#include typedef long long LL; LL n, a[100005], d[270000], b[270000]; void build(LL l, LL r, LL p) { // l:区间左端点 r:区间右端点 p:节点标号 if (l == r) { d[p] = a[l]; // 将节点赋值 return; } LL m = l + ((r - l) >> 1); build(l, m, p << 1), build(m + 1, r, (p << 1) | 1); // 分别建立子树 d[p] = d[p << 1] + d[(p << 1) | 1]; } void update(LL l, LL r, LL c, LL s, LL t, LL p) { if (l <= s && t <= r) { d[p] += (t - s + 1) * c, b[p] += c; // 如果区间被包含了,直接得出答案 return; } LL m = s + ((t - s) >> 1); if (b[p]) d[p << 1] += b[p] * (m - s + 1), d[(p << 1) | 1] += b[p] * (t - m), b[p << 1] += b[p], b[(p << 1) | 1] += b[p]; b[p] = 0; if (l <= m) update(l, r, c, s, m, p << 1); // 本行和下面的一行用来更新p*2和p*2+1的节点 if (r > m) update(l, r, c, m + 1, t, (p << 1) | 1); d[p] = d[p << 1] + d[(p << 1) | 1]; // 计算该节点区间和 } LL getsum(LL l, LL r, LL s, LL t, LL p) { if (l <= s && t <= r) return d[p]; LL m = s + ((t - s) >> 1); if (b[p]) d[p << 1] += b[p] * (m - s + 1), d[(p << 1) | 1] += b[p] * (t - m), b[p << 1] += b[p], b[(p << 1) | 1] += b[p]; b[p] = 0; LL sum = 0; if (l <= m) sum = getsum(l, r, s, m, p << 1); // 本行和下面的一行用来更新p*2和p*2+1的答案 if (r > m) sum += getsum(l, r, m + 1, t, (p << 1) | 1); return sum; } int main() { std::ios::sync_with_stdio(0); LL q, i1, i2, i3, i4; std::cin >> n >> q; for (LL i = 1; i <= n; i++) std::cin >> a[i]; build(1, n, 1); while (q--) { std::cin >> i1 >> i2 >> i3; if (i1 == 2) std::cout << getsum(i2, i3, 1, n, 1) << std::endl; // 直接调用操作函数 else std::cin >> i4, update(i2, i3, i4, 1, n, 1); } return 0; }