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Abstract—Analyzing guaranteeable safety properties in a run-
ning environment aids the decision making of self-adaptive
systems. Our previous work generates and updates an analysis
space with respect to environmental changes for identifying
guaranteeable safety properties efficiently. However, our work
cannot use the existing technique for reducing the analysis
space, which means that its analysis space has a state explosion
problem. In this paper, we propose a new reduction method
that merges states while preserving information required for the
safety properties analysis. We prove that our technique satisfies
the condition for identifying guaranteeable safety properties. In
addition, we evaluate the reduction in gives by using a production
cell example and confirm that, in the best case, our proposal
reduces the analysis space as much as that of a reachability
analysis technique that cannot be applied to safety properties
analysis.

Index Terms—Self-adaptive system, Discrete controller synthe-
sis ,Safety property, Space reduction

I. INTRODUCTION

Self-adaptation is an essential technique for software sys-
tems deployed in uncertain and changeable environments. The
systems may not satisfy their requirements if they cannot adapt
their behavior to environmental changes. As such, they are
expected to have alternative behaviors that they can switch
between in response to environmental changes. Moreover, the
safety properties of the systems must conform to specifications
on the behaviors in environments that change. Safety prop-
erties here mean conditions and assurances that ”bad things
do not happen” [1]. For example, one safety property of a
production cell [2] would be ”do not put any unprocessed
material on the out-tray”. If the safety property is violated,
the production may become faulty or even unsafe. In contrast,
it is hard for engineers to guarantee safety properties for
every environment. While some properties can be guaranteed
under certain assumptions about the environment, they are no
longer guaranteed when the environment changes such that the
assumptions become invalid. Our purpose is to identify guar-
anteeable safety properties when the environment changes.

A number of studies [3]–[7] have addressed this problem.
Analyses can be classified into two categories: design-time
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analysis and runtime analysis. Design-time analysis [3], [4]
predicts possible environmental changes and identifies the re-
quirements that are affected by the changes. These techniques
have a low calculation cost at runtime, but they cannot deal
with environments which are not foreseen at design time.
In contrast, runtime analysis [5]–[7] collects environmental
information and analyzes it to identify guaranteeable require-
ments at runtime. These techniques enable systems to deal
with environmental changes more flexibly at the expense of
calculation cost. Reducing the calculation cost is one of the
important issues in runtime analysis.

Our previous work [8] proposed an efficient technique that
identifies guaranteeable safety properties at runtime. This tech-
nique is based on two-player game analysis [9]. It generates,
at design time, an analysis space from an environment model
in the form of a labeled transition system (LTS) and safety
properties in the form of fluent linear temporal logic (FLTL).
When the environment changes at runtime, it updates the space
and analyzes the updated part to identify the guaranteeable
safety properties. Our technique successfully reduces the cal-
culation time at runtime by localizing the analysis to only
the updated part. However, our technique still suffers from
a problem wherein the state space increases explosively as
the number of safety properties. Thus, it can’t resolve huge
problems because of shortage of memory.

State-space explosion is a big issue and largely investigated
in many domains which use state transition models [10]–[18].
To handle this problem, model checking and discrete controller
synthesis typically reduce the safety property analysis to a
reachability analysis [10]. This technique checks the reacha-
bility of any state that violates the safety properties. States
in which violations of a safety property occur are removed
from the analysis space. However, this technique cannot be
used to identify guaranteeable safety properties. In identifying
guaranteeable safety properties, it is required to check the
reachability of state that violates other safety properties even
after a violation of a safety property has occurred. Thus, the
problem is that states after one in which a violation of a safety
property has occurred cannot be removed.

In this paper, we propose a space reduction technique which
preserves the conditions of the safety properties analysis.
A key idea is not removing states but merging them. In



identifying guaranteeable safety properties, once the safety
properties are violated, the information about these properties
can be ignored. Our technique merges states after a violation
of a safety property has occurred into ones that have same
information other than the violated safety property. In so do-
ing, our technique reduces the number of states and identifies
guaranteeable safety properties at the same time.

