tc "MACRO SECTION" \f A
MACROS-INTRODUCTIONtc "MACROS-INTRODUCTION" \l 2 \f A - The macro processorxe "The macro processor" is a powerful and useful built-in programming language feature which provides a means of programming any of the many program commands into macros and/or macro functions. Each macro can be given its own user-specified name. After creation, a macro or macro function is executed exactly as any program command by entering its name on the command line and pressing enter. Up to 999 macros may be defined and stored in an easy-to-use macro library. Of these 999 possible macros, 10 may be defined as macro functions. Each macro or macro function may consist of up to 1024 lines, including comments and the end-of-macro instruction "EOM". Each macro or macro function line may contain any program command, any pre-existing macro name or pre-existing macro function name as well as a host of macro processor specific commands . Macros may call other macros in nests up to 20 macros deep without loss of stored data.

THE MACRO DIRECTORYtc "THE MACRO DIRECTORY" \l 2 \f A - All user-created macros are stored (by default) in the directory LIBMACxe "LIBMAC" which resides just below the directory containing the PRG.EXE file. The macro directory file (not to be confused with an operating system disk directory) is the file named MAC.DAT. The macro body records comprising each macro and macro function are contained in up to 999 files with names which range from MAC001.DAT to MAC999.DAT. Whenever a macro name is input as a program command from the CMD level, the appropriate macro is loaded into memory from the macro directory file and then its component commands are executed. Macros are stored in a pre-parsed, semi-compiled format which enhances speed of execution.

MACRO DIRECTORY INITIALIZATIONtc "MACRO DIRECTORY INITIALIZATION" \l 2 \f A - Don't use these two next commands if you already have macros unless you want to destroy them! The MACROxe "macro director file initialization" library directory file MAC.DAT can be created new by entering the CMD level command:

IMFxe "IMF (Command)[MACRO]" - This command followed by the "PROCEED" command will erase all existing macros, so use them only when establishing a new macro library. To avoid accidental destruction of the existing MACRO library, the "IMF" command performs no file initialization unless it is followed immediately by the "PROCEED" command.

PROCEEDxe "PROCEED (Command)[MACRO]" - If the CMD level command "PROCEED" is not immediately entered following the "IMF" command, then the "IMF" command is ignored and canceled. This initialization procedure should be used with EXTREME caution as large amounts of data may be lost if it is used carelessly. The "IMF" command is intended for a user who has no macro directory file or for a user who intentionally desires to clean the slate and begin anew with an empty macro directory file. It is also used by the program when establishing alternate macro directory files in other disk directories. The following pair of commands will erase all existing macros and flush the macro directory. Use them with caution.

IMF

PROCEED

ALTERNATE MACRO DIRECTORIEStc "ALTERNATE MACRO DIRECTORIES" \l 2 \f A - The user may create and use alternate macro directories using the CMD level commands "MACDIR" or "CHGMAC". These commands are also described here and in the CMD section of the manual.

MACDIR or CHGMAC , (qualifier word) xe "MACDIR (Command)[CMD]" xe "CHGMAC (Command)[CMD]" - By default xe "Changing directories, Macros"when the program begins execution, the macro library is located in the directory LIBMAC which sits just below the directory into which the main program was installed and from which the main program runs. The "MACDIR" command is used to change the current macro library directory to the directory named by the first six characters of the "qualifier word". If this directory exists, then only the internal program pointer, pointing to the macro library directory, is changed. If the directory does not yet exist, it is created. After creation of a new macro library directory, a new macro library must be initialized in this new directory via the "IMF" and "PROCEED" commands. The "MACDIR" command makes it possible to have access to as many macro libraries as desired, only limited by available disk space. If "MACDIR" is issued followed by a "?", the name of the current macro library directory will be displayed. The new directory name designated by the "qualifier word" must contain exactly six non-blank characters.

PERMANENT MACROStc "PERMANENT MACROS" \l 2 \f A - Permanent macros are provided with the program and stored in the PERMAC directory. In order to list, edit, create or delete a permanent macro, change to the PERMAC directory, perform the macro operation and then, return to the default macro library directory. The example below, shows how to load the manufacturers lens librarys after the program is first installed. To run a permanent macro, simply issue the macro name. The program automatically searches the permanent macro library if the macro name issued is not in the current macro directory.
LODLENS

MACRO FUNCTIONS tc "MACRO FUNCTIONS" \l 3 \f A- Macro functionsxe "Macro functions" are very much like ordinary macros in that they are created, filed and executed just like macros. For a macro to be a macro function, it must be named either "FUN01", "FUN02", "FUN03", "FUN04", "FUN05", "FUN06", "FUN07", "FUN08", "FUN09","FUN10". A macro with one of these 10 reserved names is not only stored on disk as a regular macro but also kept in live computer memory while the program runs. When one of these macro functions is to be executed, it will be executed "from memory". The process of looking the macro up in the file "MAC.DAT" and then loading the macro from disk to memory is avoided. Macro functions execute many times faster than ordinary macros. This is why they are used in some types of optimization, tolerancing and special surface shape definition. For the rest of this section, macros and macro functions will be referred to simply as macros. When the program first begins to execute, a search of the macro directory file is performed. If there are macros with the reserved macro function names in the macro directory file, they are loaded into memory. If these functions are modified or deleted during program execution using the macro directory file manipulation commands, the macro function memory areas and the macro directory file are modified appropriately.

NEW PROGRAM COMMANDStc "NEW PROGRAM COMMANDS" \l 2 \f A - After xe "A MACRO as a new command"creation and filing, a macro may be used just as a program command is used. The specific form may vary, but the general form is identical to the command input forms described in the INTRO SECTION. The exception is that no explicit provision is made for recognition of the interrogator symbol " ? ".

