%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % An example input file demonstrating the agp option of the SVJour % % document class for the journal: Journal of Geodesy % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % \documentclass[jog]{svjour} \usepackage{graphics} \usepackage{epsfig} \usepackage{amssymb} % \usepackage{times} % \usepackage{mathtime} % \sloppy % \newcommand{\EEE}{\mbox{$\mathbb{E}$}} \newcommand{\CCC}{\mbox{$\mathbb{C}$}} \newcommand{\RRR}{\mbox{$\mathbb{R}$}} \newcommand{\MMM}{\mbox{$\mathbb{M}$}} % \journalname{Journal of Geodesy} % \begin{document} \title{The solution of the Korn--Lichtenstein equations of conformal mapping:} \subtitle{The direct generation of ellipsoidal Gau{\ss}--Kr\"{u}ger conformal coordinates or the Transverse Mercator Projection} \author{E.W. Grafarend \and R. Syffus} \institute{Department of Geodetic Science, Stuttgart University, Geschwister-Scholl-Str. 24D, D-70174 Stuttgart, Germany\\ e-mail: grafarend@gis.uni-stuttgart.de} \date{Received: 3 June 1997 / Accepted: 17 November 1997} \maketitle \abstract{The differential equations which generate a general conformal mapping of a two-dimensional {\em Riemann manifold\/} found by Korn and Lichtenstein are reviewed. The {\em Korn--Lichtenstein equations\/} subject to the integrability conditions of type vectorial {\em Laplace--Beltrami equations\/} are solved for the geometry of an ellipsoid of revolution (International Reference Ellipsoid), specifically, in the function space of bivariate polynomials in terms of surface normal ellipsoidal longitude and ellipsoidal latitude. The related coefficient constraints are collected in two corollaries. We present the constraints to the general solution of the Korn--Lichtenstein equations which directly generates {\em Gau{\ss}--Kr\"{u}ger\/} conformal coordinates as well as the {\em Universal Transverse Mercator Projection\/} (UTM) avoiding any intermediate isometric coordinate representation. Namely, the equidistant mapping of a meridian of reference generates the constraints in question. Finally, the detailed computation of the solution is given in terms of bivariate polynomials up to degree five with coefficients listed in closed form. \keywords{Korn-Lichtenstein-equations $\cdot$ Conformal mapping $\cdot$ Ellipsoid of revolution}} \strich %%%%%%%%%%%%%%% %% Section 1 %% %%%%%%%%%%%%%%% \section{Introduction} \label{sec:1} Conventionally, conformal coordinates/conformal charts of the surface of the Earth, represented as an ellipsoid of revolution, the geodetic reference figure, are generated by a two-step-procedure. First, conformal coordinates (isometric coordinates, isothermal coordinates) of type UMP (Universal Mercator Projection, Example 1) or UPS (Universal Polar Stereographic Projection, Example 2) are derived from geodetic coordinates such as surface normal ellipsoidal longitude/ellipsoidal latitude. UMP is classified as a conformal mapping on a circular cylinder while UPS refers to a conformal mapping onto a polar tangential plane with respect to an ellipsoid of revolution (azimuthal mapping). The conformal coordinates of type UMP or UPS, respectively, are consequently complexified, just describing the two-dimensional Riemann manifold of the type of ellipsoid of revolution as a one-dimensional complex manifold. Namely, the real-valued conformal coordinates $(x,y)$ of type UMP or UPS, respectively, are transformed into the complex-valued conformal coordinate $z = x + iy$. Secondly, the conformal coordinates $(x,y) \sim z$ of type UMP or UPS, respectively, are transformed into another set of conformal coordinates, called Gau{\ss}--Kr\"{u}ger or UTM, by means of holomorphic functions $w(z), w:=u+iv \in \Bbb{C}$ with respect to complex algebra and complex analysis. Indeed holomorphic functions fulfil the d'Alembert--Euler equations (Cauchy--Riemann equations) of conformal mapping as outlined by Grafarend (1995), for instance. This two-step-procedure has at least two basic disadvantages. On the one hand, it is in general difficult to set up a first set of conformal coordinates. For instance, due to involved difficulties the Philosophical Faculty of the University of G\"{o}ttingen Georgia Augusta dated 13 June 1857 set up the ``Preisaufgabe'' to find a conformal mapping of the triaxial ellipsoid. Based upon Jacobi's contribution on elliptic coordinates \citep{jac39} the ``Preisschrift'' of \citet{scher57} was finally crowned, nevertheless leaving the numerical problem open as to how to construct a conformal map of the triaxial ellipsoid of type UTM. For an excellent survey we refer to \citet{kli82}, \citet{schm27}, and, recently, \citet{mul91}. There is another disadvantage of the two-step procedure. The equivalence between two-dimensional real-valued Riemann manifolds and