%%% =========================================================================== %%% main matter %%% =========================================================================== \mainmatter \part{The First} \chapter{This is a chapter title which is definitely quite long} \section{This is a section title which is also quite long, causing a line break} \subsection{A subsection title which -- again -- is quite long and will not fit into one line} \subsubsection{And finally a subsubsection title which is quite long as well, therefore requiring more than one line} \paragraph{This is a long paragraph heading. It will not fit into one line, either. At least not with this last sentence.} There is no line break after the paragraph heading. You can (moderately!) reduce the word spacing and stretching to avoid single words or syllables on the last line of a paragraph. For this purpose, the class provides the commands \verb|\reducewstr| and \verb|\reducewspc| (and, moreoever, \verb|\resetwstr| and \verb|\resetwspc| to reset the default values) to avoid situations like \emph{this}. In the following paragraph, the word spacing is reduced to 90\% of its default value and the single word on the last line of the paragraph disappears: \reducewspc[.9] You can (moderately!) reduce the word spacing and stretching to avoid single words or syllables on the last line of a paragraph. For this purpose, the class provides the commands \verb|\reducewstr| and \verb|\reducewspc| (and, moreoever, \verb|\resetwstr| and \verb|\resetwspc| to reset the default values) to avoid situations like \emph{this}.\resetwspc Use this feature with care to avoid ugly typesetting! \begin{description} \item[Minion] small, yellow creatures who have existed since the beginning of time \item[banana] a fruit, particularly cherished by Minions\footnote{with a meaningless footnote} \item[lorem] \blindtext \end{description} \begin{itemize} \item \blindtext \item \blindtext \end{itemize} \begin{enumerate} \item \blindtext \item \blindtext \end{enumerate} \begin{figure}\centering % \framebox[12em][l]{\parbox[c][12em][c]{12em}{\centering your advertisement here\\for only\\\$99 per month!}} \caption{a figure}% \label{fig:foo}% \end{figure} \begin{table}\centering% \begin{tabular}{lcr} \toprule first column & second column & third column \\ \midrule left & centered & right \\ aligned & & aligned \\ \bottomrule \end{tabular} \caption{a table} \label{tab:bar} \end{table} \chapter{Mathematical Showcase} \section{Some Formulas} \subsection{Mathematics} Euler's identity: \begin{equation} e^{i\pi} + 1 = 0 \label{eq:euler-identity} \end{equation} Fundamental theorem of calculus: \begin{equation} \int_a^b f^\prime\!\left(x\right)\,dx = f\!\left(b\right) - f\!