
OpenEXR File Layout
Last Update: Jul 9, 2019

Florian Kainz

Industrial Light & Magic

Document Purpose and Audience

This document gives an overview of the layout of OpenEXR 2.0 image files as byte sequences. It covers
both single and multi-part formats, and how deep data is handled.

The text assumes that the reader is familiar with OpenEXR terms such as "channel", "attribute", "data
window" or "chunk". For an explanation of those terms see the Technical Introduction to OpenEXR.

Note: This document does not define the OpenEXR file format. OpenEXR is defined as the file format
that is read and written by the IlmImf open-source C++ library. If this document and the IlmImf library
disagree, then the library takes precedence.

Table of Contents

Document Purpose and Audience...1
Backwards Compatibility and New or Changed Functionality...3

OpenEXR Backwards Compatibility (1.7 and 2.0)...3
New Features for OpenEXR 2.0: Multi-Part and Deep Data...3

Basic Data Types..3
Integers..3
Floating-Point Numbers..4
Text..4
Packing..4

File Layout..5
High-Level Layout..5
Comparison between Single-Part and Multi-Part File Layouts...5

Components One and Two: Magic Number and Version Field..5
Magic Number..5
Version Field...6

Component Three: Header...7
Structure..7
Attribute Layout..8
Header Attributes (All Files)...8
Tile Header Attribute...8
Multi-View Header Attribute...9
Multi-Part and Deep Data Header Attributes (New in 2.0)...9
Deep Data Header Attributes (New in 2.0)...9

Component Four: Offset Tables...10
Offset Tables...10
Offset Table Size...10
Scan Lines...10
Tiles...10
Multi-part (New in 2.0)...10

Component Five: Pixel data...11
Chunk Layout (New in 2.0)...11
Regular Scan Line Blocks...11
Regular ImageTiles...12

1

Deep Data (New in 2.0)..13
Predefined Attribute Types..14
Sample File...16

2

Backwards Compatibility and New or Changed Functionality

OpenEXR Backwards Compatibility (1.7 and 2.0)

OpenEXR 1.7 and earlier format files are fully supported by OpenEXR 2.0. You can still use the 1.7 file
format with the 2.0 library. If you use the 2.0 format for single-part scan line image and tile image data,
your data will be stored in the same way as the 1.7 files. You can recompile your 1.7 files to take advantage
of the new format EXRs (multiple-part files, and/or deep scan line and deep tile data).

New Features for OpenEXR 2.0: Multi-Part and Deep Data

The multi-part format is an extension of the OpenEXR 1.7 single-part file format. In addition to supporting
the OpenEXR 1.7 data storage (a single scan line or tiled image), OpenEXR 2.0 files can be used to store
multiple views and/or deep data (deep scan line or deep tiles).

While you can continue to use the 1.7 format for files, these changes to the file layout are required to
support the new multi-part and deep data features:

Feature Description See

Version field Bits 11 and 12 indicate whether the file contains deep data
(bit 11), or more than one part (bit 12).

Deep Data on page 6

Header To store more than one part in the file, you need to have a
header for each part.

Structure on page 7

Header
attributes

There are a number of attributes which have been defined to
store data which is relevant to deep data and multi-part files.
These include: name (one for each part), data type (you can
have different types of data in different views), and the
maximum number of samples to take in a deep data channel.

Multi-Part and Deep
Data Header Attributes
on page 9

Offset tables
and chunks

To store more than one part in the file, you need to have an
offset table for each part, and chunks for each part.

The chunks must begin with a part number.

Component Four: Offset
Tables on page 10, and
Chunk Layout on page
11.

Deep Data Deep data has a unique storage format. Deep Data on page 13

Basic Data Types

An OpenEXR file is a sequence of 8-bit bytes. Groups of bytes represent basic objects such as integral
numbers, floating-point numbers and text. Those objects are grouped together to form compound objects
such as attributes or scan lines.

