
	Changes to SUNDIALS in release 5.8.0
	Changes to SUNDIALS in release 5.7.0
	Changes to SUNDIALS in release 5.6.1
	Changes to SUNDIALS in release 5.6.0
	Changes to SUNDIALS in release 5.5.0
	Changes to SUNDIALS in release 5.4.0
	Changes to SUNDIALS in release 5.3.0
	Changes to SUNDIALS in release 5.2.0
	Changes to SUNDIALS in release 5.1.0
	Changes to SUNDIALS in release 5.0.0
	Changes to SUNDIALS in release 4.1.0
	Changes to SUNDIALS in release 4.0.2
	Changes to SUNDIALS in release 4.0.1
	Changes to SUNDIALS in release 4.0.0
	Changes to SUNDIALS in release 3.2.1
	Changes to SUNDIALS in release 3.2.0
	Changes to SUNDIALS in release 3.1.2
	Changes to SUNDIALS in release 3.1.1
	Changes to SUNDIALS in release 3.1.0
	Changes to SUNDIALS in release 3.0.0
	Changes to SUNDIALS in release 2.7.0
	Changes to SUNDIALS in release 2.6.2
	Changes to SUNDIALS in release 2.6.1
	Changes to SUNDIALS in release 2.6.0
	Changes to SUNDIALS in release 2.5.0
	Changes to SUNDIALS in release 2.4.0
	Changes to SUNDIALS in release 2.3.0
	Changes to SUNDIALS in release 2.2.0
	Changes to SUNDIALS in release 2.1.1
	Changes to SUNDIALS in release 2.1.0
	Changes to SUNDIALS in release 2.0.2
	Changes to SUNDIALS in release 2.0.1
	Changes to SUNDIALS in release 2.0.0

	Bibliography
	Index