MACRO INVOCATION LINEtc "MACRO INVOCATION LINE" \l 2 \f A - The program command line into which is typed a macro name in order to execute that macro will henceforth be known as the macro invocationxe "macro invocation line" line. ON THE MACRO INVOCATION LINE ONLY, IF A STRING IS TO BE INPUT, IT MUST BE PECEEDED BY A COLON (:) SO IF THE STRING RTG IS TO BE INPUT AS A STRING, IT MUST BE INPUT AS :RTG. THIS IS THE ONLY PLACE IN THE PROGRAM WHERE A STRING MUST BE PRECEEDED BY A COLON.

ELEMENTS OF A MACROtc "ELEMENTS OF A MACRO" \l 2 \f A - A macro consists of the following elements:

MACRO HEADERtc "MACRO HEADER" \l 3 \f A - The "MACRO" command followed by a unique user defined name up to 8 characters long is known as the macro headerxe "macro header".

BODY OF THE MACROtc "BODY OF A MACRO" \l 3 \f A - The body of a macroxe "body of a macro" may contain any combination of the regular program commands as well as special macro processing commands which will be described later in this section. Essentially any program command which may be issued from the keyboard may be included in the body of a macro. All commands within the macro body are processed sequentially unless special branching commands occur which change that sequential order.

MACRO PROCESSING COMMANDStc "MACRO PROCESSING COMMANDS" \l 3 \f A - Commands xe "macro processing commands"which are valid only inside a macro and which act to modify the execution of a macro may be included in a macro. These commands may modify the order of macro execution, may allow external or internal data transfer and may turn on or off the macro execution tracing and single step execution features.

END OF MACROtc "END OF MACRO" \l 3 \f A - The last line in every macro must be "EOM" which stands for "End Of Macro".

MACRO EXAMPLEStc "MACRO EXAMPLES" \l 2 \f A - For the impatient, here ere two sample macros, one simple, one not so simple. More examples or fragments of samples will be found later in this section.

First, a simple macro. It is just a series of program commands which will execute sequentially. It is used to display both the final surface, paraxial marginal ray height in the YZ-plane and also the EFL, BFL and FFL of the current lens. These commands may be typed into the command line one at a time if desired. A simpler macro editing and macro creation tool will be discussed in a page or two.
MACRO GETPY

(initializes the macro)

SHO PY

(move the marginal paraxial ray height value, PY, at the final surface of the current lens to the X-register and displays it)

FIRD

(display the EFL, BFL and FFL for the current lens)

EOM

(End Of Macro line)
The next macro is a modification of part of the first macro. It allows the user to input the surface number for which the marginal and chief ray heights are to be displayed. If no surface number is issued as the first numeric word of the macro invocation line, then final surface values will be displayed.

MACRO GETPYPCY
(initialize the macro)

NSUB DV –10,,,,,

(set the default value of the first numeric word to –10)

NSUB 0 1

(move the first numeric word of the macro invocation line into the X-register a.k.a "the accumulator")
BNEG A1

(if the X-register is negative, branch to the branch point A1)
BRU A2

(branch unconditionally to branch point A2)
BP A1

(branch point A1)

GET ISN

(get the image surface number and put it into the X-register)

BP A2

(branch point A2)

NSUB 1 0

(move the value in the X-register into the first numeric word of the next command)
SHO PY

(show the PY value at the surface number designated by the first numeric word)

NSUB 1 0

(move the value in the X-register into the first numeric word of the next command)

SHO PCY

(show the PCY value at the surface number designated by the first numeric word)
EOM

(End Of Macro line)

MACRO CREATIONtc "MACRO CREATION" \l 2 \f A - As mentionedxe "macro creation" before, a macro can be created by simple typing it in, one line at a time at the program command prompt. If you do this, it is important to understand what the "MACRO" and "EOM" commands do. Here are the definitions but don't worry about them too much because the next method of macro creation takes care of these two commands automatically.

MACRO (macro name) xe "MACRO (Command)[MACRO]" - The "macro name" should not duplicate the name of a CMD level or macro processor command since all program input commands are always checked against a program command vocabulary list prior to checking against the macro name directory. A macro with the same name as a program command, therefore, can never be executed. The "MACRO" command causes the program to be shifted to the MACRO creation level from the CMD level.

ENDING MACRO CREATIONtc "ENDING MACRO CREATION" \l 3 \f A - As mentioned before, termination of macro creationxe "termination of macro creation" is performed with the command:

EOMxe "EOM (Command)[MACRO]" - The "EOM" command terminates macro creation. If there are macro lines present in memory, the macro is filed in the macro directory file. If no macro lines are present in memory, no macro is filed. The program then returns to the CMD level.

MACRO NAME RULEStc "MACRO NAME RULES" \l 2 \f A - Each macro must have a unique name. xe "macro namming"Macros with identical names are not allowed. A previous macro of the same name is automatically deleted before the new same-named macro is created.

MACRO DELETIONtc "MACRO DELETION" \l 2 \f A - A macro may be explicitly deleted from the macro directory file with the command:

MDEL (macro name) xe "MDEL (Command)[MACRO]" - If the named macro is not found in the macro directory file, a message to that effect is issued and the command is ignored. "MDEL" may be issued as a command from within a macro and; therefore, a macro may be written which executes and then deletes itself! I personally think that is pretty cool!

MACRO EDITING METHODStc "MACRO EDITING METHODS" \l 2 \f A - Macro editing/creation may be performed in two distinctly different ways. The first way is implemented using the "LMEDIT" command and its associated built-in line oriented editor. This method will be discussed at the end of this macro section. It was the original macro editor before full screen editing was available. (Remember DOS?). It is not of much use now but it has been left in the program for use by users who learned this early edit method and who like the pain it produces in their head. The second and best method is a full screen edit mode. The user simply uses the "MEDIT" command described below.

MEDIT (macro name) xe "MEDIT (Command)[MACRO]" - The "MEDIT" commandxe "Editting a macro with MEDIT" can be used either to initiate editing of an existing macro or to create a new macro in the full screen macro-edit (medit) mode. If a macro with the name (macro name) exists, it is automatically sent to the macro full screen editor. If the macro does not exist, and empty macro with the specified name is opened with the program full screen editor. When the full screen editor is closed, the edited macro is read back into the macro directory before the next command is executed in the main program. It may then be listed or executed. After entering the full screen mode, any commands may be placed between the macro header line (the one that starts with the word MACRO) and the "EOM" command. In the full screen mode, a HELP menu is available which opens this MACRO manual section as a PDF file.

