basic-prelude-0.7.0: An enhanced core prelude; a common foundation for alternate preludes.
Safe HaskellSafe-Inferred
LanguageHaskell2010

BasicPrelude

Description

BasicPrelude mostly re-exports several key libraries in their entirety. The exception is Data.List, where various functions are replaced by similar versions that are either generalized, operate on Text, or are implemented strictly.

Synopsis

Module exports

filter :: (a -> Bool) -> [a] -> [a] Source #

\(\mathcal{O}(n)\). filter, applied to a predicate and a list, returns the list of those elements that satisfy the predicate; i.e.,

filter p xs = [ x | x <- xs, p x]
>>> filter odd [1, 2, 3]
[1,3]

zip :: [a] -> [b] -> [(a, b)] Source #

\(\mathcal{O}(\min(m,n))\). zip takes two lists and returns a list of corresponding pairs.

>>> zip [1, 2] ['a', 'b']
[(1, 'a'), (2, 'b')]

If one input list is shorter than the other, excess elements of the longer list are discarded, even if one of the lists is infinite:

>>> zip [1] ['a', 'b']
[(1, 'a')]
>>> zip [1, 2] ['a']
[(1, 'a')]
>>> zip [] [1..]
[]
>>> zip [1..] []
[]

zip is right-lazy:

>>> zip [] _|_
[]
>>> zip _|_ []
_|_

zip is capable of list fusion, but it is restricted to its first list argument and its resulting list.

length :: Foldable t => t a -> Int Source #

Returns the size/length of a finite structure as an Int. The default implementation just counts elements starting with the leftmost. Instances for structures that can compute the element count faster than via element-by-element counting, should provide a specialised implementation.

Examples

Expand

Basic usage:

>>> length []
0
>>> length ['a', 'b', 'c']
3
>>> length [1..]
* Hangs forever *

Since: base-4.8.0.0

null :: Foldable t => t a -> Bool Source #

Test whether the structure is empty. The default implementation is Left-associative and lazy in both the initial element and the accumulator. Thus optimised for structures where the first element can be accessed in constant time. Structures where this is not the case should have a non-default implementation.

Examples

Expand

Basic usage:

>>> null []
True
>>> null [1]
False

null is expected to terminate even for infinite structures. The default implementation terminates provided the structure is bounded on the left (there is a leftmost element).

>>> null [1..]
False

Since: base-4.8.0.0

isSubsequenceOf :: Eq a => [a] -> [a] -> Bool Source #

The isSubsequenceOf function takes two lists and returns True if all the elements of the first list occur, in order, in the second. The elements do not have to occur consecutively.

isSubsequenceOf x y is equivalent to elem x (subsequences y).

Examples

Expand
>>> isSubsequenceOf "GHC" "The Glorious Haskell Compiler"
True
>>> isSubsequenceOf ['a','d'..'z'] ['a'..'z']
True
>>> isSubsequenceOf [1..10] [10,9..0]
False

Since: base-4.8.0.0

mapAccumR :: Traversable t => (s -> a -> (s, b)) -> s -> t a -> (s, t b) Source #

The mapAccumR function behaves like a combination of fmap and foldr; it applies a function to each element of a structure, passing an accumulating parameter from right to left, and returning a final value of this accumulator together with the new structure.

Examples

Expand

Basic usage:

>>> mapAccumR (\a b -> (a + b, a)) 0 [1..10]
(55,[54,52,49,45,40,34,27,19,10,0])
>>> mapAccumR (\a b -> (a <> show b, a)) "0" [1..5]
("054321",["05432","0543","054","05","0"])

mapAccumL :: Traversable t => (s -> a -> (s, b)) -> s -> t a -> (s, t b) Source #

The mapAccumL function behaves like a combination of fmap and foldl; it applies a function to each element of a structure, passing an accumulating parameter from left to right, and returning a final value of this accumulator together with the new structure.

Examples

Expand

Basic usage:

>>> mapAccumL (\a b -> (a + b, a)) 0 [1..10]
(55,[0,1,3,6,10,15,21,28,36,45])
>>> mapAccumL (\a b -> (a <> show b, a)) "0" [1..5]
("012345",["0","01","012","0123","01234"])

or :: Foldable t => t Bool -> Bool Source #

or returns the disjunction of a container of Bools. For the result to be False, the container must be finite; True, however, results from a True value finitely far from the left end.

Examples

Expand

Basic usage:

>>> or []
False
>>> or [True]
True
>>> or [False]
False
>>> or [True, True, False]
True
>>> or (True : repeat False) -- Infinite list [True,False,False,False,...
True
>>> or (repeat False)
* Hangs forever *

notElem :: (Foldable t, Eq a) => a -> t a -> Bool infix 4 Source #

notElem is the negation of elem.

Examples

Expand

Basic usage:

>>> 3 `notElem` []
True
>>> 3 `notElem` [1,2]
True
>>> 3 `notElem` [1,2,3,4,5]
False

For infinite structures, notElem terminates if the value exists at a finite distance from the left side of the structure:

>>> 3 `notElem` [1..]
False
>>> 3 `notElem` ([4..] ++ [3])
* Hangs forever *

find :: Foldable t => (a -> Bool) -> t a -> Maybe a Source #

The find function takes a predicate and a structure and returns the leftmost element of the structure matching the predicate, or Nothing if there is no such element.

Examples

Expand

Basic usage:

>>> find (> 42) [0, 5..]
Just 45
>>> find (> 12) [1..7]
Nothing

concatMap :: Foldable t => (a -> [b]) -> t a -> [b] Source #

Map a function over all the elements of a container and concatenate the resulting lists.

Examples

Expand

Basic usage:

>>> concatMap (take 3) [[1..], [10..], [100..], [1000..]]
[1,2,3,10,11,12,100,101,102,1000,1001,1002]
>>> concatMap (take 3) (Just [1..])
[1,2,3]

any :: Foldable t => (a -> Bool) -> t a -> Bool Source #

Determines whether any element of the structure satisfies the predicate.

Examples

Expand

Basic usage:

>>> any (> 3) []
False
>>> any (> 3) [1,2]
False
>>> any (> 3) [1,2,3,4,5]
True
>>> any (> 3) [1..]
True
>>> any (> 3) [0, -1..]
* Hangs forever *

and :: Foldable t => t Bool -> Bool Source #

and returns the conjunction of a container of Bools. For the result to be True, the container must be finite; False, however, results from a False value finitely far from the left end.

Examples

Expand

Basic usage:

>>> and []
True
>>> and [True]
True
>>> and [False]
False
>>> and [True, True, False]
False
>>> and (False : repeat True) -- Infinite list [False,True,True,True,...
False
>>> and (repeat True)
* Hangs forever *

all :: Foldable t => (a -> Bool) -> t a -> Bool Source #

Determines whether all elements of the structure satisfy the predicate.

Examples

Expand

Basic usage:

>>> all (> 3) []
True
>>> all (> 3) [1,2]
False
>>> all (> 3) [1,2,3,4,5]
False
>>> all (> 3) [1..]
False
>>> all (> 3) [4..]
* Hangs forever *

zipWith7 :: (a -> b -> c -> d -> e -> f -> g -> h) -> [a] -> [b] -> [c] -> [d] -> [e] -> [f] -> [g] -> [h] Source #

The zipWith7 function takes a function which combines seven elements, as well as seven lists and returns a list of their point-wise combination, analogous to zipWith. It is capable of list fusion, but it is restricted to its first list argument and its resulting list.

zipWith6 :: (a -> b -> c -> d -> e -> f -> g) -> [a] -> [b] -> [c] -> [d] -> [e] -> [f] -> [g] Source #

The zipWith6 function takes a function which combines six elements, as well as six lists and returns a list of their point-wise combination, analogous to zipWith. It is capable of list fusion, but it is restricted to its first list argument and its resulting list.

zipWith5 :: (a -> b -> c -> d -> e -> f) -> [a] -> [b] -> [c] -> [d] -> [e] -> [f] Source #

The zipWith5 function takes a function which combines five elements, as well as five lists and returns a list of their point-wise combination, analogous to zipWith. It is capable of list fusion, but it is restricted to its first list argument and its resulting list.

zipWith4 :: (a -> b -> c -> d -> e) -> [a] -> [b] -> [c] -> [d] -> [e] Source #

The zipWith4 function takes a function which combines four elements, as well as four lists and returns a list of their point-wise combination, analogous to zipWith. It is capable of list fusion, but it is restricted to its first list argument and its resulting list.

zip7 :: [a] -> [b] -> [c] -> [d] -> [e] -> [f] -> [g] -> [(a, b, c, d, e, f, g)] Source #

The zip7 function takes seven lists and returns a list of seven-tuples, analogous to zip. It is capable of list fusion, but it is restricted to its first list argument and its resulting list.

zip6 :: [a] -> [b] -> [c] -> [d] -> [e] -> [f] -> [(a, b, c, d, e, f)] Source #

The zip6 function takes six lists and returns a list of six-tuples, analogous to zip. It is capable of list fusion, but it is restricted to its first list argument and its resulting list.

zip5 :: [a] -> [b] -> [c] -> [d] -> [e] -> [(a, b, c, d, e)] Source #

The zip5 function takes five lists and returns a list of five-tuples, analogous to zip. It is capable of list fusion, but it is restricted to its first list argument and its resulting list.

zip4 :: [a] -> [b] -> [c] -> [d] -> [(a, b, c, d)] Source #

The zip4 function takes four lists and returns a list of quadruples, analogous to zip. It is capable of list fusion, but it is restricted to its first list argument and its resulting list.

unzip7 :: [(a, b, c, d, e, f, g)] -> ([a], [b], [c], [d], [e], [f], [g]) Source #

The unzip7 function takes a list of seven-tuples and returns seven lists, analogous to unzip.

unzip6 :: [(a, b, c, d, e, f)] -> ([a], [b], [c], [d], [e], [f]) Source #

The unzip6 function takes a list of six-tuples and returns six lists, analogous to unzip.

unzip5 :: [(a, b, c, d, e)] -> ([a], [b], [c], [d], [e]) Source #

The unzip5 function takes a list of five-tuples and returns five lists, analogous to unzip.

unzip4 :: [(a, b, c, d)] -> ([a], [b], [c], [d]) Source #

The unzip4 function takes a list of quadruples and returns four lists, analogous to unzip.

unionBy :: (a -> a -> Bool) -> [a] -> [a] -> [a] Source #

The unionBy function is the non-overloaded version of union.

union :: Eq a => [a] -> [a] -> [a] Source #

The union function returns the list union of the two lists. For example,

>>> "dog" `union` "cow"
"dogcw"

Duplicates, and elements of the first list, are removed from the the second list, but if the first list contains duplicates, so will the result. It is a special case of unionBy, which allows the programmer to supply their own equality test.

unfoldr :: (b -> Maybe (a, b)) -> b -> [a] Source #

The unfoldr function is a `dual' to foldr: while foldr reduces a list to a summary value, unfoldr builds a list from a seed value. The function takes the element and returns Nothing if it is done producing the list or returns Just (a,b), in which case, a is a prepended to the list and b is used as the next element in a recursive call. For example,

iterate f == unfoldr (\x -> Just (x, f x))

In some cases, unfoldr can undo a foldr operation:

unfoldr f' (foldr f z xs) == xs

if the following holds:

f' (f x y) = Just (x,y)
f' z       = Nothing

A simple use of unfoldr:

>>> unfoldr (\b -> if b == 0 then Nothing else Just (b, b-1)) 10
[10,9,8,7,6,5,4,3,2,1]

transpose :: [[a]] -> [[a]] Source #

The transpose function transposes the rows and columns of its argument. For example,

>>> transpose [[1,2,3],[4,5,6]]
[[1,4],[2,5],[3,6]]

If some of the rows are shorter than the following rows, their elements are skipped:

>>> transpose [[10,11],[20],[],[30,31,32]]
[[10,20,30],[11,31],[32]]

tails :: [a] -> [[a]] Source #

\(\mathcal{O}(n)\). The tails function returns all final segments of the argument, longest first. For example,

>>> tails "abc"
["abc","bc","c",""]

Note that tails has the following strictness property: tails _|_ = _|_ : _|_

subsequences :: [a] -> [[a]] Source #

The subsequences function returns the list of all subsequences of the argument.