Integers

Binary integral numbers with 8, 16, 32 or 64 bits are stored as 1, 2, 4 or 8 bytes. Integral numbers can be
signed or unsigned. Signed numbers are represented using two's complement. Integral numbers are little-
endian (that is, the least significant byte is closest to the start of the file).

3

OpenEXR uses the following six integer data types:

name signed size in bytes

unsigned char no 1

short yes 2

unsigned short no 2

int yes 4

unsigned int no 4

unsigned long no 8

Floating-Point Numbers

Binary floating-point numbers with 16, 32 or 64 bits are stored as 2, 4 or 8 bytes. The representation of 32-
bit and 64-bit floating-point numbers conforms to the IEEE 754 standard. The representation of 16-bit
floating-point numbers is analogous to IEEE 754, but with 5 exponent bits and 10 bits for the fraction. The
exponent bias is 15. Floating-point numbers are little-endian (that is: the least significant bits of the fraction
are in the byte closest to the beginning of the file, while the sign bit and the most significant bits of the
exponent are in the byte closest to the end of the file).

The following table lists the names and sizes of OpenEXR's floating-point data types:

name size in bytes

half 2

float 4

double 8

Text

Text strings are represented as sequences of 1-byte characters of type char. Depending on the context,
either the end of a string is indicated by a null character (0x00), or the length of the string is indicated by an
int that precedes the string.

Packing

Data in an OpenEXR file are densely packed; the file contains no "padding". For example, consider the
following C struct:

struct SI
{
 short s;
 int i;
};

On most computers, the in-memory representation of an SI object occupies 8 bytes: 2 bytes for s, 2
padding bytes to ensure four-byte alignment of i, and 4 bytes for i. In an OpenEXR file the same object
would consume only 6 bytes: 2 bytes for s and 4 bytes for i. The 2 padding bytes are not stored in the file.

4

File Layout

High-Level Layout

Depending on whether the pixels in an OpenEXR file are stored as scan lines or as tiles, the file consists of
the following components:

component single-part file with... multi-part file:

scan lines: tiles:

one magic number magic number magic number

two version field version field version field

three header header part 0 header
[part 1 header]
...
[<empty header>]

four line offset table tile offset table part 0 chunk offset table
[part 1 chunk offset table]
...

five scan line blocks tiles chunks

It is the version field part which indicates whether the file is single or multi-part and whether the file
contains deep data. “Chunk” is a general term to describe blocks of pixel data. A chunk can be a scan line
block, a tile or deep data (scan line or tile).

Deep data has no unique component structure of its own, but uses the structure that the file would have if it
did not have deep data in it.

Comparison between Single-Part and Multi-Part File Layouts

Multi-part files have the same high level structure as single-part OpenEXR files, except the header, offset
table and chunk components can have any number (two or more) parts. There must be the same number of
headers as offset tables, and they must be in the same order. In addition, the header component of a multi-
part file must end with a null byte (0x00). In multi-part files, each chunk contains a field that indicates
which part's data it contains.

Components One and Two: Magic Number and Version Field

Magic Number

The magic number, of type int, is always 20000630 (decimal). It allows file readers to distinguish
OpenEXR files from other files, since the first four bytes of an OpenEXR file are always 0x76, 0x2f, 0x31
and 0x01.

5

Version Field

The version field, of type int, is the four-byte group following the magic number, and it is treated as two
separate bit fields.

Byte/bit
position

Description and notes

first byte
(bits 0
through 7)

The 8 least significant bits, they contain the file format version number.

The current OpenEXR version number is version 2.

second, third
and fourth
bytes
(bits 8
through 31)

The 24 most significant bits, these are treated as a set of boolean flags.

Bit 9 (the single
tile bit)

bit mask: 0x200

Indicates that
this is a
single-part file
which is in
tiled format.

If bit 9 is 1:

• this is a regular single-part image and the
pixels are stored as tiles, and

• bits 11 and 12 must be 0.
If bit 9 is 0, and bits 11 and 12 are also 0: the data
is stored as regular single-part scan line file.