one-dimensional complex-valued manifolds holds only for analytical Riemann manifolds. In \citet{graf95a} we gave two counterexamples of surfaces of revolution which are from the differentiability class $C^\infty$, but are not analytical. Accordingly, the theory of holomorphic functions does not apply. Finally one encounters great difficulties in generalizing the theory of conformal mappings to higher-dimensional (pseudo-) Riemann manifolds. Only for even-dimensional (pseudo-) Riemann manifolds of analytical type can multidimensional complex analysis be established; we experience a total failure for odd-dimensional (pseudo-) Riemann manifolds as they appear in the theory of refraction, Newton mechanics, plumbline computation, to list just a few conformally flat three-dimensional Riemann manifolds. \begin{figure} \parbox[t]{8.5cm}{ \setlength{\unitlength}{1cm} \begin{picture}(8,6.7) \put(0.3,5){\fbox{\shortstack{general coordinates\\(chart)\\parameters of $\Bbb{E}^2_{A_1,A_2}$}}} \put(4.5,4.5){\fbox{\shortstack{isometric coordinates\\(conformal coordinates)\\of type Mercator\\Projection of $\Bbb{E}^2_{A_1,A_2}$\\``complexification''}}} \put(4.5,0.5){\fbox{\shortstack{isometric coordinates\\(conformal coordinates)\\of type Gau{\ss}--Kr\"{u}ger\\of $\Bbb{E}^2_{A_1,A_2}$\\(Transverse Mercator\\Projection)}}} \put(0.6,2.4){\mbox{\shortstack{Korn--Lichtenstein\\path}}} \put(3.8,5.5){\vector(1,0){0.7}} \put(6.5,4.3){\vector(0,-1){1.2}} \put(1.7,4.75){\vector(1,-1){2.75}} \end{picture}} \caption[]{Change from one conformal chart to another conformal chart (c:c:Cha-Cha-Cha) according to a proposal of Gau{\ss} (1822,1844); first conformal coordinates: Mercator Projection, second conformal coordinates: Transverse Mercator Projection, ellipsoid of revolution $\Bbb{E}^2_{A_1,A_2}$} \label{fig:1} \end{figure} The theory of conformal mapping took quite a different direction when \citet{kor14} as well as \citet{li11,li16} set up their general differential equations for two-dimensional Riemann manifolds which govern conformality. They allow the straightforward transformation of ellipsoidal coordinates of type surface normal longitude $L$ and latitude $B$ into conformal coordinates of type Gau{\ss}--Kr\"{u}ger or UTM $(x,y)$ without any intermediate conformal coordinate system of type UMP or UPS! Accordingly our objective here is the proof of this statement. Section~\ref{sec:2} offers a review of the Korn--Lichtenstein equations of conformal mapping subject to the integrability conditions which are vectorial Laplace--Beltrami equations on a curved surface, here with the metric of the ellipsoid of revolution. Two examples, namely UMP and UPS, are chosen to show that the mapping equations $x(L,B)$, $y(L,B)$ fulfil the Korn--Lichtenstein equations as well as the Laplace--Beltrami equations. In addition, we present in the Appendix a fresh derivation of the Korn--Lichtenstein equations of conformal mapping for a (pseudo-) Riemann manifold of arbitrary dimension extending initial results for three-dimensional manifolds of Riemann type given by \citet{zund87}. The standard Korn--Lichtenstein equations of a conformal mapping of a two-dimensional Riemann manifold can be taken from standard textbooks like \citet{bla73} or \citet{hei88}. \begin{figure} \parbox[t]{8.5cm}{ \setlength{\unitlength}{1cm} \begin{picture}(8,6.7) \put(0.3,5){\fbox{\shortstack{general coordinates\\(chart)\\parameters of $\Bbb{E}^2_{A_1,A_2}$}}} \put(4.5,4.5){\fbox{\shortstack{isometric coordinates\\(conformal coordinates)\\of type Polar Stereogra-\\phic Projection of $\Bbb{E}^2_{A_1,A_2}$\\``complexification''}}} \put(4.5,0.5){\fbox{\shortstack{isometric coordinates\\(conformal coordinates)\\of type Gau{\ss}--Kr\"{u}ger\\of $\Bbb{E}^2_{A_1,A_2}$\\(Transverse Mercator\\Projection)}}} \put(0.6,2.4){\mbox{\shortstack{Korn--Lichtenstein\\path}}} \put(3.8,5.5){\vector(1,0){0.7}} \put(6.5,4.3){\vector(0,-1){1.2}} \put(1.7,4.75){\vector(1,-1){2.75}} \end{picture}} \caption[]{Change from one conformal chart to another conformal chart (c:c:Cha-Cha-Cha) according to a proposal of Kr\"{u}ger (1922); first conformal coordinates: Polar Stereographic Projection, second conformal coordinates: Transverse Mercator Projection, ellipsoid of revolution $\Bbb{E}^2_{A_1,A_2}$} \label{fig:2} \end{figure} Section~\ref{sec:3} aims at a solution of the partial differential equations of type Laplace--Beltrami (second-order) as well as Korn--Lichtenstein (first-order) in the function space of bivariate polynomials $x(l,b)$, $y(l,b)$, $l:=L-L_0$, $b:=B-B_0$. The coefficient constraints are collected in {\em Corollaries~\ref{cor:1}} and {\em\ref{cor:2}}. Note that the solution space is different from that of separation of variables type known to geodesists from the analysis of the three-dimensional Laplace--Beltrami