>>> subsequences "abc"
["","a","b","ab","c","ac","bc","abc"]

stripPrefix :: Eq a => [a] -> [a] -> Maybe [a] Source #

\(\mathcal{O}(\min(m,n))\). The stripPrefix function drops the given prefix from a list. It returns Nothing if the list did not start with the prefix given, or Just the list after the prefix, if it does.

>>> stripPrefix "foo" "foobar"
Just "bar"
>>> stripPrefix "foo" "foo"
Just ""
>>> stripPrefix "foo" "barfoo"
Nothing
>>> stripPrefix "foo" "barfoobaz"
Nothing

sortOn :: Ord b => (a -> b) -> [a] -> [a] Source #

Sort a list by comparing the results of a key function applied to each element. sortOn f is equivalent to sortBy (comparing f), but has the performance advantage of only evaluating f once for each element in the input list. This is called the decorate-sort-undecorate paradigm, or Schwartzian transform.

Elements are arranged from lowest to highest, keeping duplicates in the order they appeared in the input.

>>> sortOn fst [(2, "world"), (4, "!"), (1, "Hello")]
[(1,"Hello"),(2,"world"),(4,"!")]

Since: base-4.8.0.0

sortBy :: (a -> a -> Ordering) -> [a] -> [a] Source #

The sortBy function is the non-overloaded version of sort.

>>> sortBy (\(a,_) (b,_) -> compare a b) [(2, "world"), (4, "!"), (1, "Hello")]
[(1,"Hello"),(2,"world"),(4,"!")]

sort :: Ord a => [a] -> [a] Source #

The sort function implements a stable sorting algorithm. It is a special case of sortBy, which allows the programmer to supply their own comparison function.

Elements are arranged from lowest to highest, keeping duplicates in the order they appeared in the input.

>>> sort [1,6,4,3,2,5]
[1,2,3,4,5,6]

singleton :: a -> [a] Source #

Produce singleton list.

>>> singleton True
[True]

Since: base-4.15.0.0

permutations :: [a] -> [[a]] Source #

The permutations function returns the list of all permutations of the argument.

>>> permutations "abc"
["abc","bac","cba","bca","cab","acb"]

partition :: (a -> Bool) -> [a] -> ([a], [a]) Source #

The partition function takes a predicate a list and returns the pair of lists of elements which do and do not satisfy the predicate, respectively; i.e.,

partition p xs == (filter p xs, filter (not . p) xs)
>>> partition (`elem` "aeiou") "Hello World!"
("eoo","Hll Wrld!")

nubBy :: (a -> a -> Bool) -> [a] -> [a] Source #

The nubBy function behaves just like nub, except it uses a user-supplied equality predicate instead of the overloaded == function.

>>> nubBy (\x y -> mod x 3 == mod y 3) [1,2,4,5,6]
[1,2,6]

nub :: Eq a => [a] -> [a] Source #

\(\mathcal{O}(n^2)\). The nub function removes duplicate elements from a list. In particular, it keeps only the first occurrence of each element. (The name nub means `essence'.) It is a special case of nubBy, which allows the programmer to supply their own equality test.

>>> nub [1,2,3,4,3,2,1,2,4,3,5]
[1,2,3,4,5]

isSuffixOf :: Eq a => [a] -> [a] -> Bool Source #

The isSuffixOf function takes two lists and returns True iff the first list is a suffix of the second. The second list must be finite.

>>> "ld!" `isSuffixOf` "Hello World!"
True
>>> "World" `isSuffixOf` "Hello World!"
False

isPrefixOf :: Eq a => [a] -> [a] -> Bool Source #

\(\mathcal{O}(\min(m,n))\). The isPrefixOf function takes two lists and returns True iff the first list is a prefix of the second.

>>> "Hello" `isPrefixOf` "Hello World!"
True
>>> "Hello" `isPrefixOf` "Wello Horld!"
False

isInfixOf :: Eq a => [a] -> [a] -> Bool Source #

The isInfixOf function takes two lists and returns True iff the first list is contained, wholly and intact, anywhere within the second.

>>> isInfixOf "Haskell" "I really like Haskell."
True
>>> isInfixOf "Ial" "I really like Haskell."
False

intersperse :: a -> [a] -> [a] Source #

\(\mathcal{O}(n)\). The intersperse function takes an element and a list and `intersperses' that element between the elements of the list. For example,

>>> intersperse ',' "abcde"
"a,b,c,d,e"

intersectBy :: (a -> a -> Bool) -> [a] -> [a] -> [a] Source #

The intersectBy function is the non-overloaded version of intersect.

intersect :: Eq a => [a] -> [a] -> [a] Source #

The intersect function takes the list intersection of two lists. For example,

>>> [1,2,3,4] `intersect` [2,4,6,8]
[2,4]

If the first list contains duplicates, so will the result.

>>> [1,2,2,3,4] `intersect` [6,4,4,2]
[2,2,4]

It is a special case of intersectBy, which allows the programmer to supply their own equality test. If the element is found in both the first and the second list, the element from the first list will be used.

insertBy :: (a -> a -> Ordering) -> a -> [a] -> [a] Source #

\(\mathcal{O}(n)\). The non-overloaded version of insert.

insert :: Ord a => a -> [a] -> [a] Source #

\(\mathcal{O}(n)\). The insert function takes an element and a list and inserts the element into the list at the first position where it is less than or equal to the next element. In particular, if the list is sorted before the call, the result will also be sorted. It is a special case of insertBy, which allows the programmer to supply their own comparison function.

>>> insert 4 [1,2,3,5,6,7]
[1,2,3,4,5,6,7]

inits :: [a] -> [[a]] Source #

The inits function returns all initial segments of the argument, shortest first. For example,

>>> inits "abc"
["","a","ab","abc"]

Note that inits has the following strictness property: inits (xs ++ _|_) = inits xs ++ _|_

In particular, inits _|_ = [] : _|_

groupBy :: (a -> a -> Bool) -> [a] -> [[a]] Source #

The groupBy function is the non-overloaded version of group.

group :: Eq a => [a] -> [[a]] Source #

The group function takes a list and returns a list of lists such that the concatenation of the result is equal to the argument. Moreover, each sublist in the result contains only equal elements. For example,

>>> group "Mississippi"
["M","i","ss","i","ss","i","pp","i"]

It is a special case of groupBy, which allows the programmer to supply their own equality test.

genericTake :: Integral i => i -> [a] -> [a] Source #

The genericTake function is an overloaded version of take, which accepts any Integral value as the number of elements to take.

genericSplitAt :: Integral i => i -> [a] -> ([a], [a]) Source #

The genericSplitAt function is an overloaded version of splitAt, which accepts any Integral value as the position at which to split.

genericReplicate :: Integral i => i -> a -> [a] Source #

The genericReplicate function is an overloaded version of replicate, which accepts any Integral value as the number of repetitions to make.

genericLength :: Num i => [a] -> i Source #

\(\mathcal{O}(n)\). The genericLength function is an overloaded version of length. In particular, instead of returning an Int, it returns any type which is an instance of Num. It is, however, less efficient than length.

>>> genericLength [1, 2, 3] :: Int
3
>>> genericLength [1, 2, 3] :: Float
3.0

genericIndex :: Integral i => [a] -> i -> a Source #

The genericIndex function is an overloaded version of !!, which accepts any Integral value as the index.

genericDrop :: Integral i => i -> [a] -> [a] Source #

The genericDrop function is an overloaded version of drop, which accepts any Integral value as the number of elements to drop.

findIndices :: (a -> Bool) -> [a] -> [Int] Source #

The findIndices function extends findIndex, by returning the indices of all elements satisfying the predicate, in ascending order.

>>> findIndices (`elem` "aeiou") "Hello World!"
[1,4,7]

findIndex :: (a -> Bool) -> [a] -> Maybe Int Source #

The findIndex function takes a predicate and a list and returns the index of the first element in the list satisfying the predicate, or Nothing if there is no such element.

>>> findIndex isSpace "Hello World!"
Just 5

elemIndices :: Eq a => a -> [a] -> [Int] Source #

The elemIndices function extends elemIndex, by returning the indices of all elements equal to the query element, in ascending order.

>>> elemIndices 'o' "Hello World"
[4,7]

elemIndex :: Eq a => a -> [a] -> Maybe Int Source #

The elemIndex function returns the index of the first element in the given list which is equal (by ==) to the query element, or Nothing if there is no such element.

>>> elemIndex 4 [0..]
Just 4

dropWhileEnd :: (a -> Bool) -> [a] -> [a] Source #

The dropWhileEnd function drops the largest suffix of a list in which the given predicate holds for all elements. For example:

>>> dropWhileEnd isSpace "foo\n"
"foo"
>>> dropWhileEnd isSpace "foo bar"
"foo bar"
dropWhileEnd isSpace ("foo\n" ++ undefined) == "foo" ++ undefined

Since: base-4.5.0.0

deleteFirstsBy :: (a -> a -> Bool) -> [a] -> [a] -> [a] Source #

The deleteFirstsBy function takes a predicate and two lists and returns the first list with the first occurrence of each element of the second list removed.

deleteBy :: (a -> a -> Bool) -> a -> [a] -> [a] Source #

\(\mathcal{O}(n)\). The deleteBy function behaves like delete, but takes a user-supplied equality predicate.

>>> deleteBy (<=) 4 [1..10]
[1,2,3,5,6,7,8,9,10]

delete :: Eq a => a -> [a] -> [a] Source #

\(\mathcal{O}(n)\). delete x removes the first occurrence of x from its list argument. For example,

>>> delete 'a' "banana"
"bnana"

It is a special case of deleteBy, which allows the programmer to supply their own equality test.

(\\) :: Eq a => [a] -> [a] -> [a] infix 5 Source #

The \\ function is list difference (non-associative). In the result of xs \\ ys, the first occurrence of each element of ys in turn (if any) has been removed from xs. Thus

(xs ++ ys) \\ xs == ys.
>>> "Hello World!" \\ "ell W"
"Hoorld!"

It is a special case of deleteFirstsBy, which allows the programmer to supply their own equality test.

zipWith3 :: (a -> b -> c -> d) -> [a] -> [b] -> [c] -> [d] Source #

The zipWith3 function takes a function which combines three elements, as well as three lists and returns a list of the function applied to corresponding elements, analogous to zipWith. It is capable of list fusion, but it is restricted to its first list argument and its resulting list.

zipWith3 (,,) xs ys zs == zip3 xs ys zs
zipWith3 f [x1,x2,x3..] [y1,y2,y3..] [z1,z2,z3..] == [f x1 y1 z1, f x2 y2 z2, f x3 y3 z3..]

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c] Source #

\(\mathcal{O}(\min(m,n))\). zipWith generalises zip by zipping with the function given as the first argument, instead of a tupling function.

zipWith (,) xs ys == zip xs ys
zipWith f [x1,x2,x3..] [y1,y2,y3..] == [f x1 y1, f x2 y2, f x3 y3..]

For example, zipWith (+) is applied to two lists to produce the list of corresponding sums:

>>> zipWith (+) [1, 2, 3] [4, 5, 6]
[5,7,9]

zipWith is right-lazy:

>>> zipWith f [] _|_
[]

zipWith is capable of list fusion, but it is restricted to its first list argument and its resulting list.

zip3 :: [a] -> [b] -> [c] -> [(a, b, c)] Source #

zip3 takes three lists and returns a list of triples, analogous to zip. It is capable of list fusion, but it is restricted to its first list argument and its resulting list.

unzip3 :: [(a, b, c)] -> ([a], [b], [c]) Source #

The unzip3 function takes a list of triples and returns three lists, analogous to unzip.

>>> unzip3 []
([],[],[])
>>> unzip3 [(1, 'a', True), (2, 'b', False)]
([1,2],"ab",[True,False])

unzip :: [(a, b)] -> ([a], [b]) Source #

unzip transforms a list of pairs into a list of first components and a list of second components.

>>> unzip []
([],[])
>>> unzip [(1, 'a'), (2, 'b')]
([1,2],"ab")

uncons :: [a] -> Maybe (a, [a]) Source #

\(\mathcal{O}(1)\). Decompose a list into its head and tail.

  • If the list is empty, returns Nothing.
  • If the list is non-empty, returns Just (x, xs), where x is the head of the list and xs its tail.
>>> uncons []
Nothing
>>> uncons [1]
Just (1,[])
>>> uncons [1, 2, 3]
Just (1,[2,3])

Since: base-4.8.0.0

takeWhile :: (a -> Bool) -> [a] -> [a] Source #

takeWhile, applied to a predicate p and a list xs, returns the longest prefix (possibly empty) of xs of elements that satisfy p.