This bit is for backwards compatibility with older
libraries: it is only set when there is one "normal"
tiled image in the file.

Bit 10 (the long
name bit)

bit mask: 0x400

Indicates
whether the
file contains
“long names”.

If bit 10 is 1, the maximum length is 255 bytes.

If bit 10 is 0, the maximum length of attribute
names, attribute type names and channel names is
31 bytes.

Bit 11 (the non-
image bit)

bit mask: 0x800

Indicates
whether the
file contains
any “non-
image parts”
(deep data).

If bit 11 is 1, there is at least one part which is not
a regular scan line image or regular tiled image
(that is, it is a deep format).

If bit 11 is 0, all parts are entirely single or
multiple scan line or tiled images.

New in 2.0.

Bit 12 (the
multipart bit)

bit mask: 0x1000

Indicates the
file is a multi-
part file.

If bit 12 is 1:

• the file does not contain exactly 1 part and
the 'end of header' byte must be included at
the end of each header part, and

• the part number fields must be added to the
chunks.

If bit 12 is 0, this is not a multi-part file and the
'end of header' byte and part number fields in
chunks must be omitted.

New in 2.0.

The remaining 19 flags in the version field are currently unused and should be set to 0.

6

Version field, valid values

All valid combinations of the version field bits are as follows:

Description Compatible with bit 9 bit 11 bit 12

Single-part scan line.
One normal scan line image.

All versions of
OpenEXR.

0 0 0

Single-part tile.
One normal tiled image.

All versions of
OpenEXR.

1 0 0

Multi-part (new in 2.0).
Multiple normal images (scan line
and/or tiled).

OpenEXR 2.0. 0 0 1

Single-part deep data (new in 2.0).
One deep tile or deep scan line part.

OpenEXR 2.0. 0 1 0

Multi-part deep data (new in 2.0).
Multiple parts (any combination of:
tiles, scan lines, deep tiles and/or
deep scan lines).

OpenEXR 2.0. 0 1 1

Note: The version field bits define what capabilities must be available in the software so it can handle the
file, rather than the exact format of the file. While the 9 and 11 bit settings must agree with the type
attributes of all parts, in OpenEXR 2.0 the data format of each type is definitively set by the type attribute in
that part's header alone.

Component Three: Header

Structure

Single-part file

The header component of the single-part file holds a single header (for single-part files).

Each header is a sequence of attributes ended by a null byte.

The file has the same structure as a 1.7 file. That is, the multi-part bit (bit 12) must be 0, and the single null
byte that signals the end of the headers must be omitted. This structure also applies to single-part deep data
files.

Multi-part file (new in 2.0)

The header component of a multi-part file holds a set of headers, with a separate header for each part (in
multi-part files) and a null byte signalling the end of the header component:

part 0 header
[part 1 header]
...
[<empty header>]

Each header is a sequence of attributes ended by a null byte.

The multipart bit (bit 12) must be set to 1, and the list of headers must be followed by a single null byte
(0x00) (that is, an empty header).

7

Attribute Layout

The layout of an attribute is as follows:

attribute name

attribute type

attribute size

attribute value

The attribute name and the attribute type are null-terminated text strings. Excluding the null byte, the
name and type must each be as least 1 byte and at most :

• 31 bytes long (if bit 10 is set to 0), or

• 255 bytes long (if bit 10 is set to 1).

Both single-part and multi-part files use the same attribute types.

The attribute size, of type int, indicates the size (in bytes) of the attribute value.

The layout of the attribute value depends on the attribute type. The IlmImf library predefines several
different attribute types (see page 14). Application programs can define and store additional attribute types.

Header Attributes (All Files)

The header of every OpenEXR file must contain at least the following attributes:

attribute name attribute type

channels chlist

compression compression

dataWindow box2i

displayWindow box2i

lineOrder lineOrder

pixelAspectRatio float

screenWindowCenter v2f

screenWindowWidth float

For descriptions of what these attributes are for, see the Technical Introduction to OpenEXR.