NOTE: This command may also be issued via the main program GUI interface menu system.

MREFRESH xe "MREFRESH (Command)[MACRO]" - The "MREFRESH" command can be issued from the CMD level during full screen macro editing. It moves the latest version of the existing macro, from the full screen editor's buffer into the current macro file directory. The macro may then be listed or executed.

NOTE: This command may also be issued via the main program GUI interface menu system.

MACRO DIRECTORY STATUStc "MACRO DIRECTORY STATUS" \l 2 \f A - The status and contents of thexe "viewing an editted macro" macro directory file may be interrogated by entering one or more of the following commands from the program CMD level:

NOTE: These commands may also be issued via the main program GUI interface menu system.

LIST ALL MACROStc "LIST ALL MACROS" \l 3 \f A
MFLxe "MFL (Command)[MACRO]" - The "MFL" command xe "macro names, listing"causes all macros to be displayed in their entirety.

LIST ALL MACRO NAMEStc "LIST ALL MACRO NAMES" \l 3 \f A
MFLNxe "MFLN (Command)[MACRO]" - The "MFLN" command causes a condensed listing of the names, creation times and dates and the first 40 characters of each macro's first comment line.

LIST A SPECIFIC MACROtc "LIST A SPECIFIC MACRO" \l 3 \f A
MFL (macro name)xe "MFL (Command)[MACRO]" - This version of the xe "macro, listing its contents""MFL" command causes all lines comprising the named macro to be listed. If no name is included, all the macros are listed. That mode is useful when outputting all macros to a disk file for backup.

LIST MACRO COMMENTStc "LIST MACRO COMMENTS" \l 3 \f A
MFLC (macro name) xe "MFLC (Command)[MACRO]" - The "MFLC" command causes all leading comment lines of the named macro to be listed.

MSTATxe "MSTAT (Command)[MACRO]" - The "MSTAT" command xe "macro directory file status"generates a message indicating the number of macros currently on file and the remaining number of empty spaces in the macro directory file. The "MFLN" and "MSTAT" commands are combined into one menu item.

MACRO PROCESSING COMMANDS tc "MACRO PROCESSING COMMANDS" \l 2 \f A - Besides being allowed to put almost every program command into a macro, there are special macro xe "macro processing commands, specifics"processing commands available. These commands can, among other things, control the sequence in which a macro executes.

INDEXING COMMANDStc "INDEXING COMMANDS" \l 3 \f A - In order to facilitate the construction of loops and to assist in the transfer of sequenced items of data, six index storage registers are provided. These registers are named "I", "J","K", "L", "M" and"N". Their specific use is discussed in the section on conditional branching commands. Associated with these registers are the test values "ITEST", "JTEST", "KTEST", "LTEST", "MTEST" and "NTEST"xe "JTEST". The values in these test registers are used in connection with the specific branching commands which test the contents of the index registers "I", "J","K", "L", "M" and "N". The index registers and the test registers are initialized to zero at the start of program execution. Only one register name at a time can be used with the "SET" command.

SET (I, J, K, L, M, N, ITEST, JTEST, KTEST, LTEST, MTEST or NTEST) , i xe "SET (Command)[MACRO]" - This version of the xe "register values in macros""SET" command causes the register named by the qualifier word ("I", "J","K", "L", "M", "N", "ITEST", "JTEST", "KTEST", "LTEST", "MTEST" or "NTEST") to be set to the value of "i". The numeric value can be positive or negative and is stored as a double precision. There is a short cut to setting these registers. Enter the register name with an equal sign appended, a space or comma (necessary) and the numerical value to which the register is to be set.

Example:
SET ITEST, 25.4 (or) ITEST= 25.4 sets the ITEST register to 25.4

MOVE (I, J, K, L, M, N, ITEST, JTEST, KTEST, LTEST, MTEST or NTEST) xe "MOVE (Command)[MACRO]" - The "MOVE" command "moves" the numeric value stored in the register indicated by the qualifier word ("I", "J","K", "L", "M", "N", "ITEST", "JTEST", "KTEST", "LTEST", "MTEST" or "NTEST") into the accumulator register. ("MOVE" generally moves a value to the accumulator which is also called the X-register). "MOVE" may be used with all named registers as well as these "test" registers.

Example:
MOVE ITEST moves the value in the ITEST into the X-register

STORE (I, J, K, L, M, N, ITEST, JTEST, KTEST, LTEST, MTEST or NTEST) xe "STORE (Command)[MACRO]" - The "STORE" command causes the number in the accumulator to be stored in the register indicated by the qualifier word ("I", "J","K", "L", "M", "N", "ITEST", "JTEST", "KTEST", "LTEST", "MTEST" or "NTEST"). "STORE" may be used with all named registers.

Example:
STORE ITEST sets the ITEST to whatever value is currently in the X-register.

INCR (I, J, K, L, M or N) , i xe "INCR (Command)[MACRO]" - The "INCR" command causes the value in the indicated index register "I", "J","K", "L", "M" or "N") to be incremented by "i", a numeric value which may be positive or negative. If a numeric value is not specified, the default numeric value of 1.0 is used. "INCR" can be used with all named registers.

Example:
INCR I, .5 increments the value in the I register by 0.5

BRANCHING COMMANDStc "BRANCHING COMMANDS" \l 3 \f A - Branching xe "logical branching in macro execution"commands are used to select alternative sequences of command processing within a macro. Branching commands may appear anywhere within a macro. These branching commands are not quire the "IF-THEN-ELSE-ENDIF" of FORTRAN but their low level nature makes them extremely flexible.