>>> takeWhile (< 3) [1,2,3,4,1,2,3,4]
[1,2]
>>> takeWhile (< 9) [1,2,3]
[1,2,3]
>>> takeWhile (< 0) [1,2,3]
[]

take :: Int -> [a] -> [a] Source #

take n, applied to a list xs, returns the prefix of xs of length n, or xs itself if n >= length xs.

>>> take 5 "Hello World!"
"Hello"
>>> take 3 [1,2,3,4,5]
[1,2,3]
>>> take 3 [1,2]
[1,2]
>>> take 3 []
[]
>>> take (-1) [1,2]
[]
>>> take 0 [1,2]
[]

It is an instance of the more general genericTake, in which n may be of any integral type.

tail :: [a] -> [a] Source #

\(\mathcal{O}(1)\). Extract the elements after the head of a list, which must be non-empty.

>>> tail [1, 2, 3]
[2,3]
>>> tail [1]
[]
>>> tail []
Exception: Prelude.tail: empty list

splitAt :: Int -> [a] -> ([a], [a]) Source #

splitAt n xs returns a tuple where first element is xs prefix of length n and second element is the remainder of the list:

>>> splitAt 6 "Hello World!"
("Hello ","World!")
>>> splitAt 3 [1,2,3,4,5]
([1,2,3],[4,5])
>>> splitAt 1 [1,2,3]
([1],[2,3])
>>> splitAt 3 [1,2,3]
([1,2,3],[])
>>> splitAt 4 [1,2,3]
([1,2,3],[])
>>> splitAt 0 [1,2,3]
([],[1,2,3])
>>> splitAt (-1) [1,2,3]
([],[1,2,3])

It is equivalent to (take n xs, drop n xs) when n is not _|_ (splitAt _|_ xs = _|_). splitAt is an instance of the more general genericSplitAt, in which n may be of any integral type.

span :: (a -> Bool) -> [a] -> ([a], [a]) Source #

span, applied to a predicate p and a list xs, returns a tuple where first element is longest prefix (possibly empty) of xs of elements that satisfy p and second element is the remainder of the list:

>>> span (< 3) [1,2,3,4,1,2,3,4]
([1,2],[3,4,1,2,3,4])
>>> span (< 9) [1,2,3]
([1,2,3],[])
>>> span (< 0) [1,2,3]
([],[1,2,3])

span p xs is equivalent to (takeWhile p xs, dropWhile p xs)

scanr1 :: (a -> a -> a) -> [a] -> [a] Source #

\(\mathcal{O}(n)\). scanr1 is a variant of scanr that has no starting value argument.

>>> scanr1 (+) [1..4]
[10,9,7,4]
>>> scanr1 (+) []
[]
>>> scanr1 (-) [1..4]
[-2,3,-1,4]
>>> scanr1 (&&) [True, False, True, True]
[False,False,True,True]
>>> scanr1 (||) [True, True, False, False]
[True,True,False,False]
>>> force $ scanr1 (+) [1..]
*** Exception: stack overflow

scanr :: (a -> b -> b) -> b -> [a] -> [b] Source #

\(\mathcal{O}(n)\). scanr is the right-to-left dual of scanl. Note that the order of parameters on the accumulating function are reversed compared to scanl. Also note that

head (scanr f z xs) == foldr f z xs.
>>> scanr (+) 0 [1..4]
[10,9,7,4,0]
>>> scanr (+) 42 []
[42]
>>> scanr (-) 100 [1..4]
[98,-97,99,-96,100]
>>> scanr (\nextChar reversedString -> nextChar : reversedString) "foo" ['a', 'b', 'c', 'd']
["abcdfoo","bcdfoo","cdfoo","dfoo","foo"]
>>> force $ scanr (+) 0 [1..]
*** Exception: stack overflow

scanl1 :: (a -> a -> a) -> [a] -> [a] Source #

\(\mathcal{O}(n)\). scanl1 is a variant of scanl that has no starting value argument:

scanl1 f [x1, x2, ...] == [x1, x1 `f` x2, ...]
>>> scanl1 (+) [1..4]
[1,3,6,10]
>>> scanl1 (+) []
[]
>>> scanl1 (-) [1..4]
[1,-1,-4,-8]
>>> scanl1 (&&) [True, False, True, True]
[True,False,False,False]
>>> scanl1 (||) [False, False, True, True]
[False,False,True,True]
>>> scanl1 (+) [1..]
* Hangs forever *

scanl' :: (b -> a -> b) -> b -> [a] -> [b] Source #

\(\mathcal{O}(n)\). A strict version of scanl.

scanl :: (b -> a -> b) -> b -> [a] -> [b] Source #

\(\mathcal{O}(n)\). scanl is similar to foldl, but returns a list of successive reduced values from the left:

scanl f z [x1, x2, ...] == [z, z `f` x1, (z `f` x1) `f` x2, ...]

Note that

last (scanl f z xs) == foldl f z xs
>>> scanl (+) 0 [1..4]
[0,1,3,6,10]
>>> scanl (+) 42 []
[42]
>>> scanl (-) 100 [1..4]
[100,99,97,94,90]
>>> scanl (\reversedString nextChar -> nextChar : reversedString) "foo" ['a', 'b', 'c', 'd']
["foo","afoo","bafoo","cbafoo","dcbafoo"]
>>> scanl (+) 0 [1..]
* Hangs forever *

reverse :: [a] -> [a] Source #

reverse xs returns the elements of xs in reverse order. xs must be finite.

>>> reverse []
[]
>>> reverse [42]
[42]
>>> reverse [2,5,7]
[7,5,2]
>>> reverse [1..]
* Hangs forever *

replicate :: Int -> a -> [a] Source #

replicate n x is a list of length n with x the value of every element. It is an instance of the more general genericReplicate, in which n may be of any integral type.

>>> replicate 0 True
[]
>>> replicate (-1) True
[]
>>> replicate 4 True
[True,True,True,True]

repeat :: a -> [a] Source #

repeat x is an infinite list, with x the value of every element.

>>> take 20 $ repeat 17
[17,17,17,17,17,17,17,17,17...

lookup :: Eq a => a -> [(a, b)] -> Maybe b Source #

\(\mathcal{O}(n)\). lookup key assocs looks up a key in an association list.

>>> lookup 2 []
Nothing
>>> lookup 2 [(1, "first")]
Nothing
>>> lookup 2 [(1, "first"), (2, "second"), (3, "third")]
Just "second"

last :: [a] -> a Source #

\(\mathcal{O}(n)\). Extract the last element of a list, which must be finite and non-empty.

>>> last [1, 2, 3]
3
>>> last [1..]
* Hangs forever *
>>> last []
Exception: Prelude.last: empty list

iterate' :: (a -> a) -> a -> [a] Source #

iterate' is the strict version of iterate.

It forces the result of each application of the function to weak head normal form (WHNF) before proceeding.

iterate :: (a -> a) -> a -> [a] Source #

iterate f x returns an infinite list of repeated applications of f to x:

iterate f x == [x, f x, f (f x), ...]

Note that iterate is lazy, potentially leading to thunk build-up if the consumer doesn't force each iterate. See iterate' for a strict variant of this function.

>>> take 10 $ iterate not True
[True,False,True,False...
>>> take 10 $ iterate (+3) 42
[42,45,48,51,54,57,60,63...

init :: [a] -> [a] Source #

\(\mathcal{O}(n)\). Return all the elements of a list except the last one. The list must be non-empty.

>>> init [1, 2, 3]
[1,2]
>>> init [1]
[]
>>> init []
Exception: Prelude.init: empty list

head :: [a] -> a Source #

\(\mathcal{O}(1)\). Extract the first element of a list, which must be non-empty.

>>> head [1, 2, 3]
1
>>> head [1..]
1
>>> head []
Exception: Prelude.head: empty list

foldl1' :: (a -> a -> a) -> [a] -> a Source #

A strict version of foldl1.

dropWhile :: (a -> Bool) -> [a] -> [a] Source #

dropWhile p xs returns the suffix remaining after takeWhile p xs.

>>> dropWhile (< 3) [1,2,3,4,5,1,2,3]
[3,4,5,1,2,3]
>>> dropWhile (< 9) [1,2,3]
[]
>>> dropWhile (< 0) [1,2,3]
[1,2,3]

drop :: Int -> [a] -> [a] Source #

drop n xs returns the suffix of xs after the first n elements, or [] if n >= length xs.

>>> drop 6 "Hello World!"
"World!"
>>> drop 3 [1,2,3,4,5]
[4,5]
>>> drop 3 [1,2]
[]
>>> drop 3 []
[]
>>> drop (-1) [1,2]
[1,2]
>>> drop 0 [1,2]
[1,2]

It is an instance of the more general genericDrop, in which n may be of any integral type.

cycle :: [a] -> [a] Source #

cycle ties a finite list into a circular one, or equivalently, the infinite repetition of the original list. It is the identity on infinite lists.

>>> cycle []
*** Exception: Prelude.cycle: empty list
>>> take 20 $ cycle [42]
[42,42,42,42,42,42,42,42,42,42...
>>> take 20 $ cycle [2, 5, 7]
[2,5,7,2,5,7,2,5,7,2,5,7...

break :: (a -> Bool) -> [a] -> ([a], [a]) Source #

break, applied to a predicate p and a list xs, returns a tuple where first element is longest prefix (possibly empty) of xs of elements that do not satisfy p and second element is the remainder of the list:

>>> break (> 3) [1,2,3,4,1,2,3,4]
([1,2,3],[4,1,2,3,4])
>>> break (< 9) [1,2,3]
([],[1,2,3])
>>> break (> 9) [1,2,3]
([1,2,3],[])

break p is equivalent to span (not . p).

(!!) :: [a] -> Int -> a infixl 9 Source #

List index (subscript) operator, starting from 0. It is an instance of the more general genericIndex, which takes an index of any integral type.

>>> ['a', 'b', 'c'] !! 0
'a'
>>> ['a', 'b', 'c'] !! 2
'c'
>>> ['a', 'b', 'c'] !! 3
Exception: Prelude.!!: index too large
>>> ['a', 'b', 'c'] !! (-1)
Exception: Prelude.!!: negative index

guard :: Alternative f => Bool -> f () Source #

Conditional failure of Alternative computations. Defined by

guard True  = pure ()
guard False = empty

Examples

Expand

Common uses of guard include conditionally signaling an error in an error monad and conditionally rejecting the current choice in an Alternative-based parser.

As an example of signaling an error in the error monad Maybe, consider a safe division function safeDiv x y that returns Nothing when the denominator y is zero and Just (x `div` y) otherwise. For example:

>>> safeDiv 4 0
Nothing
>>> safeDiv 4 2
Just 2

A definition of safeDiv using guards, but not guard:

safeDiv :: Int -> Int -> Maybe Int
safeDiv x y | y /= 0    = Just (x `div` y)
            | otherwise = Nothing

A definition of safeDiv using guard and Monad do-notation:

safeDiv :: Int -> Int -> Maybe Int
safeDiv x y = do
  guard (y /= 0)
  return (x `div` y)

join :: Monad m => m (m a) -> m a Source #

The join function is the conventional monad join operator. It is used to remove one level of monadic structure, projecting its bound argument into the outer level.

'join bss' can be understood as the do expression

do bs <- bss
   bs

Examples

Expand

A common use of join is to run an IO computation returned from an STM transaction, since STM transactions can't perform IO directly. Recall that

atomically :: STM a -> IO a

is used to run STM transactions atomically. So, by specializing the types of atomically and join to

atomically :: STM (IO b) -> IO (IO b)
join       :: IO (IO b)  -> IO b

we can compose them as

join . atomically :: STM (IO b) -> IO b

to run an STM transaction and the IO action it returns.

class Applicative m => Monad (m :: Type -> Type) where Source #

The Monad class defines the basic operations over a monad, a concept from a branch of mathematics known as category theory. From the perspective of a Haskell programmer, however, it is best to think of a monad as an abstract datatype of actions. Haskell's do expressions provide a convenient syntax for writing monadic expressions.

Instances of Monad should satisfy the following:

Left identity
return a >>= k = k a
Right identity
m >>= return = m
Associativity
m >>= (\x -> k x >>= h) = (m >>= k) >>= h

Furthermore, the Monad and Applicative operations should relate as follows:

The above laws imply:

and that pure and (<*>) satisfy the applicative functor laws.

The instances of Monad for lists, Maybe and IO defined in the Prelude satisfy these laws.