equation of the gravitational potential field. For a related discussion see \citet{graf95a}. Finally, Sect~\ref{sec:4} outlines the constraints to the general solution of the Korn--Lichtenstein equations subject to the integrability conditions of type Laplace--Beltrami equations, which leads directly to the conformal coordinates of type Gau{\ss}--Kr\"{u}ger or UTM. Such a solution is generated by the equidistant mapping of the meridian of reference $L_0$ (for UTM up to a dilatation factor) as the proper constraint $(x(0,b)=0, y(0,b)$ given$)$. The highlight is the theorem which gives the solution of the partial differential equations for the conformal mapping in terms of a conformal set of bivariate polynomials. Throughout, we use a right-handed coordinate system, namely $x$ ``Easting'', $y$ ``Northing''. Table~4 and 5 % Not in this article! contain the non-vanishing polynomial coefficients in a closed form. %%%%%%%%%%%%%%% %% Section 2 %% %%%%%%%%%%%%%%% \section{The equations governing conformal mapping and their fundamental solution} \label{sec:2} We are concerned here with a conformal mapping of the biaxial ellipsoid $\Bbb{E}^2_{A_1,A_2}$ (ellipsoid of revolution, spheroid, semi-major axis $A_1$, semi-minor axis $A_2$) embedded in a three-dimensional Euclidean manifold $\Bbb{E}^3=\{\Bbb{R}^3,\delta_{ij}\}$ with standard canonical metric $[\delta_{ij}]$, the Kronecker delta of 1's in the diagonal, of zeros in the off-diagonal, namely by means of \begin{eqnarray} X^1 &= &\frac{A_1\cos B \cos L}{\sqrt{1-E^2\sin^2B}}, \nonumber \\ X^2 &= &\frac{A_1\cos B \sin L}{\sqrt{1-E^2\sin^2B}} \\ X^3 &= &\frac{A_1(1-E^2) \sin B}{\sqrt{1-E^2\sin^2B}} \nonumber \label{eq:1} \end{eqnarray} introducing surface normal ellipsoidal longitude $L$ and surface normal ellipsoidal latitude $B$. $E^2:=(A^2_1-A^2_2)/A^2_1=1-A^2_2/A^2_1$ denotes the first relative eccentricity squared. According to $(L,B) \in [-\pi,\pi) \times (-\pi/2,+\pi/2)$ we exclude from the domain $(L,B)$ North and South Pole. Thus $(L,B)$ constitutes only a first chart of $\Bbb{E}^2_{A_1,A_2}$; a minimal atlas of $\Bbb{E}^2_{A_1,A_2}$ based on two charts, which covers all points of the ellipsoid of revolution is given in detail by \citet{graf95b}. Conformal coordinates $(x,y)$ (isometric coordinates, isothermal coordinates) are constructed from the surface normal ellipsoidal coordinates $(L,B)$ as solutions of the Korn--Lichtenstein equations (conformal change from one chart to another chart, c:Cha-Cha-Cha) \begin{equation} \left[\begin{array}{c} x_L\\ x_B \end{array} \right] = \frac{1}{\sqrt{EG-F^2}} \left[\begin{array}{cc} -F&E\\ -G&F \end{array} \right] \left[\begin{array}{c} y_L\\ y_B \end{array} \right] \label{eq:2} \end{equation} subject to the integrability conditions \begin{displaymath} x_{LB}=x_{BL},\quad y_{LB}=y_{BL} \end{displaymath} or \begin{eqnarray} \Delta_{LB}x := \left(\frac{E_{x_B}-F_{x_L}}{\sqrt{EG-F^2}}\right)_B + \left(\frac{G_{x_L}-F_{x_B}}{\sqrt{EG-F^2}}\right)_L &= &0 \nonumber \\ [-5pt] & &\\ [-5pt] \Delta_{LB}y := \left(\frac{E_{y_B}-F_{y_L}}{\sqrt{EG-F^2}}\right)_B + \left(\frac{G_{y_L}-F_{y_B}}{\sqrt{EG-F^2}}\right)_L &= &0 \nonumber \label{eq:3} \end{eqnarray} and \begin{equation} \left|\begin{array}{cc} x_L&x_B\\ y_L&y_B \end{array} \right|=(x_Ly_B-x_By_L)>0 \label{eq:4} \end{equation} (orientation conserving conformeomorphism) \begin{displaymath} \left[G_{MN}\right]:=\left[\begin{array}{cc} E&F\\ F&G\end{array} \right] \forall M,N \in \{1,2\} \end{displaymath} defines the matrix of the metric of the first fundamental form of $\Bbb{E}^2_{A_1,A_2}$. $\Delta_{LB}x=0,\,\Delta_{LB}y=0$, respectively, are called the vectorial Laplace--Beltrami equations. A derivation of the Korn--Lichtenstein equations is given in the Appendix. Here we are interested in some examples of map projections of conformal type which are solutions of the Korn--Lichtenstein equations [Eq. (\ref{eq:2})] subject to the integrability condition [Eq. (\ref{eq:3})] and the condition of orientation conservation [Eq. (\ref{eq:4})]. \begin{example}\label{ex:1} Universal Mercator Projection (UMP) \begin{eqnarray*} x &= &A_1L \\ y &= &A_1\ln\left(\tan\left(\frac{\pi}{4}+\frac{B}{2}\right) \left[\frac{1-E\sin B}{1+E\sin B}\right]^{E/2}\right) \end{eqnarray*} The matrix of the metric of the ellipsoid of revolution $\Bbb{E}^2_{A_1,A_2}$ is represented by \begin{eqnarray*} \left[G_{MN}\right] \!=\! \left[\begin{array}{cc} E&F\\F&G\end{array} \right] \!