BP (branch point name) xe "BP (Command)[MACRO]" - The "BP" command defines a branch point having the name "branch point name". The branch point name is entered as a qualifier word. A branch point serves only as a marker and may appear anywhere within a macro. Branch commands refer to a branch point by name indicating that if the branch is taken, the next command processed is the command immediately following the named branch point. (This is similar to a LABEL in a programmable calculator program.) Branch point names must begin with one of the 26 characters of the alphabet and may not exceed eight alphanumeric characters in length.

BRQ (branch point name) , (test name) xe "BPQ (Command)[MACRO]" - The "BRQ" command specifies that if the current qualifier word of the macro (the qualifier word used in the macro invocation line or the qualifier as defined by the "QSUB DV" command) matches the indicated name test name, then the next command to be processed is the command immediately following the branch point named "branch point name". If no match exists, the "BRQ" command results in no action and macro processing continues sequentially.

ABOUT LINE COUNTS "lc"tc "ABOUT LINE COUNTS" \l 4 \f A - In the branching commands xe "line counting, fast macro branching"which follow, a numeric line count, or "lc", may be used. If a non-zero "lc" has been entered, it is used instead of the branch point name to determine the location of the next command to be processed when branching takes place. If no entry is made for "lc", then the branch point named "branch point name" is used and the macro is searched for "BP branch point name". The line count "lc" may be positive or negative. It specifies the position of the next command to be processed relative to the position of the branch command when branching takes place. A value of "lc" = -9 indicates a branch to a command which is nine commands back from the branch command. The use of "lc" reduces the need for branch points but makes a macro harder to read. Avoid the use of "lc" unless there is no choice. "lc" is intended for use with macros written using HEXAGON, the old Hughes Aircraft Co. program.

BRERR (branch point name) , lcxe "BRERR (Command)[MACRO]" - The "BRERR" command, which stands for Branch on Read ERRor, causes branching to "BP branch point name" if the read error flag has been set. The read error flag is set by an unsuccessful execution of the "ATON" CMD level command. The "ATON" command is used to attempt to convert the first 23 characters read by the CMD level "PREAD" command into a numeric value. After the branching occurs, the read error flag is cleared.

BPOS (branch point name) , lcxe "BPOS (Command)[MACRO]" or IF(X>0) (branch point name) , lcxe "IF(X>0) (Command)[MACRO]" - The "BPOS" or "IF(X>0)"command causes branching to "BP branch point name" if the value in the accumulator ("X"-register) is positive.

BNEG (branch point name) , lcxe "BNEG (Command)[MACRO]" or IF(X<0) (branch point name) , lcxe "IF(X<0) (Command)[MACRO]" - The "BNEG" or "IF(X<0)"command causes branching to "BP branch point name" if the value in the accumulator is negative.

BZE (branch point name) , lcxe "BZE (Command)[MACRO]" or IF(X=0) (branch point name) , lcxe "IF(X=0) (Command)[MACRO]" - The "BZE" or "IF(X=0)" command causes branching to "BP branch point name" if the value in the accumulator is zero.

IF(X=Y) (branch point name) , lcxe "IF(X=Y) (Command)[MACRO]" - The "IF(X=Y)" command causes branching to "BP branch point name" if the value in the X-register is equal to the value in the Y-register.

IF(X>Y) (branch point name) , lcxe "IF(X>Y) (Command)[MACRO]" - The "IF(X>Y)"command causes branching to "BP branch point name" if the value in the X-register is greater than the value in the Y-register.

IF(X<Y) (branch point name) , lcxe "IF(X<Y) (Command)[MACRO]" - The "IF(X<Y)"command causes branching to "BP branch point name" if the value in the X-register is less than the value in the Y-register.

BRI (branch point name) , lcxe "BRI (Command)[MACRO]" - The "BRI" command causes branching to "BP branch point name" if index register "I" equals "ITEST".

BRJ (branch point name) , lcxe "BRJ (Command)[MACRO]" - The "BRJ" command causes branching to "BP branch point name" if index register "J" equals "JTEST".

BRK (branch point name) , lcxe "BRK (Command)[MACRO]" - The "BRK" command causes branching to "BP branch point name" if index register "K" equals "KTEST".

BRL (branch point name) , lcxe "BRL (Command)[MACRO]" - The "BRL" command causes branching to "BP branch point name" if index register "L" equals "LTEST".

BRM (branch point name) , lcxe "BRM (Command)[MACRO]" - The "BRM" command causes branching to "BP branch point name" if index register "M" equals "MTEST".
BRN (branch point name) , lcxe "BRN (Command)[MACRO]" - The "BRN" command causes branching to "BP branch point name" if index register "N" equals "NTEST".

BRDQ (branch point name) , lcxe "BRDQ (Command)[MACRO]" - The "BRDQ" command causes branching to "BP branch point name" if the qualifier in the macro invocation line was not explicitly entered or provided with a "QSUB" command.

BRDF1 (branch point name) , lcxe "BRDF1 (Command)[MACRO]" - The "BRDF1" command causes branching to "BP branch point name" if the numeric word #1 in the macro invocation line was not explicitly entered or provided with an "NSUB DV" command.

BRDF2 (branch point name) , lcxe "BRDF2 (Command)[MACRO]" - The "BRDF2" command causes branching to "BP branch point name" if the numeric word #2 in the macro invocation line was not explicitly entered or provided with an "NSUB DV" command.

BRDF3 (branch point name) , lcxe "BRDF3 (Command)[MACRO]" - The "BRDF3" command causes branching to "BP branch point name" if the numeric word #3 in the macro invocation line was not explicitly entered or provided with an "NSUB DV" command.

BRDF4 (branch point name) , lcxe "BRDF4 (Command)[MACRO]" - The "BRDF4" command causes branching to "BP branch point name" if the numeric word #4 in the macro invocation line was not explicitly entered or provided with an "NSUB DV" command.

BRDF5 (branch point name) , lcxe "BRDF5 (Command)[MACRO]" - The "BRDF5" command causes branching to "BP branch point name" if the numeric word #5 in the macro invocation line was not explicitly entered or provided with an "NSUB DV" command.