Minimal complete definition

(>>=)

Methods

(>>=) :: m a -> (a -> m b) -> m b infixl 1 Source #

Sequentially compose two actions, passing any value produced by the first as an argument to the second.

'as >>= bs' can be understood as the do expression

do a <- as
   bs a

(>>) :: m a -> m b -> m b infixl 1 Source #

Sequentially compose two actions, discarding any value produced by the first, like sequencing operators (such as the semicolon) in imperative languages.

'as >> bs' can be understood as the do expression

do as
   bs

return :: a -> m a Source #

Inject a value into the monadic type.

Instances

Instances details
Monad Identity

Since: base-4.8.0.0

Instance details

Defined in Data.Functor.Identity

Methods

(>>=) :: Identity a -> (a -> Identity b) -> Identity b Source #

(>>) :: Identity a -> Identity b -> Identity b Source #

return :: a -> Identity a Source #

Monad First

Since: base-4.8.0.0

Instance details

Defined in Data.Monoid

Methods

(>>=) :: First a -> (a -> First b) -> First b Source #

(>>) :: First a -> First b -> First b Source #

return :: a -> First a Source #

Monad Last

Since: base-4.8.0.0

Instance details

Defined in Data.Monoid

Methods

(>>=) :: Last a -> (a -> Last b) -> Last b Source #

(>>) :: Last a -> Last b -> Last b Source #

return :: a -> Last a Source #

Monad Down

Since: base-4.11.0.0

Instance details

Defined in Data.Ord

Methods

(>>=) :: Down a -> (a -> Down b) -> Down b Source #

(>>) :: Down a -> Down b -> Down b Source #

return :: a -> Down a Source #

Monad Dual

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(>>=) :: Dual a -> (a -> Dual b) -> Dual b Source #

(>>) :: Dual a -> Dual b -> Dual b Source #

return :: a -> Dual a Source #

Monad Product

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(>>=) :: Product a -> (a -> Product b) -> Product b Source #

(>>) :: Product a -> Product b -> Product b Source #

return :: a -> Product a Source #

Monad Sum

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(>>=) :: Sum a -> (a -> Sum b) -> Sum b Source #

(>>) :: Sum a -> Sum b -> Sum b Source #

return :: a -> Sum a Source #

Monad NonEmpty

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

(>>=) :: NonEmpty a -> (a -> NonEmpty b) -> NonEmpty b Source #

(>>) :: NonEmpty a -> NonEmpty b -> NonEmpty b Source #

return :: a -> NonEmpty a Source #

Monad Par1

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

(>>=) :: Par1 a -> (a -> Par1 b) -> Par1 b Source #

(>>) :: Par1 a -> Par1 b -> Par1 b Source #

return :: a -> Par1 a Source #

Monad P

Since: base-2.1

Instance details

Defined in Text.ParserCombinators.ReadP

Methods

(>>=) :: P a -> (a -> P b) -> P b Source #

(>>) :: P a -> P b -> P b Source #

return :: a -> P a Source #

Monad ReadP

Since: base-2.1

Instance details

Defined in Text.ParserCombinators.ReadP

Methods

(>>=) :: ReadP a -> (a -> ReadP b) -> ReadP b Source #

(>>) :: ReadP a -> ReadP b -> ReadP b Source #

return :: a -> ReadP a Source #

Monad Put 
Instance details

Defined in Data.ByteString.Builder.Internal

Methods

(>>=) :: Put a -> (a -> Put b) -> Put b Source #

(>>) :: Put a -> Put b -> Put b Source #

return :: a -> Put a Source #

Monad Seq 
Instance details

Defined in Data.Sequence.Internal

Methods

(>>=) :: Seq a -> (a -> Seq b) -> Seq b Source #

(>>) :: Seq a -> Seq b -> Seq b Source #

return :: a -> Seq a Source #

Monad Tree 
Instance details

Defined in Data.Tree

Methods

(>>=) :: Tree a -> (a -> Tree b) -> Tree b Source #

(>>) :: Tree a -> Tree b -> Tree b Source #

return :: a -> Tree a Source #

Monad IO

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

(>>=) :: IO a -> (a -> IO b) -> IO b Source #

(>>) :: IO a -> IO b -> IO b Source #

return :: a -> IO a Source #

Monad Array 
Instance details

Defined in Data.Primitive.Array

Methods

(>>=) :: Array a -> (a -> Array b) -> Array b Source #

(>>) :: Array a -> Array b -> Array b Source #

return :: a -> Array a Source #

Monad SmallArray 
Instance details

Defined in Data.Primitive.SmallArray

Methods

(>>=) :: SmallArray a -> (a -> SmallArray b) -> SmallArray b Source #

(>>) :: SmallArray a -> SmallArray b -> SmallArray b Source #

return :: a -> SmallArray a Source #

Monad Q 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

(>>=) :: Q a -> (a -> Q b) -> Q b Source #

(>>) :: Q a -> Q b -> Q b Source #

return :: a -> Q a Source #

Monad Vector 
Instance details

Defined in Data.Vector

Methods

(>>=) :: Vector a -> (a -> Vector b) -> Vector b Source #

(>>) :: Vector a -> Vector b -> Vector b Source #

return :: a -> Vector a Source #

Monad Box 
Instance details

Defined in Data.Vector.Fusion.Util

Methods

(>>=) :: Box a -> (a -> Box b) -> Box b Source #

(>>) :: Box a -> Box b -> Box b Source #

return :: a -> Box a Source #

Monad Id 
Instance details

Defined in Data.Vector.Fusion.Util

Methods

(>>=) :: Id a -> (a -> Id b) -> Id b Source #

(>>) :: Id a -> Id b -> Id b Source #

return :: a -> Id a Source #

Monad Maybe

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b Source #

(>>) :: Maybe a -> Maybe b -> Maybe b Source #

return :: a -> Maybe a Source #

Monad Solo

Since: base-4.15

Instance details

Defined in GHC.Base

Methods

(>>=) :: Solo a -> (a -> Solo b) -> Solo b Source #

(>>) :: Solo a -> Solo b -> Solo b Source #

return :: a -> Solo a Source #

Monad []

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

(>>=) :: [a] -> (a -> [b]) -> [b] Source #

(>>) :: [a] -> [b] -> [b] Source #

return :: a -> [a] Source #

Monad m => Monad (WrappedMonad m)

Since: base-4.7.0.0

Instance details

Defined in Control.Applicative

Methods

(>>=) :: WrappedMonad m a -> (a -> WrappedMonad m b) -> WrappedMonad m b Source #

(>>) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m b Source #

return :: a -> WrappedMonad m a Source #

ArrowApply a => Monad (ArrowMonad a)

Since: base-2.1

Instance details

Defined in Control.Arrow

Methods

(>>=) :: ArrowMonad a a0 -> (a0 -> ArrowMonad a b) -> ArrowMonad a b Source #

(>>) :: ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a b Source #

return :: a0 -> ArrowMonad a a0 Source #

Monad (Either e)

Since: base-4.4.0.0

Instance details

Defined in Data.Either

Methods

(>>=) :: Either e a -> (a -> Either e b) -> Either e b Source #

(>>) :: Either e a -> Either e b -> Either e b Source #

return :: a -> Either e a Source #

Monad (Proxy :: Type -> Type)

Since: base-4.7.0.0

Instance details

Defined in Data.Proxy

Methods

(>>=) :: Proxy a -> (a -> Proxy b) -> Proxy b Source #

(>>) :: Proxy a -> Proxy b -> Proxy b Source #

return :: a -> Proxy a Source #

Monad (U1 :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

(>>=) :: U1 a -> (a -> U1 b) -> U1 b Source #

(>>) :: U1 a -> U1 b -> U1 b Source #

return :: a -> U1 a Source #

Monoid a => Monad ((,) a)

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

(>>=) :: (a, a0) -> (a0 -> (a, b)) -> (a, b) Source #

(>>) :: (a, a0) -> (a, b) -> (a, b) Source #

return :: a0 -> (a, a0) Source #

Monad m => Monad (Kleisli m a)

Since: base-4.14.0.0

Instance details

Defined in Control.Arrow

Methods

(>>=) :: Kleisli m a a0 -> (a0 -> Kleisli m a b) -> Kleisli m a b Source #

(>>) :: Kleisli m a a0 -> Kleisli m a b -> Kleisli m a b Source #

return :: a0 -> Kleisli m a a0 Source #

Monad f => Monad (Ap f)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

(>>=) :: Ap f a -> (a -> Ap f b) -> Ap f b Source #

(>>) :: Ap f a -> Ap f b -> Ap f b Source #

return :: a -> Ap f a Source #

Monad f => Monad (Alt f)

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(>>=) :: Alt f a -> (a -> Alt f b) -> Alt f b Source #

(>>) :: Alt f a -> Alt f b -> Alt f b Source #

return :: a -> Alt f a Source #

Monad f => Monad (Rec1 f)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

(>>=) :: Rec1 f a -> (a -> Rec1 f b) -> Rec1 f b Source #

(>>) :: Rec1 f a -> Rec1 f b -> Rec1 f b Source #

return :: a -> Rec1 f a Source #

(Applicative f, Monad f) => Monad (WhenMissing f x)

Equivalent to ReaderT k (ReaderT x (MaybeT f)).

Since: containers-0.5.9

Instance details

Defined in Data.IntMap.Internal

Methods

(>>=) :: WhenMissing f x a -> (a -> WhenMissing f x b) -> WhenMissing f x b Source #

(>>) :: WhenMissing f x a -> WhenMissing f x b -> WhenMissing f x b Source #

return :: a -> WhenMissing f x a Source #

(Monad m, Error e) => Monad (ErrorT e m) 
Instance details

Defined in Control.Monad.Trans.Error

Methods

(>>=) :: ErrorT e m a -> (a -> ErrorT e m b) -> ErrorT e m b Source #

(>>) :: ErrorT e m a -> ErrorT e m b -> ErrorT e m b Source #

return :: a -> ErrorT e m a Source #

(Monoid a, Monoid b) => Monad ((,,) a b)

Since: base-4.14.0.0

Instance details

Defined in GHC.Base

Methods

(>>=) :: (a, b, a0) -> (a0 -> (a, b, b0)) -> (a, b, b0) Source #

(>>) :: (a, b, a0) -> (a, b, b0) -> (a, b, b0) Source #

return :: a0 -> (a, b, a0) Source #

(Monad f, Monad g) => Monad (f :*: g)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

(>>=) :: (f :*: g) a -> (a -> (f :*: g) b) -> (f :*: g) b Source #

(>>) :: (f :*: g) a -> (f :*: g) b -> (f :*: g) b Source #

return :: a -> (f :*: g) a Source #

(Monad f, Applicative f) => Monad (WhenMatched f x y)

Equivalent to ReaderT Key (ReaderT x (ReaderT y (MaybeT f)))

Since: containers-0.5.9

Instance details

Defined in Data.IntMap.Internal

Methods

(>>=) :: WhenMatched f x y a -> (a -> WhenMatched f x y b) -> WhenMatched f x y b Source #

(>>) :: WhenMatched f x y a -> WhenMatched f x y b -> WhenMatched f x y b Source #

return :: a -> WhenMatched f x y a Source #

(Applicative f, Monad f) => Monad (WhenMissing f k x)

Equivalent to ReaderT k (ReaderT x (MaybeT f)) .