=\! \left[\begin{array}{cc} {\displaystyle\frac{A^2_1\cos^2B}{1-E^2\sin^2B}}&0\\ 0&{\displaystyle\frac{A^2_1(1-E^2)^2}{(1-E^2\sin^2B)^3}} \end{array} \right] \end{eqnarray*} The mapping equations of the UMP imply \begin{eqnarray*} x_L &= &A_1, \quad x_B = 0, \\ y_L &= &0, \quad y_B = {\frac{A_1(1-E^2)}{(1-E^2\sin^2B)\cos B}} \end{eqnarray*} Korn--Lichtenstein equations \begin{eqnarray*} x_L &= &\sqrt{E/G}y_B, \quad x_B = -\sqrt{G/E}y_L \quad \mathrm{or} \\ y_L &= &-\sqrt{E/G}x_B, \quad y_B=\sqrt{G/E}x_L \end{eqnarray*} \begin{eqnarray*} & &\sqrt{E/G} = \cos B\frac{1-E^2\sin^2B}{1-E^2} \quad \Longrightarrow \\ & &y_B = \frac{A_1(1-E^2)}{(1-E^2\sin^2B)\cos B} \qquad q.e.d. \end{eqnarray*} integrability conditions \begin{eqnarray*} \Delta_{LB}x &= &\left(\sqrt{\frac{E}{G}}x_B\right)_B+\left(\sqrt{\frac{G}{E}}x_L\right)_L=0, \\ \Delta_{LB}y &= &\left(\sqrt{\frac{E}{G}}y_B\right)_B+\left(\sqrt{\frac{G}{E}}y_L\right)_L=0 \end{eqnarray*} \begin{eqnarray*} & &\sqrt{{E}/{G}}x_B = 0, \\ & &\sqrt{{G}/{E}}x_L = {\frac{A_1(1-E^2)}{(1-E^2-\sin^2B)\cos B}}, \\ & &(\sqrt{{G}/{E}}x_L)_L = 0, \\ & &\sqrt{{E}/{G}}y_B = A_1, \\ & &(\sqrt{{E}/{G}}y_B)_B = 0, \\ & &(\sqrt{{G}/{E}}y_L) = 0 \qquad q.e.d. \end{eqnarray*} orientation conserving conformeomorphism \begin{eqnarray*} \left|\begin{array}{cc} x_L&x_B\\ y_L&y_B\end{array} \right| = x_Ly_B-x_By_L = {\frac{A^2_1(1-E^2)}{(1-E^2\sin^2B)\cos B}>0} \end{eqnarray*} due to \begin{eqnarray*} -\pi /20 \qquad q.e.d. \end{eqnarray*} The UMP solution of the Korn--Lichtenstein equations subject to the vectorial Laplace--Beltrami equations as integrability conditions and the condition of orientation conservation is based on the constraint of the following type. Map the equator equidistantly, i.e. $x(B=0)=A_1\Lambda$. \end{example} \begin{example}\label{ex:2} Universal Polar Stereographic Projection (UPS) \begin{eqnarray*} x &= &\frac{2A_1}{\sqrt{1-E^2}}\left(\frac{1-E}{1+E}\right)^{E/2} \\ & &\times\,\tan\left(\frac{\pi}{4}-\frac{B}{2}\right)\left[\frac{1+E\sin B}{1-E\sin B}\right]^{E/2}\cos L\\ y &= &\frac{2A_1}{\sqrt{1-E^2}}\left(\frac{1-E}{1+E}\right)^{E/2} \\ & &\times\,\tan\left(\frac{\pi}{4}-\frac{B}{2}\right)\left[\frac{1+E\sin B}{1-E\sin B}\right]^{E/2}\sin L \end{eqnarray*} The matrix of the metric of the ellipsoid of revolution $\Bbb{E}^2_{A_1,A_2}$ is represented by \begin{eqnarray*} \left[G_{MN}\right] \!=\! \left[\begin{array}{cc} E&F\\ F&G\end{array}\right] \!=\! \left[\begin{array}{cc} {\displaystyle\frac{A^2_1\cos^2B}{1-E^2\sin^2 B}}&0\\ 0&{\displaystyle\frac{A^2_1(1-E^2)^2}{(1-E^2\sin^2 B)^3}} \end{array}\right] \end{eqnarray*} The mapping equations of the UPS imply \begin{eqnarray*} x_L &= &-f(B)\sin L, \quad x_B = f'(B) \cos L \\ y_L &= &f(B) \cos L, \quad y_B=f'(B)\sin L \end{eqnarray*} subject to \begin{eqnarray*} f(B) &:= &\frac{2A_1}{\sqrt{1-E^2}}\left(\frac{1-E}{1+E}\right)^{E/2} \\ & &\times\,\tan\left(\frac{\pi}{4}-\frac{B}{2}\right)\left[\frac{1+E\sin B}{1-E\sin B}\right]^{E/2}\\ f'(B) &:= &\frac{-2A_1}{\sqrt{1-E^2}}\left(\frac{1-E}{1+E}\right)^{E/2}\left(\frac{1-E^2}{1-E^2\sin^2B}\right) \\ & &\times\,\left[\frac{1+E\sin B}{1-E\sin B}\right]^{E/2}\frac{\tan\left(\displaystyle{\frac{\pi}{4}-\frac{B}{2}}\right)}{\cos B} \\ & &=\,\frac{-(1-E^2)}{\cos B(1-E^2\sin^2B)}f(B) \end{eqnarray*} Korn--Lichtenstein equations \begin{eqnarray*} x_L &= &\sqrt{E/G}y_B, \quad x_B=-\sqrt{G/E}y_L \quad \mathrm{or} \\ y_L &= &-\sqrt{E/G}x_B, \quad y_B=\sqrt{G/E}x_L \end{eqnarray*} \begin{eqnarray*} \sqrt{E/G}=\cos B\frac{1-E^2\sin^2B}{1-E^2} \Longrightarrow \end{eqnarray*} \begin{eqnarray*} y_B &= &-\frac{1-E^2}{\cos B(1-E^2\sin^2B)}f(B)\sin L \\ &= &f'(B)\sin L\quad\quad q.e.d.\\ &&\\ y_L &= &-\frac{\cos B(1-E^2\sin^2B)}{1-E^2}f'(B)\cos L \\ &= &f(B)\cos L\quad\quad q.e.d. \end{eqnarray*}\\ \end{example} %%%%%%%%%%%%%%% %% Section 3 %% %%%%%%%%%%%%%%% \section{A fundamental solution for the Korn--Lichtenstein equations} \label{sec:3} For the biaxial ellipsoid $\Bbb{E}^2_{A_1,A_2}$ we shall construct a fundamental solution of the ellipsoidal Korn--Lichtenstein equations for conformal mapping [Eq. (\ref{eq:2})] subject to the vectorial Laplace--Beltrami equations [Eq. (\ref{eq:3})]. The condition of orientation conservation [Eq. (\ref{eq:4})] is automatically fulfilled: \setcounter{equation}{0}% \renewcommand{\theequation}{5\alph{equation}}% \begin{eqnarray} x_L &= &\sqrt{E/G}y_B, \quad x_B=-\sqrt{G/E}y_L \quad \mbox{or} \nonumber \\ y_L &= &-\sqrt{E/G}x_B, \quad y_B=\sqrt{G/E}x_L \label{eq:5a} \end{eqnarray} \begin{eqnarray} (\sqrt{G/E}x_L)_L &+ &(\sqrt{E/G}x_B)_B=0, \nonumber \\ (\sqrt{G/E}y_L)_L &+ &(\sqrt{E/G}y_B)_B=0 \label{eq:5b} \end{eqnarray} \begin{eqnarray} x_Ly_B-x_By_L=\sqrt{G/E}x^2_L+\sqrt{E/G}x^2_B > 0 \label{eq:5c} \end{eqnarray} \begin{eqnarray} \sqrt{G/E}\in R^+, \quad \sqrt{E/G}\in R^+ \label{eq:5d} \end{eqnarray} \renewcommand{\theequation}{\thesection.\arabic{equation}} \begin{table*} \caption[]{Taylor expansion of $r(B):=\sqrt{E/G}=\cos B(1-E^2\sin^2 B)/ (1-E^2)=\scriptstyle\sum\limits_{n=0}^N\textstyle\frac{1}{n!