% Created 2024-06-22 Sat 22:57 % Intended LaTeX compiler: pdflatex \documentclass[11pt]{tiet-question-paper} \usepackage{amsmath} \usepackage{graphicx} \usepackage{wrapfig} \usepackage{amssymb} \usepackage[unicode]{hyperref} \hypersetup{% colorlinks,% breaklinks,% urlcolor=[rgb]{0,0.35,0.65},% linkcolor=[rgb]{0,0.35,0.65}% } \usepackage{libertinus} \instlogo{images/tiet-logo.pdf} \schoolordepartment{% Computer Science \& Engineering Department} \examname{End Semester Examination} \coursecode{UCS505} \coursename{Computer Graphics} \timeduration{3 hours} \maxmarks{45} \faculty{ANG,AMK,HPS,YDS,RGB} \date{\today} \title{} \hypersetup{ pdfauthor={B.V. Raghav}, pdftitle={}, pdfkeywords={}, pdfsubject={}, pdfcreator={Emacs 29.3 (Org mode 9.6.15)}, pdflang={English}} \begin{document} \maketitle \textbf{Instructions:} \begin{enumerate} \item Attempt any 5 questions; \item Attempt all the subparts of a question at one place. \end{enumerate} \bvrhrule\bvrskipline \begin{enumerate} \item \begin{enumerate} \item Given the control polygon \(\textbf{b}_0, \textbf{b}_1, \textbf{b}_2, \textbf{b}_3\) of a Cubic Bezier curve; determine the vertex coordinates for parameter values \(\forall t\in T\). \hfill [7 marks] \begin{align*} T \equiv & \{0, 0.15, 0.35, 0.5, 0.65, 0.85, 1\} \\ \begin{bmatrix} \textbf{b}_0 &\textbf{b}_1& \textbf{b}_2& \textbf{b}_3 \end{bmatrix} \equiv& \begin{bmatrix} 1&2&4&3\\ 1&3&3&1 \end{bmatrix} \end{align*} \item Explain the role of convex hull in curves. \hfill[2 marks] \end{enumerate} \end{enumerate} \bvrhrule \begin{enumerate}[resume] \item \begin{enumerate} \item Describe the continuity conditions for curvilinear geometry. \hfill[5 marks] \item Define formally, a B-Spline curve. \hfill [2 marks] \item How is a Bezier curve different from a B-Spline curve? \hfill [2 marks] \end{enumerate} \end{enumerate} \bvrhrule \begin{enumerate}[resume] \item \begin{enumerate} \item Given a triangle, with vertices defined by column vectors of \(P\); find its vertices after reflection across XZ plane. \hfill [3 marks] \begin{align*} P\equiv &\begin{bmatrix} 3&6&5 \\ 4&4&6 \\ 1&2&3 \end{bmatrix} \end{align*} \item Given a pyramid with vertices defined by the column vectors of \(P\), and an axis of rotation \(A\) with direction \(\textbf{v}\) and passing through \(\textbf{p}\). Find the coordinates of the vertices after rotation about \(A\) by an angle of \(\theta=\pi/4\).\hfill [6 marks] \begin{align*} P\equiv &\begin{bmatrix} 0&1&0&0 \\ 0&0&1&0 \\0&0&0&1 \end{bmatrix} \\ \begin{bmatrix} \mathbf{v} & \mathbf{p} \end{bmatrix}\equiv &\begin{bmatrix} 0&0 \\1&1\\1&0 \end{bmatrix} \end{align*} \end{enumerate} \end{enumerate} \bvrhrule \begin{enumerate}[resume] \item \begin{enumerate} \item Explain the two winding number rules for inside outside tests. \hfill [4 marks] \item Explain the working principle of a CRT. \hfill [5 marks] \end{enumerate} \end{enumerate} \bvrhrule \begin{enumerate}[resume] \item \begin{enumerate} \item Given a projection plane \(P\) defined by normal \(\textbf{n}\) and a reference point \(\textbf{a}\); and the centre of projection as \(\mathbf{p}_0\); find the perspective projection of the point \(\textbf{x}\) on \(P\). \hfill [5 marks] \begin{align*} \begin{bmatrix} \mathbf{a}&\mathbf{n}&\mathbf{p}_0&\mathbf{x} \end{bmatrix}\equiv & \begin{bmatrix} 3&-1&1&8\\4&2&1&10\\5&-1&3&6 \end{bmatrix} \end{align*} \item Given a geometry \(G\), which is a standard unit cube scaled uniformly by half and viewed through a Cavelier projection bearing \(\theta=\pi/4\) wrt. \(X\) axis. \hfill [2 marks] \item Given a view coordinate system (VCS) with origin at \(\textbf{p}_v\) and euler angles ZYX as \(\boldsymbol{\theta}\) wrt. the world coordinate system (WCS); find the location \(\mathbf{x}_v\) in VCS, corresponding to \(\textbf{x}_w\) in WCS. \hfill [2 marks] \begin{align*} \begin{bmatrix} \mathbf{p}_v & \boldsymbol{\theta} & \mathbf{x}_w \end{bmatrix}\equiv &\begin{bmatrix} 5&\pi/3&10\\5&0&10\\0&0&0 \end{bmatrix} \end{align*} \end{enumerate} \end{enumerate} \bvrhrule \begin{enumerate}[resume] \item \begin{enumerate} \item Describe the visible surface detection problem in about 25 words. \hfill [1 mark] \item To render a scene with \(N\) polygons into a display with height \(H\); what are the space and time complexities respectively of a typical image-space method. \hfill [2 marks] \item Given a 3D space bounded within \([0\quad0\quad0]\) and \([7\quad7\quad-7]\), containing two infinite planes each defined by 3 incident points \(\mathbf{a}_0, \mathbf{a}_1, \mathbf{a}_2\) and \(\mathbf{b}_0, \mathbf{b}_1, \mathbf{b}_2\) respectively bearing colours (RGB) as \(\mathbf{c}_a\) and \(\textbf{c}_b\) respectively. \begin{align*} \begin{bmatrix} \mathbf{a}_0&\mathbf{a}_1&\mathbf{a}_2 &\mathbf{b}_0&\mathbf{b}_1&\mathbf{b}_2 &\mathbf{c}_a&\mathbf{c}_b \end{bmatrix}\equiv &\begin{bmatrix} 1&6&1&6&1&6&1&0 \\ 1&3&6&6&3&1&0&0 \\ -1&-6&-1&-1&-6&-1&0&1 \end{bmatrix} \end{align*} Compute and/ or determine using the depth-buffer method, the colour at pixel \(\mathbf{x}=(2,4)\) on a display resolved into \(7\times7\) pixels. The projection plane is at \(Z=0\), looking at \(-Z\). \hfill [6 marks] \end{enumerate} \end{enumerate} \bvrhrule \end{document}