BRU (branch point name) , lcxe "BRU (Command)[MACRO]" - The "BRU" command causes branching unconditionally to "BP branch point name".

BRANCH (branch point name) , i , j , lcxe "BRANCH (Command)[MACRO]" - The "BRANCH" command causes branching to "BP branch point name" if "i"th numeric word in the macro invocation line has the value "j". If no branch point name is given and "lc" is non-zero, then a jump of "lc" lines is performed.

FLAGS IN BRANCHINGtc "FLAGS IN BRANCHING" \l 4 \f A - Up to 20 user flags may be set, xe "flags used in macro branching"tested and cleared. Setting and clearing of these flags is covered in the CMD section of this manual. Two commands can be used to test the value of up to five of these flags at any one time. If fi is positive, then flag fi satisfies the test if flag fi is set on. If fi is negative, then flag fi satisfies the test if flag fi is set off.

BRT (branch point name), f1 , f2 , f3 , f4 , f5xe "BRT (Command)[MACRO]" - The "BRT" command causes branching to "BP branch point name" only if all specified flags test on.

BRF (branch point name), f1 , f2 , f3 , f4 , f5xe "BRF (Command)[MACRO]" - The "BRF" command causes branching to "BP branch point name" if not all specified flags test on.

FLAG EXAMPLEStc "FLAG EXAMPLES" \l 4 \f A - If flags 2, 4 and 5 are set "off" and 1 and 3 are "on", then "BRT ABC , 1 , 3" will cause branching to branch point ABC and "BRF DEF , 2 , 4 , 5" will cause branching to branch point DEF.

TERMINATION OF EXECUTIONtc "TERMINATION OF EXECUTION" \l 3 \f A
RETURNxe "RETURN (Command)[MACRO]" - The "RETURN" xe "macro termination command, RETURN"command terminates a macro's execution and passes control back to the calling macro if there was one. Macro execution also terminates if the bottom of the macro "EOM" is reached and the preceding command is not a branch command.

EXTERNAL DATA TRANSFERtc "EXTERNAL DATA TRANSFER" \l 3 \f A - The following commands are external data transfer commands. External dataxe "macros, external data transfer" transfer commands are used to transfer data from the macro invocation line directly into a normal program command line contained within that macro. External data transfer commands are also used to transfer data to and from the accumulator or X-register. The following external data transfer commands modify the next normal program command encountered after the data transfer command is encountered. Up to ten data transfer commands may precede a normal program command to be modified.

CSUBxe "CSUB (Command)[MACRO]" - The "CSUB" command replaces the command word of the command to be modified with either the qualifier word issued in the macro invocation line or the qualifier word supplied with a "QSUB DV" command.

QSUBxe "QSUB (Command)[MACRO]" - The "QSUB" command replaces the qualifier word of the command to be modified with either the qualifier word issued in the macro invocation line or the qualifier word supplied with a "QSUB DV" command.

QRSUBxe "QRSUB (Command)[MACRO]" - The "QRSUB" command replaces the qualifier word of the command to be modified with the first eight characters of the last string read by a prompted read via the "PREAD" command described in the CMD section of this manual.

SSUBxe "SSUB (Command)[MACRO]" - The "SSUB" command replaces the alphanumeric string of the command to be modified with the alphanumeric string issued in the macro invocation line or the alphanumeric string supplied with an "SSUB DV" command.

CRSUBxe "CRSUB (Command)[MACRO]" - The "CRSUB" command replaces the command word of the command to be modified with the first eight characters of the last string read by a prompted read via the "PREAD" command described in the CMD section of this manual.

DEFAULT INPUT DATAtc "DEFAULT INPUT DATA" \l 3 \f A
QSUB DV (default qualifier word value)xe "QSUB DV (Command)[MACRO]") - The "QSUB DV" command is used to set a non-blank default value for the qualifier word of the macro invocation line. This default value is used only when the macro invocation line contains no qualifier word.

SSUB DV (default alphanumeric string word value)xe "SSUB DV (Command)[MACRO]") - The "SSUB DV" command is used to set a non-blank default value for the alphanumeric string word of the macro invocation line. This default value is used only when the macro invocation line contains no alphanumeric string input word.

ACCSUB (register name) , ixe "ACCSUB (Command)[MACRO]" - The "ACCSUB" command will substitute the named register for the accumulator during the subsequent "i" valid program commands. The accumulator will remain unchanged, and operations which normally operate upon the accumulator will operate upon the named register. All arithmetic processing commands and "STORE", "CSUB", "QSUB", "PUTR" and "WRITE" are valid for "ACCSUB". If a command invalid for accumulator substitution is encountered, it is processed without the substitution. If "i" is not specified, the default value is taken to be 1.0 .

NUMERIC DATA TRANSFERtc "NUMERIC DATA TRANSFER" \l 4 \f A - The following external data transfer commands modify numeric entries. In all cases the first numeric word is the location where the value goes "to" and the second numeric word is the location where the value comes "from". Remember, "TO" and "FROM",

NSUB , j , k , A , B, Cxe "NSUB (Command)[MACRO]" - The "NSUB" command causes the numeric value of numeric word "j" of the command to be modified to be replaced by:

[image: image1.wmf](

)

A

vk

+

 B

C

´

*

*

where "vk" is the numeric value of numeric word "k" of the macro invocation line. Both j and k are restricted to values 0, 1, 2, 3, 4 or 5. 0 refers to the accumulator or X-register. Default values are:

A = 1.0

B = 0.0

C = 1.0

NSUB RA , j , k , l, B, Cxe "NSUB RA (Command)[MACRO]" - The "NSUB RA" command is equivalent to the "NSUB, j , k , A , B , C" command, except that the numeric value of numeric word "l" (lower case L, not 1) of the macro invocation line is used as the multiplicative constant, "A".