Since: containers-0.5.9

Instance details

Defined in Data.Map.Internal

Methods

(>>=) :: WhenMissing f k x a -> (a -> WhenMissing f k x b) -> WhenMissing f k x b Source #

(>>) :: WhenMissing f k x a -> WhenMissing f k x b -> WhenMissing f k x b Source #

return :: a -> WhenMissing f k x a Source #

(Monoid a, Monoid b, Monoid c) => Monad ((,,,) a b c)

Since: base-4.14.0.0

Instance details

Defined in GHC.Base

Methods

(>>=) :: (a, b, c, a0) -> (a0 -> (a, b, c, b0)) -> (a, b, c, b0) Source #

(>>) :: (a, b, c, a0) -> (a, b, c, b0) -> (a, b, c, b0) Source #

return :: a0 -> (a, b, c, a0) Source #

Monad ((->) r)

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

(>>=) :: (r -> a) -> (a -> r -> b) -> r -> b Source #

(>>) :: (r -> a) -> (r -> b) -> r -> b Source #

return :: a -> r -> a Source #

Monad f => Monad (M1 i c f)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

(>>=) :: M1 i c f a -> (a -> M1 i c f b) -> M1 i c f b Source #

(>>) :: M1 i c f a -> M1 i c f b -> M1 i c f b Source #

return :: a -> M1 i c f a Source #

(Monad f, Applicative f) => Monad (WhenMatched f k x y)

Equivalent to ReaderT k (ReaderT x (ReaderT y (MaybeT f)))

Since: containers-0.5.9

Instance details

Defined in Data.Map.Internal

Methods

(>>=) :: WhenMatched f k x y a -> (a -> WhenMatched f k x y b) -> WhenMatched f k x y b Source #

(>>) :: WhenMatched f k x y a -> WhenMatched f k x y b -> WhenMatched f k x y b Source #

return :: a -> WhenMatched f k x y a Source #

class Functor (f :: Type -> Type) where Source #

A type f is a Functor if it provides a function fmap which, given any types a and b lets you apply any function from (a -> b) to turn an f a into an f b, preserving the structure of f. Furthermore f needs to adhere to the following:

Identity
fmap id == id
Composition
fmap (f . g) == fmap f . fmap g

Note, that the second law follows from the free theorem of the type fmap and the first law, so you need only check that the former condition holds.

Minimal complete definition

fmap

Methods

fmap :: (a -> b) -> f a -> f b Source #

fmap is used to apply a function of type (a -> b) to a value of type f a, where f is a functor, to produce a value of type f b. Note that for any type constructor with more than one parameter (e.g., Either), only the last type parameter can be modified with fmap (e.g., b in `Either a b`).

Some type constructors with two parameters or more have a Bifunctor instance that allows both the last and the penultimate parameters to be mapped over. ==== Examples

Convert from a Maybe Int to a Maybe String using show:

>>> fmap show Nothing
Nothing
>>> fmap show (Just 3)
Just "3"

Convert from an Either Int Int to an Either Int String using show:

>>> fmap show (Left 17)
Left 17
>>> fmap show (Right 17)
Right "17"

Double each element of a list:

>>> fmap (*2) [1,2,3]
[2,4,6]

Apply even to the second element of a pair:

>>> fmap even (2,2)
(2,True)

It may seem surprising that the function is only applied to the last element of the tuple compared to the list example above which applies it to every element in the list. To understand, remember that tuples are type constructors with multiple type parameters: a tuple of 3 elements `(a,b,c)` can also be written `(,,) a b c` and its Functor instance is defined for `Functor ((,,) a b)` (i.e., only the third parameter is free to be mapped over with fmap).

It explains why fmap can be used with tuples containing values of different types as in the following example:

>>> fmap even ("hello", 1.0, 4)
("hello",1.0,True)

(<$) :: a -> f b -> f a infixl 4 Source #

Replace all locations in the input with the same value. The default definition is fmap . const, but this may be overridden with a more efficient version.

Instances

Instances details
Functor ZipList

Since: base-2.1

Instance details

Defined in Control.Applicative

Methods

fmap :: (a -> b) -> ZipList a -> ZipList b Source #

(<$) :: a -> ZipList b -> ZipList a Source #

Functor Handler

Since: base-4.6.0.0

Instance details

Defined in Control.Exception

Methods

fmap :: (a -> b) -> Handler a -> Handler b Source #

(<$) :: a -> Handler b -> Handler a Source #

Functor Identity

Since: base-4.8.0.0

Instance details

Defined in Data.Functor.Identity

Methods

fmap :: (a -> b) -> Identity a -> Identity b Source #

(<$) :: a -> Identity b -> Identity a Source #

Functor First

Since: base-4.8.0.0

Instance details

Defined in Data.Monoid

Methods

fmap :: (a -> b) -> First a -> First b Source #

(<$) :: a -> First b -> First a Source #

Functor Last

Since: base-4.8.0.0

Instance details

Defined in Data.Monoid

Methods

fmap :: (a -> b) -> Last a -> Last b Source #

(<$) :: a -> Last b -> Last a Source #

Functor Down

Since: base-4.11.0.0

Instance details

Defined in Data.Ord

Methods

fmap :: (a -> b) -> Down a -> Down b Source #

(<$) :: a -> Down b -> Down a Source #

Functor Dual

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

fmap :: (a -> b) -> Dual a -> Dual b Source #

(<$) :: a -> Dual b -> Dual a Source #

Functor Product

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

fmap :: (a -> b) -> Product a -> Product b Source #

(<$) :: a -> Product b -> Product a Source #

Functor Sum

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

fmap :: (a -> b) -> Sum a -> Sum b Source #

(<$) :: a -> Sum b -> Sum a Source #

Functor NonEmpty

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

fmap :: (a -> b) -> NonEmpty a -> NonEmpty b Source #

(<$) :: a -> NonEmpty b -> NonEmpty a Source #

Functor Par1

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> Par1 a -> Par1 b Source #

(<$) :: a -> Par1 b -> Par1 a Source #

Functor P

Since: base-4.8.0.0

Instance details

Defined in Text.ParserCombinators.ReadP

Methods

fmap :: (a -> b) -> P a -> P b Source #

(<$) :: a -> P b -> P a Source #

Functor ReadP

Since: base-2.1

Instance details

Defined in Text.ParserCombinators.ReadP

Methods

fmap :: (a -> b) -> ReadP a -> ReadP b Source #

(<$) :: a -> ReadP b -> ReadP a Source #

Functor Put 
Instance details

Defined in Data.ByteString.Builder.Internal

Methods

fmap :: (a -> b) -> Put a -> Put b Source #

(<$) :: a -> Put b -> Put a Source #

Functor IntMap 
Instance details

Defined in Data.IntMap.Internal

Methods

fmap :: (a -> b) -> IntMap a -> IntMap b Source #

(<$) :: a -> IntMap b -> IntMap a Source #

Functor Digit 
Instance details

Defined in Data.Sequence.Internal

Methods

fmap :: (a -> b) -> Digit a -> Digit b Source #

(<$) :: a -> Digit b -> Digit a Source #

Functor Elem 
Instance details

Defined in Data.Sequence.Internal

Methods

fmap :: (a -> b) -> Elem a -> Elem b Source #

(<$) :: a -> Elem b -> Elem a Source #

Functor FingerTree 
Instance details

Defined in Data.Sequence.Internal

Methods

fmap :: (a -> b) -> FingerTree a -> FingerTree b Source #

(<$) :: a -> FingerTree b -> FingerTree a Source #

Functor Node 
Instance details

Defined in Data.Sequence.Internal

Methods

fmap :: (a -> b) -> Node a -> Node b Source #

(<$) :: a -> Node b -> Node a Source #

Functor Seq 
Instance details

Defined in Data.Sequence.Internal

Methods

fmap :: (a -> b) -> Seq a -> Seq b Source #

(<$) :: a -> Seq b -> Seq a Source #

Functor ViewL 
Instance details

Defined in Data.Sequence.Internal

Methods

fmap :: (a -> b) -> ViewL a -> ViewL b Source #

(<$) :: a -> ViewL b -> ViewL a Source #

Functor ViewR 
Instance details

Defined in Data.Sequence.Internal

Methods

fmap :: (a -> b) -> ViewR a -> ViewR b Source #

(<$) :: a -> ViewR b -> ViewR a Source #

Functor Tree 
Instance details

Defined in Data.Tree

Methods

fmap :: (a -> b) -> Tree a -> Tree b Source #

(<$) :: a -> Tree b -> Tree a Source #

Functor IO

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

fmap :: (a -> b) -> IO a -> IO b Source #

(<$) :: a -> IO b -> IO a Source #

Functor Array 
Instance details

Defined in Data.Primitive.Array

Methods

fmap :: (a -> b) -> Array a -> Array b Source #

(<$) :: a -> Array b -> Array a Source #

Functor SmallArray 
Instance details

Defined in Data.Primitive.SmallArray

Methods

fmap :: (a -> b) -> SmallArray a -> SmallArray b Source #

(<$) :: a -> SmallArray b -> SmallArray a Source #

Functor Q 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

fmap :: (a -> b) -> Q a -> Q b Source #

(<$) :: a -> Q b -> Q a Source #

Functor TyVarBndr 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

fmap :: (a -> b) -> TyVarBndr a -> TyVarBndr b Source #

(<$) :: a -> TyVarBndr b -> TyVarBndr a Source #

Functor Vector 
Instance details

Defined in Data.Vector

Methods

fmap :: (a -> b) -> Vector a -> Vector b Source #

(<$) :: a -> Vector b -> Vector a Source #

Functor Box 
Instance details

Defined in Data.Vector.Fusion.Util

Methods

fmap :: (a -> b) -> Box a -> Box b Source #

(<$) :: a -> Box b -> Box a Source #

Functor Id 
Instance details

Defined in Data.Vector.Fusion.Util

Methods

fmap :: (a -> b) -> Id a -> Id b Source #

(<$) :: a -> Id b -> Id a Source #

Functor Maybe

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

fmap :: (a -> b) -> Maybe a -> Maybe b Source #

(<$) :: a -> Maybe b -> Maybe a Source #

Functor Solo

Since: base-4.15

Instance details

Defined in GHC.Base

Methods

fmap :: (a -> b) -> Solo a -> Solo b Source #

(<$) :: a -> Solo b -> Solo a Source #

Functor []

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

fmap :: (a -> b) -> [a] -> [b] Source #

(<$) :: a -> [b] -> [a] Source #

Monad m => Functor (WrappedMonad m)

Since: base-2.1

Instance details

Defined in Control.Applicative

Methods

fmap :: (a -> b) -> WrappedMonad m a -> WrappedMonad m b Source #

(<$) :: a -> WrappedMonad m b -> WrappedMonad m a Source #

Arrow a => Functor (ArrowMonad a)

Since: base-4.6.0.0

Instance details

Defined in Control.Arrow

Methods

fmap :: (a0 -> b) -> ArrowMonad a a0 -> ArrowMonad a b Source #

(<$) :: a0 -> ArrowMonad a b -> ArrowMonad a a0 Source #

Functor (Either a)

Since: base-3.0

Instance details

Defined in Data.Either

Methods

fmap :: (a0 -> b) -> Either a a0 -> Either a b Source #

(<$) :: a0 -> Either a b -> Either a a0 Source #

Functor (Proxy :: Type -> Type)

Since: base-4.7.0.0

Instance details

Defined in Data.Proxy

Methods

fmap :: (a -> b) -> Proxy a -> Proxy b Source #

(<$) :: a -> Proxy b -> Proxy a Source #

Functor (Array i)

Since: base-2.1

Instance details

Defined in GHC.Arr

Methods

fmap :: (a -> b) -> Array i a -> Array i b Source #

(<$) :: a -> Array i b -> Array i a Source #

Functor (U1 :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> U1 a -> U1 b Source #

(<$) :: a -> U1 b -> U1 a Source #

Functor (V1 :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> V1 a -> V1 b Source #

(<$) :: a -> V1 b -> V1 a Source #

Functor (Map k) 
Instance details

Defined in Data.Map.Internal

Methods

fmap :: (a -> b) -> Map k a -> Map k b Source #

(<$) :: a -> Map k b -> Map k a Source #

Functor (HashMap k) 
Instance details

Defined in Data.HashMap.Internal

Methods

fmap :: (a -> b) -> HashMap k a -> HashMap k b Source #

(<$) :: a -> HashMap k b -> HashMap k a Source #

Functor ((,) a)

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

fmap :: (a0 -> b) -> (a, a0) -> (a, b) Source #

(<$) :: a0 -> (a, b) -> (a, a0) Source #

Arrow a => Functor (WrappedArrow a b)

Since: base-2.1

Instance details

Defined in Control.Applicative

Methods

fmap :: (a0 -> b0) -> WrappedArrow a b a0 -> WrappedArrow a b b0 Source #

(<$) :: a0 -> WrappedArrow a b b0 -> WrappedArrow a b a0 Source #

Functor m => Functor (Kleisli m a)

Since: base-4.14.0.0

Instance details

Defined in Control.Arrow

Methods

fmap :: (a0 -> b) -> Kleisli m a a0 -> Kleisli m a b Source #

(<$) :: a0 -> Kleisli m a b -> Kleisli m a a0 Source #

Functor (Const m :: Type -> Type)

Since: base-2.1

Instance details

Defined in Data.Functor.Const

Methods

fmap :: (a -> b) -> Const m a -> Const m b Source #

(<$) :: a -> Const m b -> Const m a Source #

Functor f => Functor (Ap f)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

fmap :: (a -> b) -> Ap f a -> Ap f b Source #

(<$) :: a -> Ap f b -> Ap f a Source #

Functor f => Functor (Alt f)