Tile Header Attribute

This attributes is required in the header for all files which contain one or more tiles:

attribute name attribute type Notes

tiles tiledesc Determines the size of the tiles and the number
of resolution levels in the file.

Note: The IlmImf library ignores tile
description attributes in scan line based files.
The decision whether the file contains scan
lines or tiles is based on the value of bit 9 in the
file's version field, not on the presence of a tile
description attribute.

8

Multi-View Header Attribute

This attribute can be used in the header for multi-part files:

attribute name attribute type Notes

view text

Multi-Part and Deep Data Header Attributes (New in 2.0)

These attributes are required in the header for all multi-part and/or deep data OpenEXR files.

attribute name attribute type Notes

name string Required if either the multipart bit (12) or the
non-image bit (11) is set.

type string Required if either the multipart bit (12) or the
non-image bit (11) is set.

Set to one of:

• scanlineimage
• tiledimage
• deepscanline, or
• deeptile.

Note: This value must agree with the version
field's tile bit (9) and non-image (deep data) bit
(11) settings.

version int This document describes version 1 data for all
part types.

version is required for deep data (deepscanline
and deeptile) parts. If not specified for other
parts, assume version=1.

chunkCount int Required if either the multipart bit (12) or the
non-image bit (11) is set.

tiles tileDesc Required for parts of type tiledimage and
deeptile.

For more information about the standard OpenEXR attributes and optional attributes such as preview
images, see the OpenEXR File Layout document.

Deep Data Header Attributes (New in 2.0)

These attributes are required in the header for all files which contain deep data (deepscanline or deeptile):

attribute name attribute type Notes

tiles tileDesc Required for parts of type tiledimage and
deeptile.

9

attribute name attribute type Notes

maxSamplesPerPixel int Required for deep data (deepscanline and
deeptile) parts.

Note: Since the value of maxSamplesPerPixel
maybe be unknown at the time of opening the
file, the value “-1” is written to the file to
indicate an unknown value. When the file is
closed, this will be overwritten with the correct
value. If file writing does not complete
correctly due to an error, the value -1 will
remain. In this case, the value must be derived
by decoding each chunk in the part.

version int Should be set to 1. It will be changed if the
format is updated.

type string Must be set to deepscanline or deeptile.

For information about channel layout and a list of reserved channel names, see the Technical Introduction
to OpenEXR document, Channel Names section.

Component Four: Offset Tables

Offset Tables

An offset table allows random access to pixel data chunks. An offset table is a sequence of offsets, with one
offset per chunk. Each offset (of type unsigned long) indicates the distance, in bytes, between the start
of the file and the start of the chunk.

Chunks can be of any of the four data types.

Offset Table Size

The number of entries in an offset table is defined in one of two ways:

1. If the multipart (12) bit is unset and the chunkCount is not present, the number of entries in the
chunk table is computed using the dataWindow and tileDesc attributes and the compression format.

2. If the multipart (12) bit is set, the header must contain a chunkCount attribute (which indicates the
size of the table and the number of chunks).

Scan Lines

For scan line blocks, the line offset table is a sequence of scan line offsets, with one offset per scan line
block. In the table, scan line offsets are ordered according to increasing scan line y coordinates.

Tiles

For tiles, the offset table is a sequence of tile offsets, one offset per tile. In the table, scan line offsets are
sorted the same way as tiles in INCREASING_Y order.

Multi-part (New in 2.0)

For multi-part files, each part defined in the header component has a corresponding chunk offset table.

10

Component Five: Pixel data

Chunk Layout (New in 2.0)

A “chunk” is a general term for a pixel data block. The scan line and tile images have the same format that
they did in OpenEXR 1.7. OpenEXR 2.0 introduces two new types (deep scan line and deep tile).