NSUB RB , j, k , A , m, Cxe "NSUB RB (Command)[MACRO]" - The "NSUB RB" command is equivalent to the "NSUB, j , k , A , B , C" command, except that the numeric value of numeric word "m" of the macro invocation line is used as the additive constant, "B".

NSUB RC, j , k , A , B , nxe "NSUB RC (Command)[MACRO]" - The "NSUB RC" command is equivalent to the "NSUB , j , k , A , B, C" command, except that the numeric value of numeric word "n" of the macro invocation line is used as the power constant, "C".

NSUB RAB, j , k , l , m , Cxe "NSUB RAB (Command)[MACRO]"
NSUB RAC , j , k , l , B , nxe "NSUB RAC (Command)[MACRO]"
NSUB RBC , j , k , A , m , nxe "NSUB RBC (Command)[MACRO]"
NSUB RABC , j , k , l , m , n xe "NSUB RABC (Command)[MACRO]" - These commands are combinations of the "RA", "RB" and "RC" NSUB commands.

DEFAULT NUMERIC VALUEStc "DEFAULT NUMERIC VALUES" \l 4 \f A
NSUB DV, NW1, NW2, NW3, NW4, NW5xe "NSUB DV (Command)[MACRO]" - The "NSUB DV" command is used to set default values for the five numeric words of the macro invocation command. They are used to replace values of the numeric words left default or blank on the macro invocation line.

NOTES:

1. In all numeric data transfer commands, the second numeric value in any "NSUB" command (except "NSUB DV") is the address in the macro invocation line from which the value to be transferred is to be found.

2. In all numeric data transfer commands, the first numeric value in any "NSUB" command (except "NSUB DV") is the address in the next non-NSUB command to which the value to be transferred will be transferred.

3. In any "NSUB" command, a zero for numeric word j or k always means the accumulator. j = 0 causes transfer into the accumulator register; k = 0 causes transfer from the accumulator register. This is the ONLY case where an "NSUB" command does not modify another command.

OTHER DATA TRANSFERStc "OTHER DATA TRANSFERS" \l 4 \f A
MOVE NW , ixe "MOVE NW (Command)[MACRO]" - The "MOVE NW" xe "macros, other data transfer methods"command is a special case of the "MOVE" command described in the arithmetic processor command section of the CMD section of this manual. The numeric value of the "i" th numeric word of the macro invocation line is moved into the accumulator. If "i" is zero, the value stored in the index register "I" is used in place of "i". If the integer value of the "I" register is equal to 0.0 or is greater than 5.0, then the integer value of the first numeric word is moved into the accumulator.

PUTR (register name) , ixe "PUTR (Command)[MACRO]" - The "PUTR" command causes the numeric value of numeric word "i" of the macro invocation line to be replaced by the value of the number in the named register. If "i" is zero, value of the index register "I" is used in place of "i". If the value of the "I" register is equal to 0 or if it is greater than 5, then the value stored in the named register is moved into the first numeric word of the macro invocation line.

NESTING MOVE WITH NSUBtc "NESTING MOVE WITH NSUB" \l 4 \f A - The "MOVE" command may be nested with "NSUB" commands when NSUBing from the accumulator.

Example:

SET A 3

SET B 4

SET C 5

MOVE C

NSUB 1 0

MOVE A

NSUB 2 0

MOVE B

NSUB 3 0

FOB
is identical to issuing the command

FOB 5 , 3 , 4
The first three commands store 3, 4 and 5 into the registers A, B and C. "MOVE C" moves 5 to the accumulator. "NSUB 1 0" moves the accumulator value into the first numeric word of "FOB" . "MOVE A" moves 3 to the accumulator. "NSUB 2 0" moves the accumulator value into the second numeric word of "FOB" . "MOVE B" moves 4 to the accumulator. "NSUB 3 0" moves the accumulator value into the first numeric word of "FOB" .
MACRO NESTINGtc "MACRO NESTING" \l 3 \f A - Whenxe "macro nesting" a macro is invoked from within another macro, the macro is said to be "nested". If the nested macro invokes another macro, that macro is said to be nested at a level of two. Macro nesting is permitted up to a level of twenty. Two commands are provided to preserve the contents of the named registers (not the general purpose registers, however). These named registers are discussed in the CMD section of this manual.

NOTE: Macro functions, when they are used in the definitions of optimization operands, and macro functions FUN09 and FUN10, when used for special surfaces #5 and #11 definitions, do not support nesting. In these limited circumstances, they may not invoke macros or other macro functions.

SAVExe "SAVE (Command)[MACRO]" - The "SAVE" command causes the current contents of the accumulator (register X) and registers A through H, Y, Z, T, IX, IY, IZ , I, J, ITEST, JTEST, LASTX and LASTIX to be saved.

RELOADxe "RELOAD (Command)[MACRO]" - The "RELOAD" command causes contents of the registers to be restored to the values which were saved by the last "SAVE" command issued at this nesting level. "SAVE" and "RELOAD" are operational at each of the 20 macro nesting levels.

TRACING MACRO EXECUTIONtc "TRACING MACRO EXECUTION" \l 3 \f A - To tracexe "macros, tracing execution" the execution of a macro or macros (useful in debugging), the following two commands are provided:

TRACE ONxe "TRACE ON (Command)[MACRO]" - The "TRACE ON" command commences tracing the execution of all non-macro processing commands at the

current nesting level. If a macro invokes another macro, that macro will only be traced if it contains a "TRACE ON" command as well.

TRACE OFFxe "TRACE OFF (Command)[MACRO]" - This command terminates tracing at the current nesting level.

SINGLE STEP MACRO EXECUTIONtc "SINGLE STEP MACRO EXECUTION" \l 3 \f A - To single step throughxe "macros, single stepping" the execution of a macro or macros (useful in debugging), the following two commands are provided:

SSTEP ONxe "SSTEP ON (Command)[MACRO]" - The "SSTEP ON" command commences single step execution of all commands at the current nesting level. If a macro invokes another macro, that macro will only be single stepped if it contains a "SSTEP ON" command as well. During single stepping, pressing of any key on the keyboard causes the next macro command to be processed. There is an option to stop macro execution.