\left(a\right) \label{eq:fundamental-theorem} \end{equation} \subsection{Physics} Einstein's general theory of relativity: \begin{equation} G_{\mu\nu} = 8 \pi G \left(T_{\mu\nu} + \rho_\Lambda g_{\mu\nu}\right) \label{eq:general-relativity} \end{equation} Einstein's special theory of relativity -- time dilatation: \begin{equation} t^\prime = t \frac{1}{\sqrt{1-\frac{v^2}{c^2}}} \label{eq:} \end{equation} Navier-Stokes equations in spherical coordinates: \begin{equation} \frac{\partial \rho}{\partial t} + \frac{1}{r^2}\frac{\partial}{\partial r}\left(\rho r^2 u_r\right) + \frac{1}{r \sin(\theta)}\frac{\partial \rho u_\phi}{\partial \phi} + \frac{1}{r \sin(\theta)}\frac{\partial}{\partial \theta}\left(\sin(\theta) \rho u_\theta\right) = 0 \label{eq:navier-stokes-continuity} \end{equation} \begin{align} \begin{split} r:\ & \rho \left(\frac{\partial u_r}{\partial t} + u_r \frac{\partial u_r}{\partial r} + \frac{u_{\phi}}{r \sin(\theta)} \frac{\partial u_r}{\partial \phi} + \frac{u_{\theta}}{r} \frac{\partial u_r}{\partial \theta} - \frac{u_{\phi}^2 + u_{\theta}^2}{r}\right) = -\frac{\partial p}{\partial r} + \rho g_r + \\ &\mu \left[\frac{1}{r^2} \frac{\partial}{\partial r}\left(r^2 \frac{\partial u_r}{\partial r}\right) + \frac{1}{r^2 \sin(\theta)^2} \frac{\partial^2 u_r}{\partial \phi^2} + \frac{1}{r^2 \sin(\theta)} \frac{\partial}{\partial \theta}\left(\sin(\theta) \frac{\partial u_r}{\partial \theta}\right)\right.\\ &\left.- 2\frac{u_r + \frac{\partial u_{\theta}}{\partial \theta} + u_{\theta} \cot(\theta)}{r^2} - \frac{2}{r^2 \sin(\theta)} \frac{\partial u_{\phi}}{\partial \phi} \right] \end{split} \label{eq:navier-stokes-momentum-r} \\ \begin{split} \phi:\ &\rho \left(\frac{\partial u_{\phi}}{\partial t} + u_r \frac{\partial u_{\phi}}{\partial r} + \frac{u_{\phi}}{r \sin(\theta)} \frac{\partial u_{\phi}}{\partial \phi} + \frac{u_{\theta}}{r} \frac{\partial u_{\phi}}{\partial \theta} + \frac{u_r u_{\phi} + u_{\phi} u_{\theta} \cot(\theta)}{r}\right) =\\ &-\frac{1}{r \sin(\theta)} \frac{\partial p}{\partial \phi} + \rho g_{\phi} + \\ &\mu \left[\frac{1}{r^2} \frac{\partial}{\partial r}\left(r^2 \frac{\partial u_{\phi}}{\partial r}\right) + \frac{1}{r^2 \sin(\theta)^2} \frac{\partial^2 u_{\phi}}{\partial \phi^2} + \frac{1}{r^2 \sin(\theta)} \frac{\partial}{\partial \theta}\left(\sin(\theta) \frac{\partial u_{\phi}}{\partial \theta}\right) +\right.\\ &\left. \frac{2 \sin(\theta) \frac{\partial u_r}{\partial \phi} + 2 \cos(\theta) \frac{\partial u_{\theta}}{\partial \phi} - u_{\phi}}{r^2 \sin(\theta)^2} \right] \end{split} \label{eq:navier-stokes-momentum-phi} \\ \begin{split} \theta:\ &\rho \left(\frac{\partial u_{\theta}}{\partial t} + u_r \frac{\partial u_{\theta}}{\partial r} + \frac{u_{\phi}}{r \sin(\theta)} \frac{\partial u_{\theta}}{\partial \phi} + \frac{u_{\theta}}{r} \frac{\partial u_{\theta}}{\partial \theta} + \frac{u_r u_{\theta} - u_{\phi}^2 \cot(\theta)}{r}\right) =\\ &-\frac{1}{r} \frac{\partial p}{\partial \theta} + \rho g_{\theta} + \\ &\mu \left[\frac{1}{r^2} \frac{\partial}{\partial r}\left(r^2 \frac{\partial u_{\theta}}{\partial r}\right) + \frac{1}{r^2 \sin(\theta)^2} \frac{\partial^2 u_{\theta}}{\partial \phi^2} + \frac{1}{r^2 \sin(\theta)} \frac{\partial}{\partial \theta}\left(\sin(\theta) \frac{\partial u_{\theta}}{\partial \theta}\right) +\right.\\ &\left. \frac{2}{r^2} \frac{\partial u_r}{\partial \theta} - \frac{u_{\theta} + 2 \cos(\theta) \frac{\partial u_{\phi}}{\partial \phi}}{r^2 \sin(\theta)^2} \right]. \label{eq:navier-stokes-momentum-theta} \end{split} \end{align} \part{The Second} \Blinddocument \part{The Third} \blinddocument