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

fmap :: (a -> b) -> Alt f a -> Alt f b Source #

(<$) :: a -> Alt f b -> Alt f a Source #

Functor f => Functor (Rec1 f)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> Rec1 f a -> Rec1 f b Source #

(<$) :: a -> Rec1 f b -> Rec1 f a Source #

Functor (URec (Ptr ()) :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> URec (Ptr ()) a -> URec (Ptr ()) b Source #

(<$) :: a -> URec (Ptr ()) b -> URec (Ptr ()) a Source #

Functor (URec Char :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> URec Char a -> URec Char b Source #

(<$) :: a -> URec Char b -> URec Char a Source #

Functor (URec Double :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> URec Double a -> URec Double b Source #

(<$) :: a -> URec Double b -> URec Double a Source #

Functor (URec Float :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> URec Float a -> URec Float b Source #

(<$) :: a -> URec Float b -> URec Float a Source #

Functor (URec Int :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> URec Int a -> URec Int b Source #

(<$) :: a -> URec Int b -> URec Int a Source #

Functor (URec Word :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> URec Word a -> URec Word b Source #

(<$) :: a -> URec Word b -> URec Word a Source #

(Applicative f, Monad f) => Functor (WhenMissing f x)

Since: containers-0.5.9

Instance details

Defined in Data.IntMap.Internal

Methods

fmap :: (a -> b) -> WhenMissing f x a -> WhenMissing f x b Source #

(<$) :: a -> WhenMissing f x b -> WhenMissing f x a Source #

Functor m => Functor (ErrorT e m) 
Instance details

Defined in Control.Monad.Trans.Error

Methods

fmap :: (a -> b) -> ErrorT e m a -> ErrorT e m b Source #

(<$) :: a -> ErrorT e m b -> ErrorT e m a Source #

Monad m => Functor (Bundle m v) 
Instance details

Defined in Data.Vector.Fusion.Bundle.Monadic

Methods

fmap :: (a -> b) -> Bundle m v a -> Bundle m v b Source #

(<$) :: a -> Bundle m v b -> Bundle m v a Source #

Functor ((,,) a b)

Since: base-4.14.0.0

Instance details

Defined in GHC.Base

Methods

fmap :: (a0 -> b0) -> (a, b, a0) -> (a, b, b0) Source #

(<$) :: a0 -> (a, b, b0) -> (a, b, a0) Source #

(Functor f, Functor g) => Functor (f :*: g)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> (f :*: g) a -> (f :*: g) b Source #

(<$) :: a -> (f :*: g) b -> (f :*: g) a Source #

(Functor f, Functor g) => Functor (f :+: g)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> (f :+: g) a -> (f :+: g) b Source #

(<$) :: a -> (f :+: g) b -> (f :+: g) a Source #

Functor (K1 i c :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> K1 i c a -> K1 i c b Source #

(<$) :: a -> K1 i c b -> K1 i c a Source #

Functor f => Functor (WhenMatched f x y)

Since: containers-0.5.9

Instance details

Defined in Data.IntMap.Internal

Methods

fmap :: (a -> b) -> WhenMatched f x y a -> WhenMatched f x y b Source #

(<$) :: a -> WhenMatched f x y b -> WhenMatched f x y a Source #

(Applicative f, Monad f) => Functor (WhenMissing f k x)

Since: containers-0.5.9

Instance details

Defined in Data.Map.Internal

Methods

fmap :: (a -> b) -> WhenMissing f k x a -> WhenMissing f k x b Source #

(<$) :: a -> WhenMissing f k x b -> WhenMissing f k x a Source #

Functor ((,,,) a b c)

Since: base-4.14.0.0

Instance details

Defined in GHC.Base

Methods

fmap :: (a0 -> b0) -> (a, b, c, a0) -> (a, b, c, b0) Source #

(<$) :: a0 -> (a, b, c, b0) -> (a, b, c, a0) Source #

Functor ((->) r)

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

fmap :: (a -> b) -> (r -> a) -> r -> b Source #

(<$) :: a -> (r -> b) -> r -> a Source #

(Functor f, Functor g) => Functor (f :.: g)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> (f :.: g) a -> (f :.: g) b Source #

(<$) :: a -> (f :.: g) b -> (f :.: g) a Source #

Functor f => Functor (M1 i c f)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> M1 i c f a -> M1 i c f b Source #

(<$) :: a -> M1 i c f b -> M1 i c f a Source #

Functor f => Functor (WhenMatched f k x y)

Since: containers-0.5.9

Instance details

Defined in Data.Map.Internal

Methods

fmap :: (a -> b) -> WhenMatched f k x y a -> WhenMatched f k x y b Source #

(<$) :: a -> WhenMatched f k x y b -> WhenMatched f k x y a Source #

class Monad m => MonadFail (m :: Type -> Type) where Source #

When a value is bound in do-notation, the pattern on the left hand side of <- might not match. In this case, this class provides a function to recover.

A Monad without a MonadFail instance may only be used in conjunction with pattern that always match, such as newtypes, tuples, data types with only a single data constructor, and irrefutable patterns (~pat).

Instances of MonadFail should satisfy the following law: fail s should be a left zero for >>=,

fail s >>= f  =  fail s

If your Monad is also MonadPlus, a popular definition is

fail _ = mzero

Since: base-4.9.0.0

Methods

fail :: String -> m a Source #

Instances

Instances details
MonadFail P

Since: base-4.9.0.0

Instance details

Defined in Text.ParserCombinators.ReadP

Methods

fail :: String -> P a Source #

MonadFail ReadP

Since: base-4.9.0.0

Instance details

Defined in Text.ParserCombinators.ReadP

Methods

fail :: String -> ReadP a Source #

MonadFail IO

Since: base-4.9.0.0

Instance details

Defined in Control.Monad.Fail

Methods

fail :: String -> IO a Source #

MonadFail Array 
Instance details

Defined in Data.Primitive.Array

Methods

fail :: String -> Array a Source #

MonadFail SmallArray 
Instance details

Defined in Data.Primitive.SmallArray

Methods

fail :: String -> SmallArray a Source #

MonadFail Q 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

fail :: String -> Q a Source #

MonadFail Vector

Since: vector-0.12.1.0

Instance details

Defined in Data.Vector

Methods

fail :: String -> Vector a Source #

MonadFail Maybe

Since: base-4.9.0.0

Instance details

Defined in Control.Monad.Fail

Methods

fail :: String -> Maybe a Source #

MonadFail []

Since: base-4.9.0.0

Instance details

Defined in Control.Monad.Fail

Methods

fail :: String -> [a] Source #

MonadFail f => MonadFail (Ap f)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

fail :: String -> Ap f a Source #

(Monad m, Error e) => MonadFail (ErrorT e m) 
Instance details

Defined in Control.Monad.Trans.Error

Methods

fail :: String -> ErrorT e m a Source #

zipWithM_ :: Applicative m => (a -> b -> m c) -> [a] -> [b] -> m () Source #

zipWithM_ is the extension of zipWithM which ignores the final result.

zipWithM :: Applicative m => (a -> b -> m c) -> [a] -> [b] -> m [c] Source #

The zipWithM function generalizes zipWith to arbitrary applicative functors.

unless :: Applicative f => Bool -> f () -> f () Source #

The reverse of when.

replicateM_ :: Applicative m => Int -> m a -> m () Source #

Like replicateM, but discards the result.

replicateM :: Applicative m => Int -> m a -> m [a] Source #

replicateM n act performs the action act n times, and then returns the list of results:

Examples

Expand
>>> replicateM 3 (putStrLn "a")
a
a
a

mfilter :: MonadPlus m => (a -> Bool) -> m a -> m a Source #

Direct MonadPlus equivalent of filter.

Examples

Expand

The filter function is just mfilter specialized to the list monad:

filter = ( mfilter :: (a -> Bool) -> [a] -> [a] )

An example using mfilter with the Maybe monad:

>>> mfilter odd (Just 1)
Just 1
>>> mfilter odd (Just 2)
Nothing

mapAndUnzipM :: Applicative m => (a -> m (b, c)) -> [a] -> m ([b], [c]) Source #

The mapAndUnzipM function maps its first argument over a list, returning the result as a pair of lists. This function is mainly used with complicated data structures or a state monad.

forever :: Applicative f => f a -> f b Source #

Repeat an action indefinitely.

Examples

Expand

A common use of forever is to process input from network sockets, Handles, and channels (e.g. MVar and Chan).

For example, here is how we might implement an echo server, using forever both to listen for client connections on a network socket and to echo client input on client connection handles:

echoServer :: Socket -> IO ()
echoServer socket = forever $ do
  client <- accept socket
  forkFinally (echo client) (\_ -> hClose client)
  where
    echo :: Handle -> IO ()
    echo client = forever $
      hGetLine client >>= hPutStrLn client

Note that "forever" isn't necessarily non-terminating. If the action is in a MonadPlus and short-circuits after some number of iterations. then forever actually returns mzero, effectively short-circuiting its caller.

foldM_ :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m () Source #

Like foldM, but discards the result.

foldM :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m b Source #

The foldM function is analogous to foldl, except that its result is encapsulated in a monad. Note that foldM works from left-to-right over the list arguments. This could be an issue where (>>) and the `folded function' are not commutative.

foldM f a1 [x1, x2, ..., xm]

==

do
  a2 <- f a1 x1
  a3 <- f a2 x2
  ...
  f am xm

If right-to-left evaluation is required, the input list should be reversed.

Note: foldM is the same as foldlM

filterM :: Applicative m => (a -> m Bool) -> [a] -> m [a] Source #

This generalizes the list-based filter function.

(>=>) :: Monad m => (a -> m b) -> (b -> m c) -> a -> m c infixr 1 Source #

Left-to-right composition of Kleisli arrows.

'(bs >=> cs) a' can be understood as the do expression

do b <- bs a
   cs b

(<=<) :: Monad m => (b -> m c) -> (a -> m b) -> a -> m c infixr 1 Source #

Right-to-left composition of Kleisli arrows. (>=>), with the arguments flipped.

Note how this operator resembles function composition (.):

(.)   ::            (b ->   c) -> (a ->   b) -> a ->   c
(<=<) :: Monad m => (b -> m c) -> (a -> m b) -> a -> m c

(<$!>) :: Monad m => (a -> b) -> m a -> m b infixl 4 Source #

Strict version of <$>.

Since: base-4.8.0.0

forM :: (Traversable t, Monad m) => t a -> (a -> m b) -> m (t b) Source #

forM is mapM with its arguments flipped. For a version that ignores the results see forM_.

sequence_ :: (Foldable t, Monad m) => t (m a) -> m () Source #

Evaluate each monadic action in the structure from left to right, and ignore the results. For a version that doesn't ignore the results see sequence.

sequence_ is just like sequenceA_, but specialised to monadic actions.

msum :: (Foldable t, MonadPlus m) => t (m a) -> m a Source #

The sum of a collection of actions, generalizing concat.

msum is just like asum, but specialised to MonadPlus.

mapM_ :: (Foldable t, Monad m) => (a -> m b) -> t a -> m () Source #

Map each element of a structure to a monadic action, evaluate these actions from left to right, and ignore the results. For a version that doesn't ignore the results see mapM.

mapM_ is just like traverse_, but specialised to monadic actions.

forM_ :: (Foldable t, Monad m) => t a -> (a -> m b) -> m () Source #

forM_ is mapM_ with its arguments flipped. For a version that doesn't ignore the results see forM.

forM_ is just like for_, but specialised to monadic actions.

void :: Functor f => f a -> f () Source #

void value discards or ignores the result of evaluation, such as the return value of an IO action.

Examples

Expand

Replace the contents of a Maybe Int with unit:

>>> void Nothing
Nothing
>>> void (Just 3)
Just ()

Replace the contents of an Either Int Int with unit, resulting in an Either Int ():

>>> void (Left 8675309)
Left 8675309
>>> void (Right 8675309)
Right ()

Replace every element of a list with unit:

>>> void [1,2,3]
[(),(),()]

Replace the second element of a pair with unit:

>>> void (1,2)
(1,())

Discard the result of an IO action:

>>> mapM print [1,2]
1
2
[(),()]
>>> void $ mapM print [1,2]
1
2

class (Alternative m, Monad m) => MonadPlus (m :: Type -> Type) where Source #

Monads that also support choice and failure.