We evaluated our technique through case studies of pro-
duction cells [2]. The results showed that it reduces the size
of the analysis space and extends the range of application.
In addition, we compared our technique with a reachability
analysis technique [10] in terms of the size of the analysis
space. Although the reachability analysis cannot be used to
identify guaranteeable safety properties, it can be an indicator
of the reduction effect. We confirmed that, in the best case,
our technique reduced states by as much as the reachability
analysis technique did.

The remainder of the paper is organized as follows. Section
II introduced the related works. A motivating example is
shown in section III. Background knowledge is explained in
section IV. Our proposed method is presented in section V and
evaluated in section VI. Conclusions follow in section VII.

II. RELATED WORK

Self-adaptive systems analyze environmental changes in
order to decide their specifications. These analyses are roughly
classified into design time and runtime. Design-time analysis
identifies requirements that are satisfied in the changed en-
vironment. At runtime, the self-adaptive systems decide the
specifications according to the design-time analysis. D’Ippolito
et al. [3] devised multi-tier environment models that provide
graceful degradation. This method requires a prediction of the
order in which assumptions are broken in the environment;
extreme degradation may happen if the prediction is wrong.
The method of Cailliau et al. [4] identifies obstacles to the
system’s goals and prepares countermeasures to them at design
time. This technique has a risk that the relationships between
the obstacles and the countermeasures may change while
running the systems.

Runtime analysis uses the environmental information to
identify which requirements can be satisfied. Calinescu et al.
[5] prepared several specifications in the form of a discrete-
time Markov chain with environment parameters. They get
the parameter values and identify which specification satisfies
more requirements with probabilistic model checking. Qian
et al. [6] proposed a hybrid adaptation strategy combining
design-time and runtime analysis. They store the context,
adaptation configuration, and its effect as a case when they
execute an adaptation at runtime. They reuse the case if the
system faces a similar context. Camara et al. [7] modeled the
environment as a stochastic game and composed an adaptation
strategy that maximizes the rewards of the game at runtime.

Our previous work [8] identifies guaranteeable safety prop-
erties in changing environments. This method is based on a
two-player game [9] and generates an analysis space from an
environment model and a formalized set of safety properties;

it however suffers from state explosion problem. Partial or-
der reduction [19], which is a popular technique in model
checking, ignores the order of state transitions that have no
effect on the checking. Shuanglong et al. [13] apply partial
order reduction to LTL, including next the operator, by using
heuristics. Christoph et al. [11] focus on model checking in
an adaptive case management and abstract parts which are
not related to model checking. Ciolek et al. [14] proposed
a reduction technique for discrete controller synthesis. They
confine the analysis space by using a domain-independent
heuristic. Giannakopoulou et al. [10] remove a state after a
property violation when they generate an analysis space from
a system model in LTS and safety properties in LTL. However,
such states must not be removed from the analysis space when
identifying guaranteeable safety properties, because our work
analyzes other properties even after a violation happens.

State merging with abstraction is a classical approach.
Many works abstract something which has little effect to
their problem domains. Grumberg el al. [16] abstract the
uncertainty of state transition and reduce the complexity of
the game in order to identify the non-losing strategies in a
3-valued model checking game. Hussien et al. [17] abstract
the uncertainty of state transition in order to synthesize the
controller in the discretized model of a continuous system.
Lomuscio et al. [15] abstract the agents’ behavior which are
irrelative to the verification of multi-agent systems against to
alternating-time temporal logic specification. Burns et al. [18]
abstract processes that consist search space for parallel model
checking. The abstraction is used for duplicate detection which
enables parallel model checking more efficient.

In our problem, we abstract the number of times each of the
safety properties has been violated. We ignore the violations
after the first time violation of each of the properties when
merging states of an analysis space.