SSTEP OFFxe "SSTEP OFF (Command)[MACRO]" - This command terminates single step execution at the current nesting level.

PAUSING MACRO EXECUTIONtc "PAUSING MACRO EXECUTION" \l 3 \f A - To pause the execution of a macro at a specific line, the following command is provided:

PAUSExe "PAUSE (Command)[MACRO]" - The "PAUSE" command causes macro execution to be temporarily suspended at the location of the "PAUSE" command. Macro execution is resumed by pressing any key on the keyboard.

AUTOMATIC MACRO TERMINATIONtc "AUTOMATIC MACRO TERMINATION" \l 3 \f A - By default, when a program command is run from within a macro and when that command's execution results in an error message, the macro from which that command was issued and any macros asssociated with that macro which exist in a macro nest will be automatically terminated. This protects the user from runaway macros. If this automatic macro termination is not desired, the following command is provided in order that the user can turn "on" or "off" this automatic macro termination feature.

MACFAIL (ON or OFF or YES or NO)xe "MACFAIL (Command)[MACRO]" - The "MACFAIL" command, issued from the CMD program level, is used to either enable or disable automatic macro termination in the presence of a program error condition. Issued with no input or with the "?", the current state of automatic macro termination will be displayed. "ON" or "YES" is the program default condition

RENAMING / COPYING MACROStc "RENAMING / COPYING MACROS" \l 2 \f A - The following xe "macro copying"

xe "macro renaming"commands are used to rename and copy macros.

MRENAME (current macro name) (new macro name) xe "MRENAME (Command)[MACRO]"- The command "MRENAME" requires explicit qualifier word and alphanumeric string input. The new macro named "new macro name" is created and the current macro named "current macro name" is extracted into it. Then the old macro is deleted.

NOTE: This command may also be issued via the main program GUI interface menu system.

MCOPY (current macro name) (new macro name) xe "MCOPY (Command)[MACRO]" - The command "MCOPY" requires explicit qualifier word and alphanumeric string input. The new macro named "new macro name" is created and the current macro named "current macro name" is extracted into it. The old macro is left on file.

NOTE: This command may also be issued via the main program GUI interface menu system.

MACRO DIRECTORY FILE REPAIRtc "MACRO DIRECTORY FILE REPAIR" \l 2 \f A - In the xe "macro directory file repairs"event that one or more of the MACXXX.DAT macro body data files becomes damaged or is inadvertently deleted, some of the macro commands will issue a message that the macro directory file is damaged. To repair this damage, do the following:

1) From the CMD level, issue an MFLN command and write down the names of the macros listed. This is a list of the macro names in the directory.

2) From the CMD level, issue an MFLC command. Write down the names of all macros which are listed with the MFLC command.

3) Any Macro name which appears in the list from the MFLN command, but not in the list from the MFLC command, should be deleted using the MDEL command. The body of these Macros is already gone; you are simply correcting the macro directory file.

NOTE: If the problem persists, contact Engineering Calculations! We want to make sure you are not seeing a BUG!

MANIPULATING MACRO LIBRARIEStc "MANIPULATING MACRO LIBRARIES" \l 2 \f A - The following xe "macro saving"

xe "macro restoring"commands are used to save and restore the contents of the current macro directory file.

WARNING: These two next two commands should not be used for saving and restoring the macro library when updating the program. The behavior of these commands in this situation is not reliable and alternate macro libraries will be lost!!!!!

MACSAVExe "MACSAVE (Command)[MACRO]" - The command "MACSAVE" causes the contents of the current macro directory to be saved in the ASCII file MACSAV.DAT. This process erases the current contents of the EDITTEXT.DAT file and the previous contents of the MACSAV.DAT file.

NOTE: This command may also be issued via the main program GUI interface menu system.

MACRESTxe "MACREST (Command)[MACRO]" - The command "MACREST" causes the contents of the current MACSAV.DAT file to be loaded into the current macro directory. This process erases the current contents of the EDITTEXT.DAT file and the previous contents of the current macro directory.

NOTE: This command may also be issued via the main program GUI interface menu system.

MACRO EDITING WITH LMEDITtc "MACRO EDITING WITH LMEDIT" \l 2 \f A - As was mentioned earlier, there in an older, line oriented editor which was the original macro editor and which works exactly like the horrible line editor in the HEXAGON program (the program I reverse engineered to make this program). For those who like history and pain, it has been left in the program. It is for old HEXAGON users who didn't have a full screen editor and LIKED IT THAT WAY! The "LMEDIT" commandxe "Editting a macro with LMEDIT" can be used either to initiate editing of an existing macro or to create a new macro in the macro-edit mode:

LMEDIT (macro name) xe "LMEDIT (Command)[MACRO]" - If the named macro already exists in the macro directory file, the named macro is transferred in its entirety from the macro directory file into a memory area where it is available for editing. At this point, the program is shifted to the MEDIT sub-level. If the named macro is new, the message "CREATING A NEW MACRO WITH LMEDIT" is printed, and the body of the new macro may be entered as in the macro creation mode. If a new macro is being created using "LMEDIT", the new macro is written in memory and is not entered into the macro directory file until the "FL" command (to be described) is issued. The key to understanding the use of this LMEDIT mode is the line pointer concept. The lines containing the commands which make up a macro are numbered sequentially in the memory area. The line pointer indicates the macro line number currently under edit consideration. As new macro lines are entered, the pointer is incremented so that it "points to" the most recently entered line. When the "LMEDIT macro name" command is issued, the line pointer is set to zero. As soon as another macro line is entered, the pointer is set to "1", etc. Any entry which is not one of the special editing commands (described in the next section) is entered as a line in the macro body following the position currently indicated by the pointer. Then the pointer is incremented by "1". The "LMEDIT" command may not be issued from within a macro (i.e., a macro cannot LMEDIT another macro or itself).