The layout of each chunk is as follows:

[part number] (if multi-part bit is set)

chunk data

The part number (of type unsigned long) is only present in multi-part files. It indicates which part this
chunk belongs to. 0 indicates the chunk belongs to the part defined by the first header and the first chunk
offset table. The part number is omitted if the multi-part bit (12) is not set (this saves space and enforces
backwards compatibility to software which does not support multi-part files).

The chunk data is dependent on the type attribute - but (other than the part number) has the same structure
as a single-part file of the same format:

part type type attribute Notes

scan line indicated by a type attribute
of “scanlineimage”

Each chunk stores a scan line block, with the
minimum y coordinate of the scan line(s) within
the chunk.

See Regular scan line image block layout, on
page 12.

tiled indicated by a type attribute
of “tiledimage”

See Regular image tile layout, on page 12.

deep scan line indicated by a type attribute
of “deepscanline”

See Deep scan line layout, on page 13.

deep tile indicated by a type attribute
of “deeptile”

See Deep tiled layout, on page 13.

For more information about data types, see page Error: Reference source not found.

Regular Scan Line Blocks

For scan line images and deep scan line images, one or more scan lines may be stored together as a scan line
block. The number of scan lines per block depends on how the pixel data are compressed:

compression method number of scan lines per block

NO_COMPRESSION 1

RLE_COMPRESSION 1

ZIPS_COMPRESSION 1

ZIP_COMPRESSION 16

PIZ_COMPRESSION 32

PXR24_COMPRESSION 16

B44_COMPRESSION 32

B44A_COMPRESSION 32

11

Each scan line block has a y coordinate of type int. The block's y coordinate is equal to the pixel space y
coordinate of the top scan line in the block. The top scan line block in the image is aligned with the top
edge of the data window (that is, the y coordinate of the top scan line block is equal to the data window's
minimum y).

If the height of the image's data window is not a multiple of the number of scan lines per block, then the
block that contains the bottom scan line contains fewer scan lines than the other blocks.

Regular scan line image block layout

The layout of a regular image scan line block is as follows:

[part number] (if multipart bit is set)

y coordinate

pixel data size

pixel data

The pixel data size, of type int, indicates the number of bytes occupied by the actual pixel data.

Within the pixel data, scan lines are stored top to bottom. Each scan line is contiguous, and within a scan
line the data for each channel are contiguous. Channels are stored in alphabetical order, according to
channel names. Within a channel, pixels are stored left to right.

Compressed data

If the file's compression method is NO_COMPRESSION, then the original, uncompressed pixel data are stored
directly in the file. Otherwise, the uncompressed pixels are fed to the appropriate compressor, and either
the compressed or the uncompressed data are stored in the file, whichever is smaller.

The layout of the compressed data depends on which compression method was applied. The compressed
formats are not described here. For information on the compressed data formats, see the source code for the
IlmImf library.

Regular ImageTiles

Regular image tile layout

The layout of a regular image tile is as follows:

[part number] (if multi-part bit is set)

tile coordinates

pixel data size

pixel data

The tile coordinates, a sequence of four ints (tileX, tileY, levelX, levelY) indicates the tile's position and
resolution level. The pixel data size, of type int, indicates the number of bytes occupied by the pixel data.

The pixel data in a tile are laid out in the same way as in a scan line block, but the length of the scan lines
is equal to the width of the tile, and the number of scan lines is equal to the height of the tile.

If the width of a resolution level is not a multiple of the file's tile width, then the tiles at the right edge of
that resolution level have shorter scan lines. Similarly, if the height of a resolution level is not a multiple of
the file's tile height, then tiles at the bottom edge of the resolution level have fewer scan lines.

12

Deep Data (New in 2.0)

Deep images store an arbitrarily long list of data at each pixel location (each pixel contains a list of samples,
and each sample contains a fixed number of channels).