III. MOTIVATING EXAMPLE

Fig. 1. Robot arm system in the production cell

We consider the scenario of a production cell [2], which
processes materials in a factory. Fig.1 shows the layout in the
factory. The cell has an in-tray, out-tray, several processing
machines, and a robot arm. When a processing request is
received, the robot arm picks a material from the in-tray,
moves it to a processing machine, puts the material on the
machine, which then processes it, picks up the processed
material from the machine, moves it to the out-tray, and puts



the material. The robot arm system has to decide on the basis
of the request which machine is to be used. For example, the
robot arm may choose a drill when the request is ”make a
hole in a material” or it may choose require an oven to meet
another request ” bake a material”.

The safety properties of the system are about the behaviors
of the robot arm, such as ”do not move a material to an
undesignated place” or ”put only processed materials on the
out-tray”. There are several properties that require assumptions
to be made about the environment, such as ”machines never
break materials while processing.” Invalidating such assump-
tions means that some properties are no longer guaranteed.
For example, the robot arm would be compelled to put broken
material on the out-tray if the oven overheated and burned the
material black. Our purpose is to identify safety properties that
are still guaranteeable in such an environment.

IV. BACKGROUND

Here, we show how to generate an analysis space from
an environment model and a set of safety properties. The
environment model describes interactions between a software
system and its environment in LTS, which has two types of
action: actions that are controllable by the system and those
that are uncontrollable by it. We will assume that all the
LTS models are deterministic. An analysis space is a labeled
transition kripke structure (LTKS), which has an LTS model
with a proposition and a valuation function. In addition, we
define paths of the LTKS and the valuation function for them.

Definition 1. (Labelled Transition Kripke Structure and the
valuation function for its path) A labeled transition Kripke
structure (LTKS) is E = (S,A,∆, s0, P, v), where S is a finite
set of states, A = AC⊎AM is a communicating alphabet that,
we assume, is partitioned into controllable and uncontrollable
actions, ∆ ⊆ (S × A × S) is a transition relation, s0 is an
initial state, P is a set of propositions and v : S → 2P is a
valuation function for states. π = s0, ℓ0, s1, ℓ1, ... is a path of
E, where s0 is an initial state, and for every i ≥ 0, we have
(si, ℓi, si+1) ∈ ∆. We denote the set of infinite paths of E by
Π. vπ : Π → 2P is a valuation function for paths such that
vπ(π) = {p ∈ P |p ∈ v(s), s ∈ π}.

The safety properties are formalized in fluent linear tempo-
ral logic [10] as propositions, which in turn consist of actions
in LTS, normal operators, such as ¬(negation), ∧ (and), ∨
(or), → (implies), and temporal operators, such as X (next),
U(until), W(weak until), □(always), ♢(eventually). They are
expressed in the form ”□p”.

The safety properties can be monitored using tester models
[10] in LTKS.

Definition 2. (Tester model for Safety property) Given a safety
property p, a LTKS model T = (ST , AT ,∆T , s0T , PT , vT ) is
a tester model, where PT = {¬p} and vT (s) = {¬p}, if s is
a violation state of p; otherwise vT (s) = ∅. s is a dead-end
state if v(s) = {¬p}.

Fig. 2 shows an example set of an environment model and
two tester models. The model on the left is one of a simple
environment for the production cell. In it, a robot arm system
waits for a processing request and the start command. After
receiving the start command, it processes a material and then
waits for the next request. The controllable actions are ”wait”
and ”processA/B”, and the uncontrollable actions are ”start”
and ”requestA/B”. The safety properties of the example are
as follows: ”requestA/B must not be received again before
finishing processA/B”. The middle model is the tester for
property A, and the right one is the tester for property B.
The orange state in the middle model represents a violation of
property A, while the yellow state of the right model represents
a violation of property B.