Minimal complete definition

Nothing

Methods

mzero :: m a Source #

The identity of mplus. It should also satisfy the equations

mzero >>= f  =  mzero
v >> mzero   =  mzero

The default definition is

mzero = empty

mplus :: m a -> m a -> m a Source #

An associative operation. The default definition is

mplus = (<|>)

Instances

Instances details
MonadPlus P

Since: base-2.1

Instance details

Defined in Text.ParserCombinators.ReadP

Methods

mzero :: P a Source #

mplus :: P a -> P a -> P a Source #

MonadPlus ReadP

Since: base-2.1

Instance details

Defined in Text.ParserCombinators.ReadP

Methods

mzero :: ReadP a Source #

mplus :: ReadP a -> ReadP a -> ReadP a Source #

MonadPlus Seq 
Instance details

Defined in Data.Sequence.Internal

Methods

mzero :: Seq a Source #

mplus :: Seq a -> Seq a -> Seq a Source #

MonadPlus IO

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

mzero :: IO a Source #

mplus :: IO a -> IO a -> IO a Source #

MonadPlus Array 
Instance details

Defined in Data.Primitive.Array

Methods

mzero :: Array a Source #

mplus :: Array a -> Array a -> Array a Source #

MonadPlus SmallArray 
Instance details

Defined in Data.Primitive.SmallArray

Methods

mzero :: SmallArray a Source #

mplus :: SmallArray a -> SmallArray a -> SmallArray a Source #

MonadPlus Vector 
Instance details

Defined in Data.Vector

Methods

mzero :: Vector a Source #

mplus :: Vector a -> Vector a -> Vector a Source #

MonadPlus Maybe

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

mzero :: Maybe a Source #

mplus :: Maybe a -> Maybe a -> Maybe a Source #

MonadPlus []

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

mzero :: [a] Source #

mplus :: [a] -> [a] -> [a] Source #

(ArrowApply a, ArrowPlus a) => MonadPlus (ArrowMonad a)

Since: base-4.6.0.0

Instance details

Defined in Control.Arrow

Methods

mzero :: ArrowMonad a a0 Source #

mplus :: ArrowMonad a a0 -> ArrowMonad a a0 -> ArrowMonad a a0 Source #

MonadPlus (Proxy :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Proxy

Methods

mzero :: Proxy a Source #

mplus :: Proxy a -> Proxy a -> Proxy a Source #

MonadPlus (U1 :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

mzero :: U1 a Source #

mplus :: U1 a -> U1 a -> U1 a Source #

MonadPlus m => MonadPlus (Kleisli m a)

Since: base-4.14.0.0

Instance details

Defined in Control.Arrow

Methods

mzero :: Kleisli m a a0 Source #

mplus :: Kleisli m a a0 -> Kleisli m a a0 -> Kleisli m a a0 Source #

MonadPlus f => MonadPlus (Ap f)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

mzero :: Ap f a Source #

mplus :: Ap f a -> Ap f a -> Ap f a Source #

MonadPlus f => MonadPlus (Alt f)

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

mzero :: Alt f a Source #

mplus :: Alt f a -> Alt f a -> Alt f a Source #

MonadPlus f => MonadPlus (Rec1 f)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

mzero :: Rec1 f a Source #

mplus :: Rec1 f a -> Rec1 f a -> Rec1 f a Source #

(Monad m, Error e) => MonadPlus (ErrorT e m) 
Instance details

Defined in Control.Monad.Trans.Error

Methods

mzero :: ErrorT e m a Source #

mplus :: ErrorT e m a -> ErrorT e m a -> ErrorT e m a Source #

(MonadPlus f, MonadPlus g) => MonadPlus (f :*: g)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

mzero :: (f :*: g) a Source #

mplus :: (f :*: g) a -> (f :*: g) a -> (f :*: g) a Source #

MonadPlus f => MonadPlus (M1 i c f)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

mzero :: M1 i c f a Source #

mplus :: M1 i c f a -> M1 i c f a -> M1 i c f a Source #

when :: Applicative f => Bool -> f () -> f () Source #

Conditional execution of Applicative expressions. For example,

when debug (putStrLn "Debugging")

will output the string Debugging if the Boolean value debug is True, and otherwise do nothing.

liftM5 :: Monad m => (a1 -> a2 -> a3 -> a4 -> a5 -> r) -> m a1 -> m a2 -> m a3 -> m a4 -> m a5 -> m r Source #

Promote a function to a monad, scanning the monadic arguments from left to right (cf. liftM2).

liftM4 :: Monad m => (a1 -> a2 -> a3 -> a4 -> r) -> m a1 -> m a2 -> m a3 -> m a4 -> m r Source #

Promote a function to a monad, scanning the monadic arguments from left to right (cf. liftM2).

liftM3 :: Monad m => (a1 -> a2 -> a3 -> r) -> m a1 -> m a2 -> m a3 -> m r Source #

Promote a function to a monad, scanning the monadic arguments from left to right (cf. liftM2).

liftM2 :: Monad m => (a1 -> a2 -> r) -> m a1 -> m a2 -> m r Source #

Promote a function to a monad, scanning the monadic arguments from left to right. For example,

liftM2 (+) [0,1] [0,2] = [0,2,1,3]
liftM2 (+) (Just 1) Nothing = Nothing

liftM :: Monad m => (a1 -> r) -> m a1 -> m r Source #

Promote a function to a monad.

ap :: Monad m => m (a -> b) -> m a -> m b Source #

In many situations, the liftM operations can be replaced by uses of ap, which promotes function application.

return f `ap` x1 `ap` ... `ap` xn

is equivalent to

liftMn f x1 x2 ... xn

(=<<) :: Monad m => (a -> m b) -> m a -> m b infixr 1 Source #

Same as >>=, but with the arguments interchanged.

Folds and traversals

class Foldable (t :: Type -> Type) where Source #

The Foldable class represents data structures that can be reduced to a summary value one element at a time. Strict left-associative folds are a good fit for space-efficient reduction, while lazy right-associative folds are a good fit for corecursive iteration, or for folds that short-circuit after processing an initial subsequence of the structure's elements.

Instances can be derived automatically by enabling the DeriveFoldable extension. For example, a derived instance for a binary tree might be:

{-# LANGUAGE DeriveFoldable #-}
data Tree a = Empty
            | Leaf a
            | Node (Tree a) a (Tree a)
    deriving Foldable

A more detailed description can be found in the Overview section of Data.Foldable.

For the class laws see the Laws section of Data.Foldable.

Minimal complete definition

foldMap | foldr

Methods

foldMap :: Monoid m => (a -> m) -> t a -> m Source #

Map each element of the structure into a monoid, and combine the results with (<>). This fold is right-associative and lazy in the accumulator. For strict left-associative folds consider foldMap' instead.

Examples

Expand

Basic usage:

>>> foldMap Sum [1, 3, 5]
Sum {getSum = 9}
>>> foldMap Product [1, 3, 5]
Product {getProduct = 15}
>>> foldMap (replicate 3) [1, 2, 3]
[1,1,1,2,2,2,3,3,3]

When a Monoid's (<>) is lazy in its second argument, foldMap can return a result even from an unbounded structure. For example, lazy accumulation enables Data.ByteString.Builder to efficiently serialise large data structures and produce the output incrementally:

>>> import qualified Data.ByteString.Lazy as L
>>> import qualified Data.ByteString.Builder as B
>>> let bld :: Int -> B.Builder; bld i = B.intDec i <> B.word8 0x20
>>> let lbs = B.toLazyByteString $ foldMap bld [0..]
>>> L.take 64 lbs
"0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24"

foldr :: (a -> b -> b) -> b -> t a -> b Source #

Right-associative fold of a structure, lazy in the accumulator.

In the case of lists, foldr, when applied to a binary operator, a starting value (typically the right-identity of the operator), and a list, reduces the list using the binary operator, from right to left:

foldr f z [x1, x2, ..., xn] == x1 `f` (x2 `f` ... (xn `f` z)...)

Note that since the head of the resulting expression is produced by an application of the operator to the first element of the list, given an operator lazy in its right argument, foldr can produce a terminating expression from an unbounded list.

For a general Foldable structure this should be semantically identical to,

foldr f z = foldr f z . toList

Examples

Expand

Basic usage:

>>> foldr (||) False [False, True, False]
True
>>> foldr (||) False []
False
>>> foldr (\c acc -> acc ++ [c]) "foo" ['a', 'b', 'c', 'd']
"foodcba"
Infinite structures

⚠️ Applying foldr to infinite structures usually doesn't terminate.

It may still terminate under one of the following conditions:

  • the folding function is short-circuiting
  • the folding function is lazy on its second argument
Short-circuiting

(||) short-circuits on True values, so the following terminates because there is a True value finitely far from the left side:

>>> foldr (||) False (True : repeat False)
True

But the following doesn't terminate:

>>> foldr (||) False (repeat False ++ [True])
* Hangs forever *
Laziness in the second argument

Applying foldr to infinite structures terminates when the operator is lazy in its second argument (the initial accumulator is never used in this case, and so could be left undefined, but [] is more clear):

>>> take 5 $ foldr (\i acc -> i : fmap (+3) acc) [] (repeat 1)
[1,4,7,10,13]

foldr' :: (a -> b -> b) -> b -> t a -> b Source #

Right-associative fold of a structure, strict in the accumulator. This is rarely what you want.

Since: base-4.6.0.0

foldl :: (b -> a -> b) -> b -> t a -> b Source #

Left-associative fold of a structure, lazy in the accumulator. This is rarely what you want, but can work well for structures with efficient right-to-left sequencing and an operator that is lazy in its left argument.

In the case of lists, foldl, when applied to a binary operator, a starting value (typically the left-identity of the operator), and a list, reduces the list using the binary operator, from left to right:

foldl f z [x1, x2, ..., xn] == (...((z `f` x1) `f` x2) `f`...) `f` xn

Note that to produce the outermost application of the operator the entire input list must be traversed. Like all left-associative folds, foldl will diverge if given an infinite list.

If you want an efficient strict left-fold, you probably want to use foldl' instead of foldl. The reason for this is that the latter does not force the inner results (e.g. z `f` x1 in the above example) before applying them to the operator (e.g. to (`f` x2)). This results in a thunk chain \(\mathcal{O}(n)\) elements long, which then must be evaluated from the outside-in.

For a general Foldable structure this should be semantically identical to:

foldl f z = foldl f z . toList

Examples

Expand

The first example is a strict fold, which in practice is best performed with foldl'.

>>> foldl (+) 42 [1,2,3,4]
52

Though the result below is lazy, the input is reversed before prepending it to the initial accumulator, so corecursion begins only after traversing the entire input string.

>>> foldl (\acc c -> c : acc) "abcd" "efgh"
"hgfeabcd"

A left fold of a structure that is infinite on the right cannot terminate, even when for any finite input the fold just returns the initial accumulator:

>>> foldl (\a _ -> a) 0 $ repeat 1
* Hangs forever *

foldl' :: (b -> a -> b) -> b -> t a -> b Source #

Left-associative fold of a structure but with strict application of the operator.

This ensures that each step of the fold is forced to Weak Head Normal Form before being applied, avoiding the collection of thunks that would otherwise occur. This is often what you want to strictly reduce a finite structure to a single strict result (e.g. sum).

For a general Foldable structure this should be semantically identical to,

foldl' f z = foldl' f z . toList

Since: base-4.6.0.0

foldr1 :: (a -> a -> a) -> t a -> a Source #

A variant of foldr that has no base case, and thus may only be applied to non-empty structures.

This function is non-total and will raise a runtime exception if the structure happens to be empty.

Examples

Expand

Basic usage:

>>> foldr1 (+) [1..4]
10
>>> foldr1 (+) []
Exception: Prelude.foldr1: empty list
>>> foldr1 (+) Nothing
*** Exception: foldr1: empty structure
>>> foldr1 (-) [1..4]
-2
>>> foldr1 (&&) [True, False, True, True]
False
>>> foldr1 (||) [False, False, True, True]
True
>>> foldr1 (+) [1..]
* Hangs forever *

foldl1 :: (a -> a -> a) -> t a -> a Source #

A variant of foldl that has no base case, and thus may only be applied to non-empty structures.