Deep scan line layout

Deep scan line images are indicated by a type attribute of “deepscanline”. Each chunk of deep scan line
data is a single scan line of data. The data in each chunk is laid out as follows:

[part number] (if multipart bit is set)

y coordinate

packed size of pixel offset table

packed size of sample data

unpacked size of sample data

compressed pixel offset table

compressed sample data

The unpacked size of the sample data (an unsigned long) is the size of the deep sample data once it is
unpacked. It is necessary to specify the unpacked size since the data may be arbitrarily large (so generally
cannot otherwise be determined without decompressing the data first).

Deep tiled layout

Tiled images are indicated by a type attribute of “deeptile”. Each chunk of deep tile data is a single tile.
The data in each chunk is laid out as follows:

[part number] (if multipart bit is set)

tile coordinates

packed size of pixel offset table

packed size of sample data

unpacked size of sample data

compressed pixel offset table

compressed sample data

The unpacked size of the sample data (an unsigned long) is the size of the deep data once it is
unpacked. It is necessary to specify the unpacked size since the data may be arbitrarily large (so generally
cannot otherwise be determined without decompressing the data first).

The pixel offset table is a list of ints, one for each column within the dataWindow. Each entry n in the
table indicates the total number of samples required to store the pixel in n as well as all pixels to the left of
it. Thus, the first samples stored in each channel of the pixel data are for the pixel in column 0, which
contains table[1] samples. Each channel contains table[width-1] samples in total.

Unpacked deep data chunks

When decompressed, the unpacked chunk consists of the channel data stored in a non-interleaved fashion:

pixel sample data for channel 0
pixel sample data for channel 1
pixel sample data for channel ...
pixel sample data for channel n

13

Exception: For ZIP_COMPRESSION only there will be up to 16 scanlines in the packed sample data
block:

pixel sample data for channel 0 for scanline 0
pixel sample data for channel 1 for scanline 0
pixel sample data for channel ... for scanline 0
pixel sample data for channel n for scanline 0

pixel sample data for channel 0 for scanline 1
pixel sample data for channel 1 for scanline 1
pixel sample data for channel ... for scanline 1
pixel sample data for channel n for scanline 1

...

Deep data compression

The following compression schemes are the only ones permitted for deep data:

compression method number of scan lines per block

NO_COMPRESSION 1

RLE_COMPRESSION 1

ZIPS_COMPRESSION 1

ZIP_COMPRESSION 16

Predefined Attribute Types

The IlmImf library predefines the following attribute types:

type name data

box2i Four ints: xMin, yMin, xMax, yMax

box2f Four floats: xMin, yMin, xMax, yMax

chlist A sequence of channels followed by a null byte (0x00).

Channel layout:

name zero-terminated string, from 1 to 255 bytes long

pixel type int, possible values are:
 UINT = 0
 HALF = 1
 FLOAT = 2

pLinear unsigned char, possible values are 0 and 1

reserved three chars, should be zero

xSampling int

ySampling int

chromaticities Eight floats: redX, redY, greenX, greenY, blueX, blueY, whiteX, whiteY

14

type name data

compression unsigned char, possible values are
 NO_COMPRESSION = 0
 RLE_COMPRESSION = 1
 ZIPS_COMPRESSION = 2
 ZIP_COMPRESSION = 3
 PIZ_COMPRESSION = 4
 PXR24_COMPRESSION = 5
 B44_COMPRESSION = 6
 B44A_COMPRESSION = 7

double double

envmap unsigned char, possible values are:
 ENVMAP_LATLONG = 0
 ENVMAP_CUBE = 1

float float

int int

keycode Seven ints: filmMfcCode, filmType, prefix, count, perfOffset, perfsPerFrame,
perfsPerCount

lineOrder unsigned char, possible values are:
 INCREASING_Y = 0
 DECREASING_Y = 1
 RANDOM_Y = 2

m33f 9 floats

m44f 16 floats

preview Two unsigned ints, width and height, followed by 4×width×height
unsigned chars of pixel data.
Scan lines are stored top to bottom; within a scan line pixels are stored from left
to right. A pixel consists of four unsigned chars, R, G, B, A.

rational An int, followed by an unsigned int.

string String length, of type int, followed by a sequence of chars.

stringvector A sequence of zero or more text strings. Each string is represented as a string
length, of type int, followed by a sequence of chars. The number of strings
can be inferred from the total attribute size (see the Attribute Layout section, on
page 8).