• propertyA = □(requestA → X(!requestA W processA))
• propertyB = □(requestB → X(!requestB W processB))

The analysis space is generated from the environment model
and tester models. The space is generated by modified parallel
composition [10], which is similar to normal parallel compo-
sition but only follows the behavior of the environment model.
”*” in the below definition is a single action that represents
all actions in the environment model except for those in one
of the tester model.

Definition 3. (Modified Parallel Composition) Given an
environment model E = (SE , AE ,∆E , s0E , PE , vE) and
tester automaton T = (ST , AT ,∆T , s0T , PT , vT ) such that
AT \{∗} ⊆ AE , the modified parallel composition E ∥∗ T
is the LTKS E ∥∗ T = (S,A, P,∆, v, s0), where S ⊆
SE × ST , A = AE , s0 = (s0E , s0T ),
v((sE , sT )) = vE(sE)∪vT (sT ), and ∆ is the smallest relation
that satisfies the rules below.

sE
ℓ−−→ s′E , sT

ℓ−−→ s′T

(sE , sT )
ℓ−−→ (s′E , s′T )

ℓ ∈ AE∩AT ,
sE

ℓ−−→ s′E , sT
∗−−→ sT

(sE , sT )
ℓ−−→ (s′E , sT )

ℓ ∈ AE\AT

Modified parallel composition with multiple tester models
is defined inductively, e.g., E ∥∗ T1 ∥∗ T2... = (...((E ∥∗
T1) ∥∗ T2)...).

Fig. 3 is an example of an analysis space generated from the
environment model and the tester models in Fig. 2. The orange
states violate property A, the yellow states violate property B,
and states having both colors violate both A and B. Let vπ be
a path valuation function of the space and considering the path
π1 = 0, wait, 1, requestB, 2, start, 3, processA, 4, wait, 5,
requestB, 6, ... such that {14, 15, ...17, 21, ..., 29} ̸⊆ π1. The
result of the path valuation function is vπ(π1) = {¬A},
because π1 has orange states like ”6”. Therefore, π1 violates
property A. In contrast, π1 does not violate property B because
it doesn’t have any yellow states of states including both
colored states. The analysis space tells us which properties
a given path violates.

The analysis space can be regarded as a two-player game
[9]. This idea is derived from a controller synthesis technique
[20]. The game players are the specification and the environ-
ment. The specification chooses transitions with controllable
actions, and the environment chooses transitions with uncon-
trollable actions. A path of the game π is winning for the



Fig. 2. Example of environment model and safety tester model

Fig. 3. Example of analysis space

environment when the result of a path valuation function is
vπ(π) ̸= ∅. Any other paths are winning for the specification.

Definition 4. (Two-player Safety Game) A two-player safety
game (hereafter safety game) is SG = (Ssg,Γ

−,Γ+, ssg0, X),
where Ssg is a finite set of states, Γ− ⊆ Ssg × Ssg is a tran-
sition relation and similarly for Γ+, ssg0 ∈ Ssg is the initial
state, and X ⊆ 2Ssg such that ssg0 ̸∈ x is a winning condition.
We denote Γ−(ssg) = {s′sg|(ssg, s′sg) ∈ Γ−} and similarly for
Γ+. A play on SG is a sequence π = ssg0, γ0, ssg1, γ1... where
for every i ≥ 0, γi ∈ Γ−∪Γ+ is (ssgi, ssgi+1). If plays contain
a state in x ∈ X , the plays are winning for the environment
in SG. Any other plays are winning for the specification.

we can translate the LTKS E = (S,A = AC ∪AM , ∆, s0,
P, v) to the corresponding safety game SG = (Ssg,Γ

−,Γ+,
ssg0, X) as below.