}r^{(n)} (B_0)b^n=\scriptstyle\sum\limits_{n=0}^N\textstyle r_nb^n$ up to order three} \begin{tabular*}{\hsize}{@{\hspace{0pt}}l@{\hspace{10pt}}l} \hline \noalign{\smallskip} $\displaystyle{r_0} = \frac{\cos B_0(1-E^2\sin^2B_0)}{1-E^2}$ &$\displaystyle{r_1} = -\frac{\sin B_0(1+2E^2-3E^2\sin^2B_0)}{1-E^2}$\\ \noalign{\smallskip} $\displaystyle{r_2} = -\frac{\cos B_0(1+2E^2-9E^2\sin^2B_0)}{2(1-E^2)}$ &$\displaystyle{r_3} = \frac{\sin B_0(1+20E^2-27E^2\sin^2B_0)}{6(1-E^2)}$ \\ \noalign{\smallskip} \hline \end{tabular*} \label{tab:1} \end{table*} \begin{table*} \caption{Taylor expansion of $s(B):=\sqrt{G/E}=(1-E^2)/[\cos B(1-E^2\sin^2 B)] = \sum\limits_{n=0}^N \frac{1}{n!}s^{(n)}(B_0)b^n = \sum\limits_{n=0}^N s_nb^n$ up to order three} \begin{tabular*}{\hsize}{@{\hspace{0pt}}l@{\hspace{10pt}}l} \hline \noalign{\smallskip} $\displaystyle s_0 = \frac{1-E^2}{\cos B_0(1-E^2\sin^2B_0)}$ &$\displaystyle s_1= \frac{(1-E^2)\sin B_0(1+2E^2-3E^2\sin^2B_0)} {\cos^2B_0(1-E^2\sin^2B_0)^2}$\\ \noalign{\medskip} \multicolumn{2}{l}{{\hspace{-6pt}}$\displaystyle s_2 = \frac{(1-E^2)}{2\cos^3B_0(1-E^2\sin^2B_0)^3} \big (1+2E^2+\sin^2 B_0 (1 - 4E^2 + 6E^4) -E^2\sin^4B_0(2 + 13 E^2) + 9E^4\sin^6B_0 \big )$} \\ \noalign{\medskip} \multicolumn{2}{l}{{\hspace{-6pt}}$\displaystyle s_3 = \frac{(1-E^2)\sin B_0}{6\cos^4B_0(1-E^2\sin^2B_0)^4} \big (5+4E^2+24E^4+\sin^2B_0(1 - 17E^2 - 80E^4 + 24E^6) -E^2\sin^4B_0(5 - 91E^2 + 68E^4)$}\\ \noalign{\smallskip} \multicolumn{2}{l}{{\hspace{-6pt}}$\displaystyle \phantom{s_3} \phantom{=} -E^4\sin^6B_0(17 - 65E^2) -27E^6\sin^8B_0 \big)$}\\ \noalign{\smallskip} \hline \end{tabular*} \label{tab:2} \end{table*} Here we are interested in a local solution of the ellipsoidal Korn--Lichtenstein equations around a point $(L_0,B_0)$ such that $L=L_0+l, B=B_0+b$ hold. A polynomial set-up of the local solution of the ellipsoidal Korn--Lichtenstein equations subject to the ellipsoidal vectorial Laplace--Beltrami equation \setcounter{equation}{0}% \renewcommand{\theequation}{6\alph{equation}}% \begin{eqnarray} y_l=-\sqrt{E/G}x_b, \quad y_b=\sqrt{G/E}x_l \label{eq:6a} \end{eqnarray} \begin{eqnarray} (\sqrt{G/E}x_l)_l &+ &(\sqrt{E/G}x_b)_b=0, \nonumber \\ (\sqrt{G/E}y_l)_l &+ &(\sqrt{E/G}y_b)_b=0 \label{eq:6b} \end{eqnarray} is \setcounter{equation}{0}% \renewcommand{\theequation}{7\alph{equation}}% \begin{eqnarray} x(l,b) &= &x_0+x_{10}l+x_{01}b+x_{20}l^2+x_{11}lb+x_{02}b^2 \nonumber\\ & &+\,x_{30}l^3+x_{21}l^2b+x_{12}lb^2+x_{03}b^3+{\cal O}(4) \label{eq:7a}\\ y(l,b) &= &y_0+y_{10}l+y_{01}b+y_{20}l^2+y_{11}lb+y_{02}b^2 \nonumber\\ & &+\,y_{30}l^3+y_{21}l^2b+y_{12}lb^2+y_{03}b^3+{\cal O}(4) \label{eq:7b} \end{eqnarray} or \begin{eqnarray} x(l,b)=\sum_{n=0}^{\infty}P_n(l,b), \quad y(l,b)=\sum_{n=0}^{\infty}Q_n(l,b) \label{eq:7c} \end{eqnarray} \begin{eqnarray} P_0(l,b) & := & x_0\nonumber\\ P_1(l,b) & := & x_{10}l+x_{01}b=\sum_{\alpha+\beta=1}x_{\alpha\beta}l^\alpha b^\beta\nonumber\\ P_2(l,b) & := & x_{20}l^2+x_{11}lb+x_{02}b^2=\sum_{\alpha+\beta=2}x_{\alpha\beta}l^\alpha b^\beta\nonumber\\ \vdots & & \nonumber\\ P_n(l,b) & := & \sum_{\alpha+\beta=n}x_{\alpha\beta}l^\alpha b^\beta \label{eq:7d} \end{eqnarray} \begin{eqnarray} Q_0(l,b) & := & y_0\nonumber\\ Q_1(l,b) & := & y_{10}l+y_{01}b=\sum_{\alpha+\beta=1}y_{\alpha\beta}l^\alpha b^\beta\nonumber\\ Q_2(l,b) & := & y_{20}l^2+y_{11}lb+y_{02}b^2=\sum_{\alpha+\beta=2}y_{\alpha\beta}l^\alpha b^\beta\nonumber\\ \vdots & &\nonumber\\ Q_n(l,b) & :=& \sum_{\alpha+\beta=n}y_{\alpha\beta}l^\alpha b^\beta \label{eq:7e} \end{eqnarray} \setcounter{equation}{7}% \renewcommand{\theequation}{\arabic{equation}}% subject to the Taylor expansion \begin{eqnarray} r := \sqrt{\frac{E}{G}} &= &\cos B\frac{1-E^2\sin^2B}{1-E^2} \nonumber \\ &= &r_0+r_1b+r_2b^2+r_3b^3+{\cal O}(4) \label{eq:8} \end{eqnarray} subject to \begin{eqnarray*} r_0 := & {\frac{1}{0!}r^{(0)}(B_0)} & = r(B_0)\\ r_1 := & {\frac{1}{1!}r^{(1)}(B_0)} & = r'(B_0)\\ \vdots & &\\ r_n := & {\frac{1}{n!}r^{(n)}(B_0)} & = \frac{1}{n(n-1)...2\cdot 1}r^{(n)}(B_0) \end{eqnarray*} \begin{eqnarray} s := {\sqrt{\frac{G}{E}}} &= &r^{-1} = \frac{1}{\cos B}\frac{1-E^2}{1-E^2\sin^2B} \label{eq:9} \\ & = &s_0+s_1b+s_2b^2+s_3b^3+{\cal O}(4) \nonumber \\ & = &r^{-1}_0-r^{-2}_0r_1b+(r^{-3}_0r^2_1-r^{-2}_0r_2)b^2 \nonumber \\ & & +\, (-r^{-4}_0r^3_1+2r^{-3}_0r_1r_2-r^{-2}_0r_3)b^3+{\cal O}(4) \nonumber \end{eqnarray} subject to \begin{eqnarray*} s_0 := &{\frac{1}{0!}s^{(0)}(B_0)} & =s(B_0)\\ s_1 := &{\frac{1}{1!}s^{(1)}(B_0)} & =s'(B_0)\\ \vdots&&\\ s_n := &{\frac{1}{n!