
How To Use the POIFS APIs

by Marc Johnson

1. How To Use the POIFS APIs

This document describes how to use the POIFS APIs to read, write, and modify files that
employ a POIFS-compatible data structure to organize their content.

1.1. Target Audience

This document is intended for Java developers who need to use the POIFS APIs to read,
write, or modify files that employ a POIFS-compatible data structure to organize their
content. It is not necessary for developers to understand the POIFS data structures, and an
explanation of those data structures is beyond the scope of this document. It is expected that
the members of the target audience will understand the rudiments of a hierarchical file
system, and familiarity with the event pattern employed by Java APIs such as AWT would be
helpful.

1.2. Glossary

This document attempts to be consistent in its terminology, which is defined here:

Term Definition

Directory A special file that may contain other directories
and documents.

DirectoryEntry Representation of a directory within another
directory.

Document A file containing data, such as word processing
data or a spreadsheet workbook.

DocumentEntry Representation of a document within a directory.

Entry Representation of a file in a directory.

File A named entity, managed and contained by the
file system.

Page 1
Copyright © 2002-2011 The Apache Software Foundation All rights reserved.

File System The POIFS data structures, plus the contained
directories and documents, which are
maintained in a hierarchical directory structure.

Root Directory The directory at the base of a file system. All file
systems have a root directory. The POIFS APIs
will not allow the root directory to be removed or
renamed, but it can be accessed for the purpose
of reading its contents or adding files (directories
and documents) to it.

2. Reading a File System

This section covers reading a file system. There are two ways to read a file system; these
techniques are sketched out in the following table, and then explained in greater depth in the
sections following the table.

Technique Advantages Disadvantages

Conventional Reading
(POIFSFileSystem)

Simpler API similar to reading a
conventional file system.
Can read documents in any
order.

All files are resident in memory,
whether your application needs
them or not.

New NIO driven Reading
(NPOIFSFileSystem)

Simpler API similar to reading a
conventional file system.
Can read documents in any
order.
Lower memory than
POIFSFileSystem

If created from an InputStream,
all files are resident in memory.
(If created from a File, only
certain key structures are)
Currently doesn't support
writing

Event-Driven Reading Reduced footprint -- only the
documents you care about are
processed.
Improved performance -- no
time is wasted reading the
documents you're not
interested in.

More complicated API.
Need to know in advance which
documents you want to read.
No control over the order in
which the documents are read.
No way to go back and get
additional documents except to
re-read the file system, which
may not be possible, e.g., if the
file system is being read from
an input stream that lacks
random access support.

2.1. Conventional Reading

How To Use the POIFS APIs

Page 2
Copyright © 2002-2011 The Apache Software Foundation All rights reserved.

In this technique for reading, the entire file system is loaded into memory, and the entire
directory tree can be walked by an application, reading specific documents at the
application's leisure.

2.1.1. Preparation

Before an application can read a file from the file system, the file system needs to be loaded
into memory. This is done by using the
org.apache.poi.poifs.filesystem.POIFSFileSystem class. Once the file
system has been loaded into memory, the application may need the root directory. The
following code fragment will accomplish this preparation stage:

// need an open InputStream; for a file-based system, this would be appropriate:
// InputStream stream = new FileInputStream(fileName);
POIFSFileSystem fs;
try
{

fs = new POIFSFileSystem(inputStream);
}
catch (IOException e)
{

// an I/O error occurred, or the InputStream did not provide a compatible
// POIFS data structure

}
DirectoryEntry root = fs.getRoot();

Assuming no exception was thrown, the file system can then be read.

Note: loading the file system can take noticeable time, particularly for large file systems.

2.1.2. Reading the Directory Tree

Once the file system has been loaded into memory and the root directory has been obtained,
the root directory can be read. The following code fragment shows how to read the entries in
an org.apache.poi.poifs.filesystem.DirectoryEntry instance:

// dir is an instance of DirectoryEntry ...
for (Entry entry : dir)
{

System.out.println("found entry: " + entry.getName());
if (entry instanceof DirectoryEntry)
{

// .. recurse into this directory
}
else if (entry instanceof DocumentEntry)
{

// entry is a document, which you can read
}

How To Use the POIFS APIs

Page 3
Copyright © 2002-2011 The Apache Software Foundation All rights reserved.

else
{

// currently, either an Entry is a DirectoryEntry or a DocumentEntry,
// but in the future, there may be other entry subinterfaces. The
// internal data structure certainly allows for a lot more entry types.

}
}

2.1.3. Reading a Specific Document

There are a couple of ways to read a document, depending on whether the document resides
in the root directory or in another directory. Either way, you will obtain an
org.apache.poi.poifs.filesystem.DocumentInputStream instance.