• Ssg corresponds to S
• Γ− corresponds to

{(s, s′)|s, s′ ∈ S, (s, aM , s′) ∈ ∆, aM ∈ AM}
• Γ+ corresponds to

{(s, s′)|s, s′ ∈ S, (s, aC , s
′) ∈ ∆, aC ∈ AC}

• ssg0 corresponds to s0
• X corresponds to

{S¬P ⊆ 2S |s ∈ S¬P , s ∈ S, v(s) = ¬P,¬P ⊆ P}
Results of path valuation function of the analysis space

correspond to winning or loosing of the game. More precisely,
given LTKS and the corresponding SG, for all path π ∈ Π,
v(π) ̸= ∅ means that the corresponding play of SG is winning
for the environment. Any other plays are winning for the
specification. We identify winning regions of the analysis

space for each property. Moreover, the regions can be used to
identify guaranteeable safety properties. To make the regions,
all the paths in the environment model must be contained in the
analysis space. Therefore, we cannot use the existing reduction
technique [10] that removes states after properties violations.

V. STATE MERGE REDUCTION

Here, we place two conditions on the analysis space re-
duction for identifying the guaranteeable safety properties and
propose a new parallel composition for which the conditions
hold.

A. Condition for reduction

Paths and the results of their valuation function must be
preserved after the reduction in order to identify guaranteeable
safety properties in an analysis space. More formally, given an
original analysis space EOrig = (So, A,∆o, so0, P, vo) and
its reduction space ERedu = (Sr, A,∆r, sr0, P, vr), there are
two features that must be preserved between the two spaces
for identifying guranteeable safety properties.

• Condition 1: For any path πo = so0, ℓo0, so1, ℓo1... ∈ Πo

of EOrig , there exists a path πr = sr0, ℓr0, sr1, ℓr1... ∈
Πr of ERedu such that ℓoi = ℓri for all i ≥ 0. We denote
such a relation of paths as πo = πr.

• Condition 2: If πo = πr, then vo(πo) = vr(πr).
The results of the path valuation function correspond to

winning or losing the game, as mentioned above. Therefore,
winning or losing the game also corresponds to the original
analysis space if the reduction space in which the above
conditions hold is regarded as a safety game. Guaranteeable



safety properties are identified on the basis of winning or
losing the game. Thus, knowing the reduction space in which
the above conditions hold enables us to analyze the safety
properties of as the original space.

B. State merge parallel composition

The key idea behind our reduction technique is merging
states that occur affter one that has a violation. A path which
reaches a state in which a safety property is violated always
violates the property regardless of the sequence remaining
after reaching that state. Thus, we can merge the states that
are after the first property violations. To do so, we have to
change the valuation function, because these ”violation” states
are merged with normal ones. Therefore, we define another
LTKS that has a valuation function for transitions rather than
states. We also define the valuation function for its paths.

Definition 5. (Transition valuation LTKS and the valuation
function for its paths) A transition valuation LTKS is E∆ =
(S,A,∆, s0, P, v∆), where S,A,∆, s0 and P are same as
normal LTKS and v∆ : ∆ → 2P is a valuation function for
transitions. a path π∆ = s0, ℓ0, s1, ℓ1, ... and the set of the
paths Π∆ are same as normal LTKS. We say that δ ∈ π if
for all i ≥ 0, δ = (si, ℓi, si+1) and there exists a sequence
si, ℓi, si+1 in π. v′π : Π → 2P is a valuation function for paths
such that vπ(π) = {p ∈ P |p ∈ v(δ), δ ∈ π}.

Hereafter, we call the model in definition 1 the normal LTKS
and the model in definition5 the transition valuation LTKS .
A normal LTKS E = (S,A,∆, s0, P, v) can be converted into
a transition valuation LTKS E∆ = (S,A,∆, s0, P, v∆) where
v∆(δ) = {p ∈ P |p ∈ v(s′), δ = (s, a, s′), s, s′ ∈ S, a ∈ A}.

The transition valuation LTKS can be regarded as the a
safety game in analogy with the normal LTKS.