15

type name data

tiledesc Two unsigned ints: xSize, ySize, followed by mode, of type unsigned
char, where

 mode = levelMode + roundingMode×16

Possible values for levelMode:
 ONE_LEVEL = 0
 MIPMAP_LEVELS = 1
 RIPMAP_LEVELS = 2

Possible values for roundingMode:
 ROUND_DOWN = 0
 ROUND_UP = 1

timecode Two unsigned ints: timeAndFlags, userData.

v2i Two ints

v2f Two floats

v3i Three ints.

v3f Three floats.

Sample File

The following is an annotated byte-by-byte listing of a complete OpenEXR file. The file contains a scan-
line based image with four by three pixels. The image has two channels: G, of type HALF, and Z, of type
FLOAT. The pixel data are not compressed. The entire file is 415 bytes long.

The first line of text in each of the gray boxes below lists up to 16 bytes of the file in hexadecimal notation.
The second line in each box shows how the bytes are grouped into integers, floating-point numbers and text
strings. The third and fourth lines indicate how those basic objects form compound objects such as
attributes or the line offset table.

 76 2f 31 01 02 00 00 00 63 68 61 6e 6e 65 6c 73

 20000630 | 2 | c h a n n e l s

 magic number | version, flags | attribute name

 | | start of header

 00 63 68 6c 69 73 74 00 25 00 00 00 47 00 01 00

 \0 | c h l i s t \0 | 37 | G \0 | HALF

 | attribute type | attribute size | attribute value

16

 00 00 00 00 00 00 01 00 00 00 01 00 00 00 5a 00

 | 0 | 0 | 1 | 1 | Z \0 |

 02 00 00 00 00 00 00 00 01 00 00 00 01 00 00 00

 FLOAT | 0 | 0 | 1 | 1 |

 |

 00 63 6f 6d 70 72 65 73 73 69 6f 6e 00 63 6f 6d

 \0 | c o m p r e s s i o n \0 | c o m

 | attribute name | attribute type

 70 72 65 73 73 69 6f 6e 00 01 00 00 00 00 64 61

 p r e s s i o n \0 | 1 | NONE| d a

 | attribute size |value|

 74 61 57 69 6e 64 6f 77 00 62 6f 78 32 69 00 10

 t a W i n d o w \0 | b o x 2 i \0 |

 attribute name | attribute type |

 00 00 00 00 00 00 00 00 00 00 00 03 00 00 00 02

 16 | 0 | 0 | 3 |

attribute size| attribute value

 00 00 00 64 69 73 70 6c 61 79 57 69 6e 64 6f 77

 2 | d i s p l a y W i n d o w

 | attribute name

 00 62 6f 78 32 69 00 10 00 00 00 00 00 00 00 00

 \0 | b o x 2 i \0 | 16 | 0 |

 | attribute type | attribute size | attribute value

 00 00 00 03 00 00 00 02 00 00 00 6c 69 6e 65 4f

17

 0 | 3 | 2 | l i n e O

 | attribute name

 72 64 65 72 00 6c 69 6e 65 4f 72 64 65 72 00 01

 r d e r \0 | l i n e O r d e r \0 |

 | attribute type |

 00 00 00 00 70 69 78 65 6c 41 73 70 65 63 74 52

 1 |INCY | p i x e l A s p e c t R

attribute size|value| attribute name

 61 74 69 6f 00 66 6c 6f 61 74 00 04 00 00 00 00

 a t i o \0 | f l o a t \0 | 4 |

 | attribute type | attribute size |

 00 80 3f 73 63 72 65 65 6e 57 69 6e 64 6f 77 43

 1.0 | s c r e e n W i n d o w C