2.1.3.1. DocumentInputStream

The DocumentInputStream class is a simple implementation of InputStream that makes a few
guarantees worth noting:

• available() always returns the number of bytes in the document from your current
position in the document.

• markSupported() returns true.
• mark(int limit) ignores the limit parameter; basically the method marks the

current position in the document.
• reset() takes you back to the position when mark() was last called, or to the

beginning of the document if mark() has not been called.
• skip(long n) will take you to your current position + n (but not past the end of the

document).

The behavior of available means you can read in a document in a single read call like
this:

byte[] content = new byte[stream.available()];
stream.read(content);
stream.close();

The combination of mark, reset, and skip provide the basic mechanisms needed for
random access of the document contents.

2.1.3.2. Reading a Document From the Root Directory

If the document resides in the root directory, you can obtain a DocumentInputStream
like this:

// load file system
try

How To Use the POIFS APIs

Page 4
Copyright © 2002-2011 The Apache Software Foundation All rights reserved.

{
DocumentInputStream stream = filesystem.createDocumentInputStream(documentName);
// process data from stream

}
catch (IOException e)
{

// no such document, or the Entry represented by documentName is not a
// DocumentEntry

}

2.1.3.3. Reading a Document From an Arbitrary Directory

A more generic technique for reading a document is to obtain an
org.apache.poi.poifs.filesystem.DirectoryEntry instance for the
directory containing the desired document (recall that you can use getRoot() to obtain the
root directory from its file system). From that DirectoryEntry, you can then obtain a
DocumentInputStream like this:

DocumentEntry document = (DocumentEntry)directory.getEntry(documentName);
DocumentInputStream stream = new DocumentInputStream(document);

2.2. NIO Reading using NPOIFSFileSystem

In this technique for reading, certain key structures are loaded into memory, and the entire
directory tree can be walked by the application, reading specific documents at leisure.

If you create a NPOIFSFileSystem instance from a File, the memory footprint is very small.
However, if you createa a NPOIFSFileSystem instance from an input stream, then the whole
contents must be buffered into memory to allow random access. As such, you should budget
on memory use of up to 20% of the file size when using a File, or up to 120% of the file size
when using an InputStream.

2.2.1. Preparation

Before an application can read a file from the file system, the file system needs to be opened
and core parts processed. This is done using the
org.apache.poi.poifs.filesystem.NPOIFSFileSystem class. Once the file
system has been loaded into memory, the application may need the root directory. The
following code fragment will accomplish this preparation stage:

// This is the most memory efficient way to open the FileSystem
NPOIFSFileSystem fs;
try
{

fs = new NPOIFSFileSystem(new File(filename));
}

How To Use the POIFS APIs

Page 5
Copyright © 2002-2011 The Apache Software Foundation All rights reserved.

catch (IOException e)
{

// an I/O error occurred, or the InputStream did not provide a compatible
// POIFS data structure

}
DirectoryEntry root = fs.getRoot();

// Using an InputStream requires more memory than using a File
NPOIFSFileSystem fs;
try
{

fs = new NPOIFSFileSystem(inputStream);
}
catch (IOException e)
{

// an I/O error occurred, or the InputStream did not provide a compatible
// POIFS data structure

}
DirectoryEntry root = fs.getRoot();

Assuming no exception was thrown, the file system can then be read.

One the NPOFSFileSytem is open, you can manipulate it just like a POIFSFileSytem one.

2.3. Event-Driven Reading

The event-driven API for reading documents is a little more complicated and requires that
your application know, in advance, which files it wants to read. The benefit of using this API
is that each document is in memory just long enough for your application to read it, and
documents that you never read at all are not in memory at all. When you're finished reading
the documents you wanted, the file system has no data structures associated with it at all and
can be discarded.

2.3.1. Preparation

The preparation phase involves creating an instance of
org.apache.poi.poifs.eventfilesystem.POIFSReader and to then register
one or more
org.apache.poi.poifs.eventfilesystem.POIFSReaderListener
instances with the POIFSReader.

POIFSReader reader = new POIFSReader();
// register for everything
reader.registerListener(myOmnivorousListener);
// register for selective files
reader.registerListener(myPickyListener, "foo");

How To Use the POIFS APIs

Page 6
Copyright © 2002-2011 The Apache Software Foundation All rights reserved.

reader.registerListener(myPickyListener, "bar");
// register for selective files
reader.registerListener(myOtherPickyListener, new POIFSDocumentPath(),

"fubar");
reader.registerListener(myOtherPickyListener, new POIFSDocumentPath(

new String[] { "usr", "bin"), "fubar");

2.3.2. POIFSReaderListener

org.apache.poi.poifs.eventfilesystem.POIFSReaderListener is an
interface used to register for documents. When a matching document is read by the
org.apache.poi.poifs.eventfilesystem.POIFSReader, the
POIFSReaderListener instance receives an
org.apache.poi.poifs.eventfilesystem.POIFSReaderEvent instance,
which contains an open DocumentInputStream and information about the document.