Definition 6. (Transition valuation Safety Game) A transition
valuation safety game is SGΓ = (Ssg,Γ

−,Γ+, ssg0, XΓ),
where Ssg,Γ

−,Γ+ and ssg0 are same as normal safety game
and XΓ ⊆ 2Γ

−∪Γ+

is a winning condition. A play on SGΓ

is a sequence π = ssg0, γ0, ssg1, γ1... which is also same as
normal SG. If plays contain a transition relation in xΓ ∈ XΓ,
the plays are winning for the environment in SGΓ. Any other
plays are winning for the specification.

We can translate the transition valuation LTKS E∆ =
(S,A,∆, s0, P, v∆) to the corresponding transition valuation
safety game SGΓ = (Ssg,Γ

−,Γ+, ssg0, XΓ) as below.
• Translating to Ssg,Γ

−,Γ+, ssg0 are same procedure as
normal LTKS translation

• XΓ corresponds to {Γ¬P ⊆ 2S×S |(s, s′) ∈ Γ¬P , s, s
′ ∈

S, a ∈ A, (s, a, s′) ∈ ∆, v((s, a, s′)) = ¬P,¬P ⊆ P}
Results of path valuation function of transition valuation

LTKS corresponds to winning or loosing of the game. There-
fore, we can conform winning or losing of the play in the
transition valuation SG to winning or losing of the play in the
normal SG if we can conform the results of path valuation
function of transition valuation LTKS to the normal LTKS’s
one.

We propose a new composition rule that connects a transi-
tion to existing states instead of violation states.

Definition 7. (State Merge Modified Parallel Composition)
Given an environment model E∆ = (SE , AE ,∆E , s0E , PE ,
v∆E) and tester model T∆ = (ST , AT ,∆T , s0T , PT , v∆T )
such that AT \{∗} ⊆ AE , the modified parallel composition
E ∥′∗ T is the transition valuation LTKS E ∥′∗ T =
(S,A, P,∆, v∆, S0), where S ⊆ SE × ST , A = AE , s0 =
(s0E , s0T ),∆ is the smallest relation that satisfies the rules
below and v∆(δ) = {p ∈ P |p ∈ v∆E(δE) ∪ v∆T (δT ), δE ∈
∆E , δT ∈ ∆T } for δ ∈ ∆ which satisfies below rules with δE
and δT .

sE
ℓ−−→ s′E , sT

ℓ−−→ s′T

(sE ,′ sT )
ℓ−−→ (s′E , s′T )

ℓ ∈ AE ∩AT ,

sE
ℓ−−→ s′E , sT

ℓ−−→ s′T¬p

(sE , sT )
ℓ−−→ (s′E , sTp∗ )

ℓ ∈ AE ∩AT ,

sE
ℓ−−→ s′E , sT

∗−−→ sT

(sE , sT )
ℓ−−→ (s′E , sT )

ℓ ∈ AE\AT

where ¬p ̸∈ v((sT , ℓ, s
′
T )), ¬p ∈ v((sT , ℓ, s

′
T¬p

)) and sTp∗ is
an arbitrary state which is not dead-end state

The composition with multi tester models is defined induc-
tively same as the composition in definition 3.

We confirm that the two conditions mentioned above hold
under our composition. In particular, condition 1 holds because
the transition relation rules in definition 3 and definition 7 re-
flects all the transitions in the environment model. This means
both analysis spaces have the same paths as the environment
model. We can confirm condition 2 by proving the following
theorem.

Theorem 1. Given an environment model E = (SE , AE , sE0 ,
∆E , PE , vE) and N testers Ti = (STi , ATi ,∆Ti , sTi0 , PTi ,
vTi

) for 1 ≤ i ≤ N , the result of the path valuation function
vπ(π) of E∥∗ = E ∥∗ T1 ∥∗ T2... ∥∗ TN is equal to the result
of v′π(π

′) of E∥′
∗
= E ∥′∗ T1 ∥′∗ T2... ∥′∗ TN , which means

vπ(π) = v′π(π
′) if π = π′.