attribute value| attribute name

 65 6e 74 65 72 00 76 32 66 00 08 00 00 00 00 00

 e n t e r \0 | v 2 f \0 | 8 |

 | attribute type | attribute size |

 00 00 00 00 00 00 73 63 72 65 65 6e 57 69 6e 64

0.0 | 0.0 | s c r e e n W i n d

attribute value | attribute name

 6f 77 57 69 64 74 68 00 66 6c 6f 61 74 00 04 00

 o w W i d t h \0 | f l o a t \0 |

 | attribute type |

 00 00 00 00 80 3f 00 3f 01 00 00 00 00 00 00 5f

4 | 1.0 | \0 | 319 |

18

size | attribute value | | offset of scan line 0 |

 end of header | start of scan line offset table

 01 00 00 00 00 00 00 7f 01 00 00 00 00 00 00 00

 351 | 383 |

 offset of scan line 1 | offset of scan line 2 |

 end of scan line offset table |

 00 00 00 18 00 00 00 00 00 54 29 d5 35 e8 2d 5c

 0 | 24 | 0.000 | 0.042 | 0.365 | 0.092 |

 y | pixel data size | pixel data for G channel |

 scan line 0

 28 81 3a cf e1 34 3e 8b 0b bb 3d 89 74 f9 3e 01

0.000985395 | 0.176643 | 0.0913306 | 0.487217 |

pixel data for Z channel |

 |

 00 00 00 18 00 00 00 37 38 76 33 74 3b 73 38 7f

 1 | 24 | 0.527 | 0.233 | 0.932 | 0.556 |

 y | pixel data size | pixel data for G channel |

 scan line 1

 ab e8 3e 8a cf 54 3f 5b 6c 11 3f 20 35 50 3d 02

0.454433 | 0.831292 | 0.56806 | 0.0508319 |

pixel data for Z channel |

 |

 00 00 00 18 00 00 00 23 3a 0a 34 02 3b 5d 3b 38

 2 | 24 | 0.767 | 0.252 | 0.876 | 0.920 |

 y | pixel data size | pixel data for G channel |

 scan line 2

 f3 9a 3c 4d ad 98 3e 1c 14 08 3f 4c f3 03 3f

0.0189148 | 0.298197 | 0.531557 | 0.515431

pixel data for Z channel

 end of file

19

	Document Purpose and Audience
	Backwards Compatibility and New or Changed Functionality
	OpenEXR Backwards Compatibility (1.7 and 2.0)
	New Features for OpenEXR 2.0: Multi-Part and Deep Data

	Basic Data Types
	Integers
	Floating-Point Numbers
	Text
	Packing

	File Layout
	High-Level Layout
	Comparison between Single-Part and Multi-Part File Layouts

	Components One and Two: Magic Number and Version Field
	Magic Number
	Version Field
	Version field, valid values

	Component Three: Header
	Structure
	Single-part file
	Multi-part file (new in 2.0)

	Attribute Layout
	Header Attributes (All Files)
	Tile Header Attribute
	Multi-View Header Attribute
	Multi-Part and Deep Data Header Attributes (New in 2.0)
	Deep Data Header Attributes (New in 2.0)

	Component Four: Offset Tables
	Offset Tables
	Offset Table Size
	Scan Lines
	Tiles
	Multi-part (New in 2.0)

	Component Five: Pixel data
	Chunk Layout (New in 2.0)
	Regular Scan Line Blocks
	Regular scan line image block layout
	Compressed data

	Regular ImageTiles
	Regular image tile layout

	Deep Data (New in 2.0)
	Deep scan line layout
	Deep tiled layout
	Unpacked deep data chunks
	Deep data compression

	Predefined Attribute Types
	Sample File