A POIFSReaderListener instance can register for individual documents, or it can
register for all documents; once it has registered for all documents, subsequent (and
previous!) registration requests for individual documents are ignored. There is no way to
unregister a POIFSReaderListener.

Thus, it is possible to register a single POIFSReaderListener for multiple documents -
one, some, or all documents. It is guaranteed that a single POIFSReaderListener will
receive exactly one notification per registered document. There is no guarantee as to the
order in which it will receive notification of its documents, as future implementations of
POIFSReader are free to change the algorithm for walking the file system's directory
structure.

It is also permitted to register more than one POIFSReaderListener for the same
document. There is no guarantee of ordering for notification of POIFSReaderListener
instances that have registered for the same document when POIFSReader processes that
document.

It is guaranteed that all notifications occur in the same thread. A future enhancement may be
made to provide multi-threaded notifications, but such an enhancement would very probably
be made in a new reader class, a ThreadedPOIFSReader perhaps.

The following table describes the three ways to register a POIFSReaderListener for a
document or set of documents:

Method Signature What it does

registerListener(POIFSReaderListener listener) registers listener for all documents.

registerListener(POIFSReaderListener listener,
String name)

registers listener for a document with the
specified name in the root directory.

How To Use the POIFS APIs

Page 7
Copyright © 2002-2011 The Apache Software Foundation All rights reserved.

registerListener(POIFSReaderListener listener,
POIFSDocumentPath path, String name)

registers listener for a document with the
specified name in the directory described by
path

2.3.3. POIFSDocumentPath

The org.apache.poi.poifs.filesystem.POIFSDocumentPath class is used to
describe a directory in a POIFS file system. Since there are no reserved characters in the
name of a file in a POIFS file system, a more traditional string-based solution for describing
a directory, with special characters delimiting the components of the directory name, is not
feasible. The constructors for the class are used as follows:

Constructor example Directory described

new POIFSDocumentPath() The root directory.

new POIFSDocumentPath(null) The root directory.

new POIFSDocumentPath(new String[0]) The root directory.

new POIFSDocumentPath(new String[] { "foo",
"bar"})

in Unix terminology, "/foo/bar".

new POIFSDocumentPath(new
POIFSDocumentPath(new String[] { "foo" }), new
String[] { "fu", "bar"})

in Unix terminology, "/foo/fu/bar".

2.3.4. Processing POIFSReaderEvent Events

Processing org.apache.poi.poifs.eventfilesystem.POIFSReaderEvent
events is relatively easy. After all of the POIFSReaderListener instances have been
registered with POIFSReader, the POIFSReader.read(InputStream stream)
method is called.

Assuming that there are no problems with the data, as the POIFSReader processes the
documents in the specified InputStream's data, it calls registered
POIFSReaderListener instances' processPOIFSReaderEvent method with a
POIFSReaderEvent instance.

The POIFSReaderEvent instance contains information to identify the document (a
POIFSDocumentPath object to identify the directory that the document is in, and the
document name), and an open DocumentInputStream instance from which to read the
document.

3. Writing a File System

How To Use the POIFS APIs

Page 8
Copyright © 2002-2011 The Apache Software Foundation All rights reserved.

Writing a file system is very much like reading a file system in that there are multiple ways
to do so. You can load an existing file system into memory and modify it (removing files,
renaming files) and/or add new files to it, and write it, or you can start with a new, empty file
system:

POIFSFileSystem fs = new POIFSFileSystem();

3.1. The Naming of Names

There are two restrictions on the names of files in a file system that must be considered when
creating files:

1. The name of the file must not exceed 31 characters. If it does, the POIFS API will
silently truncate the name to fit.

2. The name of the file must be unique within its containing directory. This seems pretty
obvious, but if it isn't spelled out, there'll be hell to pay, to be sure. Uniqueness, of course,
is determined after the name has been truncated, if the original name was too long to
begin with.

3.2. Creating a Document

A document can be created by acquiring a DirectoryEntry and calling one of the two
createDocument methods:

Method Signature Advantages Disadvantages

CreateDocument(String name,
InputStream stream)

Simple API. Increased memory footprint
(document is in memory until
file system is written).

CreateDocument(String name,
int size, POIFSWriterListener
writer)

Decreased memory footprint
(only very small documents are
held in memory, and then only
for a short time).

More complex API.
Determining document size in
advance may be difficult.
Lose control over when
document is to be written.