Proof. For all π of E∥∗ = (S∥∗ , A,∆∥∗ , s∥∗0P, v∥∗) and its
valuation function vπ , if ¬p ∈ vπ(π), π contains δ∥∗ ∈ ∆∥∗

such that δ∥∗ = (s∥∗ , a, s
′
∥∗
) where s∥∗ , s

′
∥∗

∈ S∥∗ , a ∈ A
and ¬p ̸∈ v∥∗(s) ∧ ¬p ∈ v∥∗(s

′). If π contains δ∥∗ , π′ of
E∥′

∗
= (S∥′

∗
, A,∆∥′

∗
, s∥′

∗0
P, v∥′

∗
) such that π = π′, π′ contains

δ∥′
∗

such that δ∥′
∗
= (s∥′

∗
, a, s∥′

∗
) where s∥′

∗
, s′∥′

∗
∈ S∥′

∗
, a ∈ A

and ¬p ∈ v∥′
∗
(δ∥′

∗
). Therefore, ¬p ∈ v′π(π

′) where v′π is the
path valuation function of E∥′

∗
. Similarly, for all π of E∥∗ , if

¬p ̸∈ vπ(π), π′ of E∥′
∗

such that π = π′ does not contain any
δ∥′

∗
∈ ∆∥′

∗
such that ¬p ∈ v∥′

∗
(δ∥′

∗
). Therefore, ¬p ̸∈ v′π(π

′).
From the above, if π = π′, vπ(π) = v′π(π

′).

To save space in this paper, the details of our algorithm are
given in our repository 1. Our algorithm generates and merges
states according to definition 7. If violation states exist which
cannot be merged into any state, the algorithm generates a new
state from the states of the environment and tester models.

1https://github.com/k-aizawa/AnalysisSpaceReduction



The algorithm resets the violated testers to the initial state
when generating such states. The aim here is to minimize the
maximum size of the analysis space. A side effect of using
initial states instead of violated states is discussed in the next
section.

Fig. 4 shows the reduction analysis space generated from
models in Fig. 2. There are two violating transitions whose
actions are marked. The yellow transition violates property A,
and the orange one violates B. Suppose we are given a path
π′
1 = 0, wit, 1, requestB, 7, start, 9, processA, 3, wait, 6,

requestB, 7, ... which is equal to π1 in previous section. π′
1

violates property A because it has the yellow transitions. On
the other hand, π′

1 does not violates property B because it
has no orange transition. The results of the path valuation
functions in Fig. 3 and Fig.4 are the same. In this example,
we can reduce the number of states in the analysis space from
32 to 12.

VI. EVALUATION

We evaluated the effect of the proposed reduction. We
measured the number of states and memory size of the analysis
space.

We compared our proposal with the original analysis space
and the space determined from a reachability analyses [10].
Note that, spaces determined from reachability analyses cannot
be used for identifying guaranteeable safety properties because
they can’t hold the condition described in the previous section.
Nevertheless, we can examine how closely the analysis space
of our technique resembles the one of the reachability analysis.

We created two case studies. One was the simple model
of the production cell, shown in Fig. 2, to which we added
processing actions (like ”processC” ) and up to 15 correspond-
ing properties and evaluated the size of the generated analysis
space. The other was a more realistic model of a production
cell [2], in which we modeled the behavior of the robot arm,
i.e., how it moves and handles materials. The environment
model had 52 states, and we defined ten safety properties for
it. The environment model and safety properties are contained
in our repository 1. We added the safety properties in stages
and evaluated each stage.

The evaluation used a desktop computer Intel(R) Core(TM)
i7-4790K CPU @4.00GHz, 16.0GB RAM and Windows10
Home 64bit OS. We implemented each technique in Java and
used Java Object Layout(jol) of openJDK in order to measure
the memory size of the analysis spaces. The maximum size of
the heap memory was 1GB.