MACRO EDIT (LMEDIT) COMMANDStc "MACRO EDIT (LMEDIT) COMMANDS" \l 3 \f A
BTxe "BT (Command)[MACRO]" - The xe "macro editting commands""BT" command positions the macro line pointer to the last line (bottom) of the macro. Any input which follows this command is added at the end of the macro and becomes the new last line.

DE , i xe "DE (Command)[MACRO]" - The "DE" command deletes "i" lines from the macro beginning with the current line. If no entry is made for "i", just the current line is deleted (i.e. no entry is equivalent to i = 1). After deletion, the line pointer is positioned at the line following the last line deleted.

EX (macro name) , i , j xe "EX (Command)[MACRO]" - The "EX" command extracts lines "i" through line "j" of the named macro and inserts these lines after the current line of the macro being edited. The line pointer is left at the last line extracted. If the named macro is not found in the macro directory file, a message to that effect is printed and the line pointer is not moved. If no entry is made for "i" or "j", the entire named macro is extracted. If no entry is made for "j" but "i" is given, lines "i" through the end of the named macro are extracted.
GO , i xe "GO (Command)[MACRO]" - The "GO" command sets the macro line pointer at line "i" and displays that line. Any input entered after issuing "GO, i" is inserted after line "i". If no entry is made for "i", the line pointer is positioned at the top of the macro (equivalent to "GO, 0").

LO C (command word search target) xe "LO C (Command)[MACRO]" - The "LO C" command causes the macro to be searched (starting from the line immediately following the current line) for a line containing the specific command word. The search terminates when the end of the macro is reached. If the command word is found, the line containing that word becomes the new current line. If the specified command word is not found, a message to that effect is displayed and the line pointer is positioned at the bottom of the macro.

LO Q (qualifier word search target) xe "LO Q (Command)[MACRO]" - The "LO Q" command functions in the same manner as the "LO C" command, except that the search is made for a qualifier word matching the specified word.

LO CQ (command and qualifier word search target) xe "LO CQ (Command)[MACRO]" - The "LO CQ" command causes the macro to be searched for a line containing both the specified command word and specified qualifier word. The target command and qualifier words are entered as one string using one colon. They are separated by one or more blanks.

LO COQ (command or qualifier word search target) xe "LO COQ (Command)[MACRO]" - The "LO COQ" command causes the macro to be searched for a line containing the specified word, either as a command or as a qualifier word.

NEXTxe "NEXT (Command)[MACRO]" - The "NEXT" command repeats the last search, thus avoiding considerable retyping of locate commands.

PR , i xe "PR (Command)[MACRO]" - The "PR" command causes "i" lines of the macro to be displayed beginning with the current line. If no entry for "i" is made, just the current line is printed. If "PR, i" is entered immediately following "PR", then "i" lines starting with the next line are displayed. The line pointer is always left at the last line displayed.

QUITxe "QUIT (Command)[MACRO]" or QUxe "QU (Command)[MACRO]" - The "QUIT" or "QU" command terminates the macro editing session and returns the program to the CMD level without writing the current macro to the macro directory file. The current macro which was being entered is lost.

RE (new text of line being replaced) xe "RE (Command)[MACRO]" - The "RE" command causes the current macro line to be replaced by the specified text. The macro line pointer remains unchanged.

TPxe "TP (Command)[MACRO]" - The "TP" command positions the macro line pointer to the top of the macro. Any input entered following this command will precede all existing lines in the macro.

FLxe "FL (Command)[MACRO]" - The "FL" command writes the current edited macro into the macro directory file and returns the program to the CMD level. If the macro has no lines, a warning message to that effect is printed and no macro is stored.

ADVANCED STUFF (FOR EXPERTS ONLY)

BUILDING A NEW COMMANDtc "BUILDING A NEW COMMAND" \l 2 \f A - The following commands are almost never needed except if you are writing a macro which is intended to create a new macro or which is intended to have advanced "intelligence". Unless you feel fearless, just ignore what follows. The following xe "Building a new command"commands were designed to be used both from the CMD level and from within macros. They are described here because their real value comes from their use inside macros. The philosophy behind these commands is as follows:

CWORD (the command word of the command under construction) xe "CWORD (Command)[MACRO]" - The command "CWORD" takes qualifier word input. If we were building the command "RTG ALL", the input following "CWORD" would be "RTG".

QWORD (the qualifier word of the command under construction) xe "QWORD (Command)[MACRO]" - The command "QWORD" takes qualifier word input. If we were building the command "RTG ALL", the input following "QWORD" would be "ALL".

STWORD (the alphanumeric string of the command under construction) xe "STWORD (Command)[MACRO]" - The command "STWORD" takes alphanumeric input. If we were building the command "M, Hello world !", the input following "STWORD" would be "Hello world !".

N1WORD , ixe "N1WORD (Command)[MACRO]"The command "N1WORD" takes numeric word #1 input. If we were building the command "RTG , 2", the input following "N1WORD " would be "2".

N2WORD , i andxe "N2WORD (Command)[MACRO]"
N3WORD , i andxe "N3WORD (Command)[MACRO]"
N4WORD , i andxe "N4WORD (Command)[MACRO]"
N5WORD , ixe "N5WORD (Command)[MACRO]" - The commands "N2WORD", "N3WORD", "N4WORD" and "N5WORD" are similar to "N1WORD" and are used for setting up numeric words 2, 3, 4 and 5.

NEWCMD CLEARxe "NEWCMD CLEAR (Command)[MACRO]" - The "NEWCMD CLEAR" command clears the internal program storage areas set aside for the command under construction. This command should be used prior to the building of a new command.

NEWCMD xe "NEWCMD (Command)[MACRO]" - The "NEWCMD" command causes the newly-built program command to executed. In summary, if the command "RTG ALL" was to be constructed and executed from within a macro, the macro lines which could perform the task would be:

	CWORD RTG

	QWORD ALL

	NEWCMD

_1017245698.doc





A

vk

+

 B

C







