FPGrowth#
- class pyspark.mllib.fpm.FPGrowth[source]#
- A Parallel FP-growth algorithm to mine frequent itemsets. - New in version 1.4.0. - Methods - train(data[, minSupport, numPartitions])- Computes an FP-Growth model that contains frequent itemsets. - Methods Documentation - classmethod train(data, minSupport=0.3, numPartitions=- 1)[source]#
- Computes an FP-Growth model that contains frequent itemsets. - New in version 1.4.0. - Parameters
- datapyspark.RDD
- The input data set, each element contains a transaction. 
- minSupportfloat, optional
- The minimal support level. (default: 0.3) 
- numPartitionsint, optional
- The number of partitions used by parallel FP-growth. A value of -1 will use the same number as input data. (default: -1) 
 
- data