A. Experimental results

The results for the simple case are shown in Fig. 5. The
horizontal axis represents the number of safety properties used
in generating the analysis space. Bar graphs, whose vertical
axis is on the left side, show the number of states. Line
graphs, whose vertical axis is on the right side, show the
memory size. Note that both vertical axes are logarithmic.

1https://github.com/k-aizawa/AnalysisSpaceReduction

For the original space, we stopped measuring at property 11
because the computation ran out of memory. Fig. 5 shows
that the memory size increases with the number of states.
In the simple case, the added properties are similar to each
other and the number of states increases with regularity. The
original analysis space increases its states threefold when
adding a property. In contrast, both reduction spaces suppress
the increase in the state size increase to double. The number
of states and memory size are almost the same between the
two reduction spaces. This means that there is little overhead
to changing the analysis space from a normal LTKS to a
transition valuation LTKS.

The results for the realistic case are shown Fig. 6. The
realistic case adds various safety properties, and the results
shows us some side effects of the reduction technique. State
merge reduction, which is our proposal, has more states than
original when generating the space from 2 or 3 properties.
Moreover, the state size of the reachability analysis sometimes
decreases despite adding safety properties; we will discuss
these results in the next subsection. Here, we confirm that
our proposal can generate an analysis space even when the
original space cannot the generated.

Our proposal generates a space in a reasonable time in each
case. It took 10.1 s at the longest, whereas using the original
space took 27.3 s and using the existing reduction technique
took 4.0 s.

B. Discussion

The simple case shows us that our reduction has the same
effect as the existing reduction technique even though it holds
conditions for identifying guaranteeable safety properties. Our
proposal tries to merge the states that are to be removed from
the space of the reachability analysis. If all the violation states
can be merged to the normal states, the size of our reduction
space is the almost same as that of existing reduction.

On the other hand, the realistic case shows the limitations
of our proposal. Our proposal is not as effective as in the
simple case because it often fails to merge the violation states.
Our reduction algorithm generates a new state with resetting
the violated tester when it fails to merge the violation state.
Resetting the violated testers narrows the maximum state space
of the analysis. In contrast, reset testers sometimes monitor
actions and increase the states of the analysis space with no
meaning. Therefore, our algorithm sometimes generates more
states than the original space has.

The realistic case also shows us a side effect of the ex-
isting reduction technique. The existing technique sometimes
reduces the states of the analysis space in spite of adding safety
properties. Strict safety properties lead to violation states in a
short while. Thus, many states are removed from the spaces
of the reachability analysis. Note that we cannot identify
guaranteeable safety properties if we use the existing reduction
technique. It only tells us whether the input safety property set
can be guaranteed or not. Therefore, analysis spaces must be
generated from all subsets of the safety properties. We ran
out of memory trying to generate such analysis spaces in the



Fig. 4. Example of analysis space with our reduction technique

Fig. 5. Memory size of each analysis space (simple example)

Fig. 6. Memory size of each analysis space (simple example)

simple case with 15 properties and in the realistic case with
10 properties.

VII. CONCLUSION

Self-adaptive systems require that guaranteeable safety
properties be analyzed in changing environments. To do so, all
the paths of the environment model have to be reflected in the
analysis space. The existing reduction technique used in model
checking cannot be used for this because it removes such
paths. We proposed another reduction technique that merges
the states instead of removing them. We proved that it can hold
the conditions for identifying safety properties and confirmed
its reduction effect.

In the future, we will optimize the state merging method in
order to increase its space reduction effect. A tradeoff exists
between the reduction effect and time efficiency. We cannot
ignore time efficiency when applying the reduction technique
to a self-adaptive system. We will also examine the effect of
combining the existing technique with our proposal. So far, we
have not considered dependencies between safety properties
when generating an analysis space. We can use the existing
technique to find those states that can be omitted from the
analysis.
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