Unlike reading, you don't have to choose between the in-memory and event-driven writing
models; both can co-exist in the same file system.

Writing is initiated when the POIFSFileSystem instance's writeFilesystem()
method is called with an OutputStream to write to.

The event-driven model is quite similar to the event-driven model for reading, in that the file
system calls your
org.apache.poi.poifs.filesystem.POIFSWriterListener when it's time to

How To Use the POIFS APIs

Page 9
Copyright © 2002-2011 The Apache Software Foundation All rights reserved.

write your document, just as the POIFSReader calls your POIFSReaderListener
when it's time to read your document. Internally, when writeFilesystem() is called,
the final POIFS data structures are created and are written to the specified OutputStream.
When the file system needs to write a document out that was created with the event-driven
model, it calls the POIFSWriterListener back, calling its
processPOIFSWriterEvent() method, passing an
org.apache.poi.poifs.filesystem.POIFSWriterEvent instance. This object
contains the POIFSDocumentPath and name of the document, its size, and an open
org.apache.poi.poifs.filesystem.DocumentOutputStream to which to
write. A DocumentOutputStream is a wrapper over the OutputStream that was
provided to the POIFSFileSystem to write to, and has the responsibility of making sure
that the document your application writes fits within the size you specified for it.

3.3. Creating a Directory

Creating a directory is similar to creating a document, except that there's only one way to do
so:

DirectoryEntry createdDir = existingDir.createDirectory(name);

3.4. Using POIFSFileSystem Directly To Create a Document Or Directory

As with reading documents, it is possible to create a new document or directory in the root
directory by using convenience methods of POIFSFileSystem.

DirectoryEntry Method Signature POIFSFileSystem Method Signature

createDocument(String name, InputStream
stream)

createDocument(InputStream stream, String
name)

createDocument(String name, int size,
POIFSWriterListener writer)

createDocument(String name, int size,
POIFSWriterListener writer)

createDirectory(String name) createDirectory(String name)

4. Modifying a File System

It is possible to modify an existing POIFS file system, whether it's one your application has
loaded into memory, or one which you are creating on the fly.

4.1. Removing a Document

Removing a document is simple: you get the Entry corresponding to the document and call

How To Use the POIFS APIs

Page 10
Copyright © 2002-2011 The Apache Software Foundation All rights reserved.

its delete() method. This is a boolean method, but should always return true, indicating
that the operation succeeded.

4.2. Removing a Directory

Removing a directory is also simple: you get the Entry corresponding to the directory and
call its delete() method. This is a boolean method, but, unlike deleting a document, may
not always return true, indicating that the operation succeeded. Here are the reasons why
the operation may fail:

• The directory still has files in it (to check, call isEmpty() on its DirectoryEntry; is the
return value false?)

• The directory is the root directory. You cannot remove the root directory.

4.3. Renaming a File

Regardless of whether the file is a directory or a document, it can be renamed, with one
exception - the root directory has a special name that is expected by the components of a
major software vendor's office suite, and the POIFS API will not let that name be changed.
Renaming is done by acquiring the file's corresponding Entry instance and calling its
renameTo method, passing in the new name.

Like delete, renameTo returns true if the operation succeeded, otherwise false.
Reasons for failure include these:

• The new name is the same as another file in the same directory. And don't forget - if the
new name is longer than 31 characters, it will be silently truncated. In its original length,
the new name may have been unique, but truncated to 31 characters, it may not be unique
any longer.

• You tried to rename the root directory.

How To Use the POIFS APIs

Page 11
Copyright © 2002-2011 The Apache Software Foundation All rights reserved.

	1 How To Use the POIFS APIs
	1.1 Target Audience
	1.2 Glossary

	2 Reading a File System
	2.1 Conventional Reading
	2.1.1 Preparation
	2.1.2 Reading the Directory Tree
	2.1.3 Reading a Specific Document
	2.1.3.1 DocumentInputStream
	2.1.3.2 Reading a Document From the Root Directory
	2.1.3.3 Reading a Document From an Arbitrary Directory

	2.2 NIO Reading using NPOIFSFileSystem
	2.2.1 Preparation

	2.3 Event-Driven Reading
	2.3.1 Preparation
	2.3.2 POIFSReaderListener
	2.3.3 POIFSDocumentPath
	2.3.4 Processing POIFSReaderEvent Events

	3 Writing a File System
	3.1 The Naming of Names
	3.2 Creating a Document
	3.3 Creating a Directory
	3.4 Using POIFSFileSystem Directly To Create a Document Or Directory

	4 Modifying a File System
	4.1 Removing a Document
	4.2 Removing a Directory
	4.3 Renaming a File