}s^{(n)}(B_0)} & =\frac{1}{n(n-1)...2\cdot 1}s^{(n)}(B_0) \end{eqnarray*} given in detail by the coefficients in Tables~\ref{tab:1} and \ref{tab:2}. First, let us consider the vectorial Laplace--Beltrami equations [Eq. (\ref{eq:6b})] \begin{eqnarray*} \Delta_{LB}x &= &(\sqrt{G/E}x_l)_l+(\sqrt{E/G}x_b)_b=0 \\ \Delta_{LB}y &= &(\sqrt{G/E}y_l)_l+(\sqrt{E/G}y_b)_b=0 \end{eqnarray*} \setcounter{equation}{0}% \renewcommand{\theequation}{10\alph{equation}}% \begin{eqnarray} sx_{ll}+(rx_b)_b= & sx_{ll}+r_bx_b+rx_{bb} & =0 \label{eq:10a}\\ sy_{ll}+(ry_b)_b= & sy_{ll}+r_by_b+ry_{bb} & =0 \label{eq:10b} \end{eqnarray} \setcounter{equation}{10}% \renewcommand{\theequation}{\arabic{equation}}% \begin{eqnarray} \label{eq:11} x(l,b)=&& x_0+x_{10}l+x_{01}b+x_{20}l^2+x_{11}lb\\ && +x_{02}b^2+x_{30}l^3+x_{21}l^2b+x_{12}lb^2\nonumber\\ && +x_{03}b^3+x_{40}l^4+x_{31}l^3b+x_{22}l^2b^2\nonumber\\ && +x_{13}lb^3+x_{04}l^4+{\cal O}(5)\nonumber\\ [5pt] \label{eq:12} x_l(l,b)=&& x_{10}+2x_{20}l+x_{11}b+3x_{30}l^2+2x_{21}lb\\ && +x_{12}b^2+4x_{40}l^3+3x_{31}l^2b+2x_{22}lb^2\nonumber\\ && +x_{13}b^3+{\cal O}(4)\nonumber\\ [5pt] \label{eq:13} x_{ll}(l,b)=&& 2x_{20}+3\cdot 2x_{30}l+2\cdot 1x_{21}b+4\cdot 3x_{40}l^2\\ && +3\cdot 2x_{31}lb+2\cdot 1x_{22}b^2+{\cal O}(3)\nonumber\\ [5pt] \label{eq:14} sx_{ll}(l,b)=&& (s_0+s_1b+s_2b^2+{\cal O}(3))x_{ll}\\ =&& 2s_0x_{20}+6s_0x_{30}l+2s_0x_{21}b+2s_1x_{20}b\nonumber\\ && +12s_0x_{40}l^2+6s_0x_{31}lb+6s_1x_{30}lb\nonumber\\ && +2s_0x_{22}b^2+2s_1x_{21}b^2+2s_2x_{20}b^2+{\cal O}(3)\nonumber\\ [5pt] \label{eq:15} x_b(l,b)=&& x_{01}+x_{11}l+2x_{02}b+x_{21}l^2+2x_{12}lb\\ && +3x_{03}b^2+x_{31}l^3+2x_{22}l^2b+3x_{13}lb^2\nonumber\\ && +4x_{04}b^3+{\cal O}(4)\nonumber\\ [5pt] \label{eq:16} x_{bb}(l,b)=&& 2x_{02}+2 \cdot 1 x_{12}l+3\cdot 2x_{03}b\\ &&+2\cdot 1 x_{22}l^2+3\cdot 2x_{13}lb+4\cdot 3x_{04}b^2+{\cal O}(3)\nonumber\\ [5pt] \label{eq:17} r_bx_b(l,b)=&& (r_1+2r_2b+3r_3b^2+{\cal O}(3))x_b\\ =&& r_1x_{01}+r_1x_{11}l+2r_1x_{02}b+2r_2x_{01}b\nonumber\\ && +r_1x_{21}l^2+2r_1x_{12}lb+2r_2x_{11}lb\nonumber\\ && +3r_1x_{03}b^2+4r_2x_{02}b^2+3r_3x_{01}b^2+{\cal O}(3)\nonumber\\ [5pt] \label{eq:18} rx_{bb}(l,b)=&& (r_0+r_1b+r_2b^2+{\cal O}(3))x_{bb}\\ =&& +2r_0x_{02}+2r_0x_{12}l+6r_0x_{03}b+2r_1x_{02}b\nonumber\\ && +2r_0x_{22}l^2+6r_0x_{13}lb+2r_1x_{12}lb\nonumber\\ && +12r_0x_{04}b^2+6r_1x_{03}b^2+2r_2x_{02}b^2+{\cal O}(3)\nonumber \end{eqnarray} While Eqs. (\ref{eq:14}), (\ref{eq:17}) and (\ref{eq:18}) represent the polynomial solution of Eq. (\ref{eq:10a}), namely for $x(l,b)$, a corresponding solution for Eq. (\ref{eq:10b}) could be found as soon as we replace $x$ by $y$, namely for the polynomial solution $y(l,b)$. Let us write down the $(n-1)$ constraints for $(n+1)$ polynomials given by the zero identity of the sum of the three terms of Eq. (\ref{eq:14}) $sx_{ll}$ (first term), Eq. (\ref{eq:17}) $r_bx_b$ (second term) and Eq. (\ref{eq:18}) $rx_{bb}$ (third term) \begin{corollary}\label{cor:1} Laplace--Beltrami equations solved in the function space of bivariate polynomials If a polynomial [Eq. (\ref{eq:7a})] of degree $n$ fulfils the Laplace--Beltrami equation [Eq. (\ref{eq:10a})], then there are $(n-1)$ coefficient constraints, namely \begin{equation} \begin{array}{lcr} {n=2} & &\\ 2s_0x_{20}+2r_0x_{02}+r_1x_{01} &= &0\\ 2s_0y_{20}+2r_0y_{02}+r_1y_{01} &= &0 \end{array} \label{eq:19} \end{equation} \begin{equation} \begin{array}{lcr} {n=3} & &\\ 6s_0x_{30}+2r_0x_{12}+r_1x_{11} &= &0\\ 6s_0y_{30}+2r_0y_{12}+r_1y_{11} &= &0\\ s_0x_{21}+s_1x_{20}+3r_0x_{03}+2r_1x_{02}+r_2x_{01} &= &0\\ s_0y_{21}+s_1y_{20}+3r_0y_{03}+2r_1y_{02}+r_2y_{01} &= &0 \end{array} \label{eq:20} \end{equation} \begin{equation} \begin{array}{lcr} {n=4} & &\\ 12s_0x_{40}+2r_0x_{22}+r_1x_{21} &= &0\\ 12s_0y_{40}+2r_0y_{22}+r_1y_{21} &= &0\\ 3s_0x_{31}+3s_1x_{30}+3r_0x_{13}+2r_1x_{12}+r_2x_{11} &= &0\\ 3s_0y_{31}+3s_1y_{30}+3r_0y_{13}+2r_1y_{12}+r_2y_{11} &= &0\\ 2s_0x_{22}+2s_1x_{21}+2s_2x_{20}+12r_0x_{04} & &\\ +9r_1x_{03}+6r_2x_{02}+3r_3x_{01} &= &0\\ 2s_0y_{22}+2s_1y_{21}+2s_2y_{20}+12r_0y_{04} & &\\ +9r_1y_{03}+6r_2y_{02}+3r_3y_{01} &= &0 \end{array} \label{eq:21} \end{equation} and in general \begin{eqnarray*} &&sx_{ll}+(rx_b)_b =\sum_{n=2}^\infty\sum_{i=0}^{n-2}\sum_{j=0}^{i}\\ &&\times\Big( (j+1) \big( (i-j+1)r_{j+1}x_{n-i-2,i-j+1}\\ &&\quad+(j+2)r_{i-j}x_{n-i-2,j+2} \big)\\ &&\quad+ (n-i)(n-i-1)s_{j}x_{n-i,i-j} \Big) l^{n-i-2}b^{i}=0\\ &&\\ &&sy_{ll}+(ry_b)_b =\sum_{n=2}^\infty\sum_{i=0}^{n-2}\sum_{j=0}^{i}\\ &&\times\Big( (j+1) \big( (i-j+1)r_{j+1}y_{n-i-2,i-j+1}\\ &&\quad+(j+2)r_{i-j}y_{n-i-2,j+2} \big)\\ &&\quad+ (n-i)(n-i-1)s_{j}y_{n-i,i-j} \Big) l^{n-i-2}b^{i}=0 \end{eqnarray*} Finally, we have to constrain the general solution [Eq. (\ref{eq:7a})] of the Laplace--Beltrami equation $x(l,b)$ to the ellipsoidal Korn--Lichtenstein equation [Eq. (\ref{eq:6a})] $y_l=-\sqrt{E/G}x_b$, in particular \begin{eqnarray} y_l=-r(b)x_b=-(r_0+r_1b+r_2b^2+r_3b^3+{\cal O}(4))x_b \label{eq:22} \end{eqnarray} \begin{eqnarray} y_l &= &y_{10}+2y_{20}l+y_{11}b+3y_{30}l^2+2y_{21}lb+y_{12}b^2\label{eq:23}\\ & &+4y_{40}b^3+3y_{31}l^2b+2y_{22}lb^2+y_{13}b^3+{\cal O}(4)\nonumber\\ &= &-r_0x_{01}-r_0x_{11}l-2r_0x_{02}b-r_1x_{01}b-r_0x_{21}l^2\nonumber\\ & &-2r_0x_{12}lb-r_1x_{11}lb-3r_0x_{03}b^2-2r_1x_{02}b^2\nonumber\\ & &-r_2x_{01}b^2-r_0x_{31}l^3-2r_0x_{22}l^2b-r_1x_{21}l^2b\nonumber\\ & &-3r_0x_{13}lb^2-2r_1x_{12}lb^2-r_2x_{11}lb^2-4r_0x_{04}b^3\nonumber\\ & &-3r_1x_{03}b^3-2r_2x_{02}b^3-r_3x_{01}b^3+{\cal O}(4)\nonumber \end{eqnarray} Alternatively we may constrain the general solution of Eq. (\ref{eq:7b}) to the ellipsoidal Korn--Lichtenstein equation [Eq. (\ref{eq:6a})] $y_b=\sqrt{G/E}x_l$, in particular \begin{eqnarray} y_b &= &s(b)x_l=(s_0+s_1b+s_2b^2+s_3b^3+{\cal O}(4))x_l \label{eq:24} \end{eqnarray} \begin{eqnarray} \label{eq:25} y_b &= &y_{01}+y_{11}l+2y_{02}b+y_{21}l^2+2y_{12}lb+3y_{03}b^2\\ & &+y_{31}l^3+2y_{22}l^2b+3y_{13}lb^2+4y_{04}b^3+{\cal O}(4)\nonumber\\ &= &s_0x_{10}+2s_0x_{20}l+s_0x_{11}b+s_1x_{10}b+3s_0x_{30}l^2\nonumber\\ & &+2s_0x_{21}lb+2s_1x_{20}lb+s_0x_{12}b^2+s_1x_{11}b^2\nonumber\\ & &+s_2x_{10}b^2+4s_0x_{40}l^3+3s_0x_{31}l^2b+3s_1x_{30}l^2b\nonumber\\ & &+2s_0x_{22}lb^2+2s_1x_{21}lb^2+2s_2x_{20}lb^2+s_0x_{13}b^3\nonumber\\ & &+s_1x_{12}b^3+s_2x_{11}b^3+s_3x_{10}b^3+{\cal O}(4)\nonumber \end{eqnarray} The coefficient relations up to terms of the order four are finally collected in \end{corollary} \begin{corollary}\label{cor:2} Korn--Lichtenstein equation solved in the function space of bivariate polynomials If a polynomial [Eq. (\ref{eq:7a})] of degree $n$ fulfils the Korn--Lichtenstein equation [Eq. (6a)] with respect to an ellipsoid of revolution and subject to the $(n-1)$ constraints given by Eqs. (\ref{eq:19})--(\ref{eq:21}), then the following mixed coefficient relations hold. \begin{equation} \begin{array}{rcl} {n=1} & & \\ [5pt] y_{10} & = &-r_0x_{01}\\ y_{01} & = &s_0x_{10} \end{array} \label{eq:26} \end{equation} \begin{equation} \begin{array}{rcl} {n=2} & &\\ [5pt] 2y_{20} & = &-r_0x_{11}\\ y_{11} & = &-2r_0x_{02}-r_1x_{01}\\ y_{11} & = &2s_0x_{20}\\ 2y_{02} & = &s_0x_{11}+s_1x_{10} \end{array} \label{eq:27} \end{equation} \begin{equation} \begin{array}{rcl} {n=3} & &\\ [5pt] 3y_{30} & = &-r_0x_{21}\\ 2y_{21} & = &-2r_0x_{12}-r_1x_{11}\\ y_{12} & = &-3r_0x_{03}-2r_1x_{02}-r_2x_{01}\\ y_{21} & = &3s_0x_{30}\\ 2y_{12} & = &2s_0x_{21}+2s_1x_{20}\\ 3y_{03} & = &s_0x_{12}+s_1x_{11}+s_2x_{10} \end{array} \label{eq:28} \end{equation} \begin{equation} \begin{array}{rcl} {n=4} & &\\ [5pt] 4y_{40} & = & -r_0x_{31}\\ 3y_{31} & = & -2r_0x_{22}-r_1x_{21}\\ 2y_{22} & = & -3r_0x_{13}-2r_1x_{12}-r_2x_{11}\\ y_{13} & = & -4r_0x_{04}-3r_1x_{03}-2r_2x_{02}-r_3x_{01}\\ y_{31} & = & 4s_0x_{40}\\ 2y_{22} & = & 3s_0x_{31}+3s_1x_{30}\\ 3y_{13} & = & 2s_0x_{22}+2s_1x_{21}+2s_2x_{20}\\ 4y_{04} & = & s_0x_{13}+s_1x_{12}+s_2x_{11}+s_3x_{10} \end{array} \label{eq:29} \end{equation} and in general \begin{eqnarray*} y_l &= &\sum_{n=1}^\infty \sum_{i=0}^{n-1} (n-i) y_{n-i,i} l^{n-i-1} b^{i} \\ &= &- \sum_{n=1}^{\infty} \sum_{i=0}^{n-1} \sum_{j=0}^{i} (i-j+1) r_j x_{n-i-1,i-j+1} l^{n-i-1} b^{i} \\ &= &-r(b)x_b \end{eqnarray*} \begin{eqnarray*} y_b &= &\sum_{n=1}^\infty \sum_{i=0}^{n-1} (i+1) y_{n-i-1,i+1} l^{n-i-1} b^{i} \\ &= &\sum_{n=1}^{\infty} \sum_{i=0}^{n-1} \sum_{j=0}^{i} (n-i) s_j x_{n-i,i-j} l^{n-i-1} b^{i} \\ &= &s(b)x_l \end{eqnarray*} \end{corollary} %%%%%%%%%%%%%%% %% Section 4 %% %%%%%%%%%%%%%%% \section{The constraints to the Korn--Lichtenstein equations which generate the Gau{\ss}--Kr"uger/UTM conformal mapping} \label{sec:4} The equidistant mapping of a meridian of reference $L_0$ establishes the proper constraint to the Korn--Lichtenstein equations which leads to the standard Gau{\ss}--Kr"uger or Universal Transverse Mercator Projection conformal mapping. The arc length of the coordinate line $L_0=const$, namely the meridian, between latitude $B_0$ and $B$ is computed by \setcounter{equation}{29}% \begin{eqnarray} y(0,b)=\int_{B_0}^B\sqrt{G(B^*)}dB^*=\sum_{n=1}^\infty y_{0n}b^n \label{eq:30} \end{eqnarray} as soon as we set up uniformly convergent Taylor series of type \begin{eqnarray} \sqrt{G(B)}=\frac{A(1-E^2)}{(1-E^2\sin^2B)^{3/2}}=\sum_{n=1}^\infty \frac{1}{n!}G^{(n)}(B_0)b^n \label{eq:31} \end{eqnarray} and integrate termwise. Table~3 is a list of the resulting coefficients $y_{0n}$, which establish the set-up of the following constraints. % Reference of Table 3 undefined! $\vdots$ \pagebreak \begin{thebibliography}{} \bibitem[Blaschke and Leichtwei{\ss}(1973)]{bla73} Blaschke W, Leichtwei{\ss} K (1973) Elementare Differentialgeometrie. Springer, Berlin Heidelberg New York \bibitem[Bourguignon(1970)]{bou70} Bourguignon JP (1970) Transformation infinitesimal conformes ferm\'ees des vari\'et\'es riemanniennes connexes compl\`etes. C R Acad Sci Ser A 270: 1593--1596 \bibitem[Cox \etal(1996)]{cox96} Cox D, Little J, O'Shea D (1996) Ideals, varieties and algorithms. 