\documentclass[11pt]{article} \usepackage{xkeyval,array,multirow,amsmath,amssymb} \usepackage{fullpage,longtable} \usepackage[english]{alterqcm} \usepackage[english]{babel} \begin{document} \begin{alterqcm}[lq=90mm,pre=true,long] \AQquestion{Among the following propositions, which one allows to affirm that the exponential function admits for asymptote the equation line $y = 0$?} {{$\displaystyle\lim_{x \to +\infty} \text{e}^x = + \infty$}, {$\displaystyle\lim_{x \to -\infty} \text{e}^x = 0$}, {$\displaystyle\lim_{x \to +\infty} \dfrac{\text{e}^x}{x} = + \infty$}} \AQquestion{Among the following propositions, which is the one that allows to affirm that the inequation $\ln (2x + 1) \geqslant \ln (x + 3)$ admits the interval $\big[2~;~+\infty\big[$ as a set of solution? } {{\begin{minipage}{5cm}the ln function is positive on $\big[1~;~+\infty\big[$\end{minipage}}, {$\displaystyle\lim_{x \to +\infty} \ln x = + \infty$}, {\begin{minipage}{5cm}the $\ln$ function is increasing on $\big]0~;~+\infty\big[$\end{minipage}} } \AQquestion{Among the following propositions, which one allows us to assert that a primitive of the function $f$ defined on $\mathbb{R}$ by $x \mapsto (x + 1)\text{e}^x$ is the function $g~:~x~ \mapsto~ x~ \text{e}^x$~? } {{for all real $x,~f'(x) = g(x)$}, {for all real $x,~g'(x) = f(x)$}, {\begin{minipage}{5.5cm} for all real $x,~g(x) = f'(x) + k$, $k$ some kind of real \end{minipage}}} \AQquestion[pq=2mm]{ The equation $2\text{e}^{2x} - 3\text{e}^x + 1 = $0 admits for set solution} {{$\left\{\dfrac{1}{2}~;~1\right\}$}, {$\left\{0~;~\ln \dfrac{1}{2}\right\}$}, {$\big\{0~;~\ln 2\big\}$} } \AQquestion[pq=2mm]{For all $n \in \mathbb{N}$ } {{$\displaystyle\lim_{x \to +\infty} \frac{\text{e}^x}{x^n} = 1$}, {$\displaystyle\lim_{x \to +\infty} \frac{\text{e}^x}{x^n} = +\infty$}, {$\displaystyle\lim_{x \to +\infty} \frac{\text{e}^x}{x^n} = 0$}} \AQquestion[pq=1pt]{Let $f$ be the function set to $\big]0~;~+\infty\big[$ par $f(x) = 2\ln x - 3x + 4$. In a benchmark, an equation of the tangent to the curve representing $f$ at abscissa point 1 is :} {{$y = - x + 2$}, {$y = x + 2$}, {$y = - x - 2$} } \AQquestion[pq=2mm]{The mean value over $\big[1; 3\big]$ of the $f$ function defined by : $f(x) = x^2 + 2x$ is:} {{$\dfrac{50}{3}$}, {$\dfrac{25}{3}$}, {$6$} } \AQquestion{ exp$(\ln x) = x$ for any $x$ belonging to } {{$\mathbb{R}$}, {$\big]0~;~+ \infty\big[$}, {$\big[0~;~+\infty\big[$} } \AQquestion[pq=1pt]{Let $f$ be the function set to $\big]0~;~+\infty\big [$ per $f(x) = 2\ln x - 3x + 4$. In a benchmark, an equation of the tangent to the curve representing $f$ at abscissa point 1 is :} {{$y = - x + 2$}, {$y = x + 2$}, {$y = - x - 2$} } \AQquestion[pq=2mm]{The mean value over $\big[1; 3\big]$ of the $f$ function defined by : $f(x) = x^2 + 2x$ is:} {{$\dfrac{50}{3}$}, {$\dfrac{25}{3}$}, {$6$} } \AQquestion{ exp$(\ln x) = x$ for any $x$ belonging to } {{$\mathbb{R}$}, {$\big]0~;~+ \infty\big[$}, {$\big[0~;~+\infty\big[$} } \end{alterqcm} \end{document} % AntillesESjuin2006 % encoding : utf8 % format : pdflatex % engine : pdfetex % author : Alain Matthes