2nd edn., Springer, Berlin Heidelberg New York \bibitem[Eisenhart(1926)]{eis26} Eisenhart LP (1926) Riemannian geometry. Princeton University Press, Princeton \bibitem[Finzi(1922)] Finzi A (1922) Sulle variet\`a in rappresentazione conforme con la variet\`a euclidea a piu di tre dimensioni. Rend Acc Lincei Classe Sci Ser 5 31: 8--12 \bibitem[Gau{\ss}(1822)]{gau22} Gau{\ss} CF (1822) Allgemeine Aufl\"{o}sung der Aufgabe, die Teile einer gegebenen Fl\"{a}che so abzubilden, da{\ss} die Abbildung dem abgebildeten in den kleinsten Teilen \"{a}hnlich wird. In: Werke IV (1873) ??, ??, pp 193--216 \bibitem[Gau{\ss}(1873)]{gau73} Gau{\ss} CF (1844) Untersuchungen \"{u}ber Gegenst\"{a}nde der h\"{o}heren Geod\"{a}sie. In: Werke IV (1873) ??, ??, pp 259--334 \bibitem[Grafarend(1995)]{graf95a} Grafarend E (1995) The optimal universal Mercator projection. Manuscr Geod 20: 421-468 \bibitem[Grafarend(1995)]{graf95b} Grafarend E, Syffus R (1995) The oblique azimuthal projection of geodesic type for the biaxial ellipsoid: Riemann polar and normal coordinates. J Geod 70: 13--37 \bibitem[Hedrick and Ingold(1925a)]{hed25a} Hedrick ER, Ingold L (1925) Analytic functions in three dimensions. Trans Am Math Soc 27: 551--555 \bibitem[Hedrick and Ingold(1925b)]{hed25b} Hedrick ER, Ingold L (1925) The Beltrami equations in three dimensions. Trans Am Math Soc 27: 556--562 \bibitem[Heitz(1988)]{hei88} Heitz S (1988) Coordinates in geodesy. Springer, Berlin Heidelberg New York \bibitem[Jacobi(1839)]{jac39} Jacobi CGJ (1839) Note von der geod\"{a}tischen Linie auf einem Ellipsoid und den verschiedenen Anwendungen einer merkw\"{u}rdigen analytischen Substitution. Crelles J 19: 309--313 \bibitem[Klingenberg(1982)]{kli82} Klingenberg W (1982) Riemannian geometry. de Gruyter, Berlin New York \bibitem[Korn(1914)]{kor14} Korn A (1914) Zwei Anwendungen der Methode der sukzessiven Ann\"{a}herungen. Schwarz-Festschrift. Springer, Berlin, pp 215--229 \bibitem[Kr\"{u}ger(1922)]{kru22} Kr\"{u}ger L (1922) Zur stereographischen Projektion. Ver\"{o}ff Preuss Geod Inst, P. Stankiewicz, Berlin \bibitem[Kulkarni(1969)]{kul69} Kulkarni RS (1969) Curvature structures and conformal transformations. J Diff Geom 4: 425--451 \bibitem[Kulkarni(1972)]{kul72} Kulkarni RS (1972) Conformally flat manifolds. Proc Nat Acad Sci USA 69: 2675--2676 \bibitem[Kulkarni and Pinkall(1988)]{kul88} Kulkarni RS, Pinkall U (1988) Conformal geometry. Vieweg, Braunschweig Wiesbaden \bibitem[Lafontaine(1988)]{laf88} Lafontaine J (1988) Conformal geometry from the Riemannian view point. In: Conformal geometry, Kulkarni RS, Pinkall U (eds), Vieweg, Braunschweig Wiesbaden \bibitem[Lichtenstein(1911)]{li11} Lichtenstein L (1911) Beweis des Satzes, da{\ss} jedes hinreichend kleine im wesentlichen stetig gekr\"{u}mmte, singularit\"{a}tenfreie Fl\"{a}chenst\"{u}ck auf einen Teil einer Ebene zusammenh\"{a}ngend und in den kleinsten Teilen \"{a}hnlich abgebildet werden kann. Abh K\"{o}nigl Preuss Akad Wiss Berlin, Phys Math K Anhang Abh VI: 1--43 \bibitem[Lichtenstein(1916)]{li16} Lichtenstein L (1916) Zur Theorie der konformen Abbildung. Bull Int Acad Sci Cracovie Ser A: 192--217 \bibitem[Liouville(1850)]{lio50} Liouville J (1850) Extension au cas des trois dimensions de la question du trac\'{e} g\'{e}ographique. Note VI, by G. Monge: application de l'analyse \`{a} la g\'{e}om\'{e}trie, cinqui\`{e}me \'{e}dition revue corrig\'{e}e par M. Liouville, Bachelier, Paris \bibitem[M\"{u}ller(1991)]{mul91} M\"{u}ller B (1991) Kartenprojektionen des dreiachsigen Ellipsoides. MSc Thesis, Dept Geod Sci, Stuttgart University, Stuttgart \bibitem[Ricci(1918)]{ric18} Ricci G (1918) Sulla determinazione di varieta dotate di propriet\`{a} intrinseche date a priori -- note I. Rend Acc Lincei Classe Sci Rome Ser 5, vol 19 \bibitem[Schering(1857)]{scher57} Schering E (1857) \"{U}ber die konforme Abbildung des Ellipsoides auf der Ebene. G\"{o}ttingen. \pagebreak \bibitem[Schmehl(1927)]{schm27} Schmehl H (1927) Untersuchungen \"{u}ber ein allgemeines Erdellipsoid. Ver\"{o}ff Preuss Geod Inst Neue Folge Nr 98 \bibitem[Schouten(1921)]{scho21} Schouten JA (1921) \"{U}ber die konforme Abbildung $n$-dimensionaler Mannigfaltigkeiten mit quadratischer Ma{\ss}bestimmung auf eine Mannigfaltigkeit mit Euklidischer Ma{\ss}bestimmung. Math Z 11: 58--88 \bibitem[Weyl(1918)]{weyl18} Weyl H (1918) Reine Infinitesimalgeometrie. Math Z 2: 384--411 \pagebreak \bibitem[Weyl(1921)]{weyl21} Weyl H (1921) Zur Infinitesimalgeometrie: Einordnung der projektiven und der konformen Auffassung. Nach K\"{o}nigl Ges Wiss G\"{o}ttingen Math-Phys Klasse \bibitem[Yanushaushas(1982)]{yan82} Yanushaushas AI (1982) Three-dimensional analogues of conformal mappings (in Russian) Iz da te l'stvo Nauka, Novosibirsk \bibitem[Zund(1987)]{zund87} Zund J (1987) The tensorial form of the Cauchy-Riemann equations. Tensor New Ser 44: 281--290 \end{thebibliography} \end{document}