This function is non-total and will raise a runtime exception if the structure happens to be empty.

foldl1 f = foldl1 f . toList

Examples

Expand

Basic usage:

>>> foldl1 (+) [1..4]
10
>>> foldl1 (+) []
*** Exception: Prelude.foldl1: empty list
>>> foldl1 (+) Nothing
*** Exception: foldl1: empty structure
>>> foldl1 (-) [1..4]
-8
>>> foldl1 (&&) [True, False, True, True]
False
>>> foldl1 (||) [False, False, True, True]
True
>>> foldl1 (+) [1..]
* Hangs forever *

Instances

Instances details
Foldable ZipList

Since: base-4.9.0.0

Instance details

Defined in Control.Applicative

Methods

fold :: Monoid m => ZipList m -> m Source #

foldMap :: Monoid m => (a -> m) -> ZipList a -> m Source #

foldMap' :: Monoid m => (a -> m) -> ZipList a -> m Source #

foldr :: (a -> b -> b) -> b -> ZipList a -> b Source #

foldr' :: (a -> b -> b) -> b -> ZipList a -> b Source #

foldl :: (b -> a -> b) -> b -> ZipList a -> b Source #

foldl' :: (b -> a -> b) -> b -> ZipList a -> b Source #

foldr1 :: (a -> a -> a) -> ZipList a -> a Source #

foldl1 :: (a -> a -> a) -> ZipList a -> a Source #

toList :: ZipList a -> [a] Source #

null :: ZipList a -> Bool Source #

length :: ZipList a -> Int Source #

elem :: Eq a => a -> ZipList a -> Bool Source #

maximum :: Ord a => ZipList a -> a Source #

minimum :: Ord a => ZipList a -> a Source #

sum :: Num a => ZipList a -> a Source #

product :: Num a => ZipList a -> a Source #

Foldable Identity

Since: base-4.8.0.0

Instance details

Defined in Data.Functor.Identity

Methods

fold :: Monoid m => Identity m -> m Source #

foldMap :: Monoid m => (a -> m) -> Identity a -> m Source #

foldMap' :: Monoid m => (a -> m) -> Identity a -> m Source #

foldr :: (a -> b -> b) -> b -> Identity a -> b Source #

foldr' :: (a -> b -> b) -> b -> Identity a -> b Source #

foldl :: (b -> a -> b) -> b -> Identity a -> b Source #

foldl' :: (b -> a -> b) -> b -> Identity a -> b Source #

foldr1 :: (a -> a -> a) -> Identity a -> a Source #

foldl1 :: (a -> a -> a) -> Identity a -> a Source #

toList :: Identity a -> [a] Source #

null :: Identity a -> Bool Source #

length :: Identity a -> Int Source #

elem :: Eq a => a -> Identity a -> Bool Source #

maximum :: Ord a => Identity a -> a Source #

minimum :: Ord a => Identity a -> a Source #

sum :: Num a => Identity a -> a Source #

product :: Num a => Identity a -> a Source #

Foldable First

Since: base-4.8.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => First m -> m Source #

foldMap :: Monoid m => (a -> m) -> First a -> m Source #

foldMap' :: Monoid m => (a -> m) -> First a -> m Source #

foldr :: (a -> b -> b) -> b -> First a -> b Source #

foldr' :: (a -> b -> b) -> b -> First a -> b Source #

foldl :: (b -> a -> b) -> b -> First a -> b Source #

foldl' :: (b -> a -> b) -> b -> First a -> b Source #

foldr1 :: (a -> a -> a) -> First a -> a Source #

foldl1 :: (a -> a -> a) -> First a -> a Source #

toList :: First a -> [a] Source #

null :: First a -> Bool Source #

length :: First a -> Int Source #

elem :: Eq a => a -> First a -> Bool Source #

maximum :: Ord a => First a -> a Source #

minimum :: Ord a => First a -> a Source #

sum :: Num a => First a -> a Source #

product :: Num a => First a -> a Source #

Foldable Last

Since: base-4.8.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => Last m -> m Source #

foldMap :: Monoid m => (a -> m) -> Last a -> m Source #

foldMap' :: Monoid m => (a -> m) -> Last a -> m Source #

foldr :: (a -> b -> b) -> b -> Last a -> b Source #

foldr' :: (a -> b -> b) -> b -> Last a -> b Source #

foldl :: (b -> a -> b) -> b -> Last a -> b Source #

foldl' :: (b -> a -> b) -> b -> Last a -> b Source #

foldr1 :: (a -> a -> a) -> Last a -> a Source #

foldl1 :: (a -> a -> a) -> Last a -> a Source #

toList :: Last a -> [a] Source #

null :: Last a -> Bool Source #

length :: Last a -> Int Source #

elem :: Eq a => a -> Last a -> Bool Source #

maximum :: Ord a => Last a -> a Source #

minimum :: Ord a => Last a -> a Source #

sum :: Num a => Last a -> a Source #

product :: Num a => Last a -> a Source #

Foldable Down

Since: base-4.12.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => Down m -> m Source #

foldMap :: Monoid m => (a -> m) -> Down a -> m Source #

foldMap' :: Monoid m => (a -> m) -> Down a -> m Source #

foldr :: (a -> b -> b) -> b -> Down a -> b Source #

foldr' :: (a -> b -> b) -> b -> Down a -> b Source #

foldl :: (b -> a -> b) -> b -> Down a -> b Source #

foldl' :: (b -> a -> b) -> b -> Down a -> b Source #

foldr1 :: (a -> a -> a) -> Down a -> a Source #

foldl1 :: (a -> a -> a) -> Down a -> a Source #

toList :: Down a -> [a] Source #

null :: Down a -> Bool Source #

length :: Down a -> Int Source #

elem :: Eq a => a -> Down a -> Bool Source #

maximum :: Ord a => Down a -> a Source #

minimum :: Ord a => Down a -> a Source #

sum :: Num a => Down a -> a Source #

product :: Num a => Down a -> a Source #

Foldable Dual

Since: base-4.8.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => Dual m -> m Source #

foldMap :: Monoid m => (a -> m) -> Dual a -> m Source #

foldMap' :: Monoid m => (a -> m) -> Dual a -> m Source #

foldr :: (a -> b -> b) -> b -> Dual a -> b Source #

foldr' :: (a -> b -> b) -> b -> Dual a -> b Source #

foldl :: (b -> a -> b) -> b -> Dual a -> b Source #

foldl' :: (b -> a -> b) -> b -> Dual a -> b Source #

foldr1 :: (a -> a -> a) -> Dual a -> a Source #

foldl1 :: (a -> a -> a) -> Dual a -> a Source #

toList :: Dual a -> [a] Source #

null :: Dual a -> Bool Source #

length :: Dual a -> Int Source #

elem :: Eq a => a -> Dual a -> Bool Source #

maximum :: Ord a => Dual a -> a Source #

minimum :: Ord a => Dual a -> a Source #

sum :: Num a => Dual a -> a Source #

product :: Num a => Dual a -> a Source #

Foldable Product

Since: base-4.8.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => Product m -> m Source #

foldMap :: Monoid m => (a -> m) -> Product a -> m Source #

foldMap' :: Monoid m => (a -> m) -> Product a -> m Source #

foldr :: (a -> b -> b) -> b -> Product a -> b Source #

foldr' :: (a -> b -> b) -> b -> Product a -> b Source #

foldl :: (b -> a -> b) -> b -> Product a -> b Source #

foldl' :: (b -> a -> b) -> b -> Product a -> b Source #

foldr1 :: (a -> a -> a) -> Product a -> a Source #

foldl1 :: (a -> a -> a) -> Product a -> a Source #

toList :: Product a -> [a] Source #

null :: Product a -> Bool Source #

length :: Product a -> Int Source #

elem :: Eq a => a -> Product a -> Bool Source #

maximum :: Ord a => Product a -> a Source #

minimum :: Ord a => Product a -> a Source #

sum :: Num a => Product a -> a Source #

product :: Num a => Product a -> a Source #

Foldable Sum

Since: base-4.8.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => Sum m -> m Source #

foldMap :: Monoid m => (a -> m) -> Sum a -> m Source #

foldMap' :: Monoid m => (a -> m) -> Sum a -> m Source #

foldr :: (a -> b -> b) -> b -> Sum a -> b Source #

foldr' :: (a -> b -> b) -> b -> Sum a -> b Source #

foldl :: (b -> a -> b) -> b -> Sum a -> b Source #

foldl' :: (b -> a -> b) -> b -> Sum a -> b Source #

foldr1 :: (a -> a -> a) -> Sum a -> a Source #

foldl1 :: (a -> a -> a) -> Sum a -> a Source #

toList :: Sum a -> [a] Source #

null :: Sum a -> Bool Source #

length :: Sum a -> Int Source #

elem :: Eq a => a -> Sum a -> Bool Source #

maximum :: Ord a => Sum a -> a Source #

minimum :: Ord a => Sum a -> a Source #

sum :: Num a => Sum a -> a Source #

product :: Num a => Sum a -> a Source #

Foldable NonEmpty

Since: base-4.9.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => NonEmpty m -> m Source #

foldMap :: Monoid m => (a -> m) -> NonEmpty a -> m Source #

foldMap' :: Monoid m => (a -> m) -> NonEmpty a -> m Source #

foldr :: (a -> b -> b) -> b -> NonEmpty a -> b Source #

foldr' :: (a -> b -> b) -> b -> NonEmpty a -> b Source #

foldl :: (b -> a -> b) -> b -> NonEmpty a -> b Source #

foldl' :: (b -> a -> b) -> b -> NonEmpty a -> b Source #

foldr1 :: (a -> a -> a) -> NonEmpty a -> a Source #

foldl1 :: (a -> a -> a) -> NonEmpty a -> a Source #

toList :: NonEmpty a -> [a] Source #

null :: NonEmpty a -> Bool Source #

length :: NonEmpty a -> Int Source #

elem :: Eq a => a -> NonEmpty a -> Bool Source #

maximum :: Ord a => NonEmpty a -> a Source #

minimum :: Ord a => NonEmpty a -> a Source #

sum :: Num a => NonEmpty a -> a Source #

product :: Num a => NonEmpty a -> a Source #

Foldable Par1

Since: base-4.9.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => Par1 m -> m Source #

foldMap :: Monoid m => (a -> m) -> Par1 a -> m Source #

foldMap' :: Monoid m => (a -> m) -> Par1 a -> m Source #

foldr :: (a -> b -> b) -> b -> Par1 a -> b Source #

foldr' :: (a -> b -> b) -> b -> Par1 a -> b Source #

foldl :: (b -> a -> b) -> b -> Par1 a -> b Source #

foldl' :: (b -> a -> b) -> b -> Par1 a -> b Source #

foldr1 :: (a -> a -> a) -> Par1 a -> a Source #

foldl1 :: (a -> a -> a) -> Par1 a -> a Source #

toList :: Par1 a -> [a] Source #

null :: Par1 a -> Bool Source #

length :: Par1 a -> Int Source #

elem :: Eq a => a -> Par1 a -> Bool Source #

maximum :: Ord a => Par1 a -> a Source #

minimum :: Ord a => Par1 a -> a Source #

sum :: Num a => Par1 a -> a Source #

product :: Num a => Par1 a -> a Source #

Foldable IntMap

Folds in order of increasing key.

Instance details

Defined in Data.IntMap.Internal

Methods

fold :: Monoid m => IntMap m -> m Source #

foldMap :: Monoid m => (a -> m) -> IntMap a -> m Source #

foldMap' :: Monoid m => (a -> m) -> IntMap a -> m Source #

foldr :: (a -> b -> b) -> b -> IntMap a -> b Source #

foldr' :: (a -> b -> b) -> b -> IntMap a -> b Source #

foldl :: (b -> a -> b) -> b -> IntMap a -> b Source #

foldl' :: (b -> a -> b) -> b -> IntMap a -> b Source #

foldr1 :: (a -> a -> a) -> IntMap a -> a Source #

foldl1 :: (a -> a -> a) -> IntMap a -> a Source #

toList :: IntMap a -> [a] Source #

null :: IntMap a -> Bool Source #

length :: IntMap a -> Int Source #

elem :: Eq a => a -> IntMap a -> Bool Source #

maximum :: Ord a => IntMap a -> a Source #

minimum :: Ord a => IntMap a -> a Source #

sum :: Num a => IntMap a -> a Source #

product :: Num a => IntMap a -> a Source #

Foldable Digit 
Instance details

Defined in Data.Sequence.Internal

Methods

fold :: Monoid m => Digit m -> m Source #

foldMap :: Monoid m => (a -> m) -> Digit a -> m Source #

foldMap' :: Monoid m => (a -> m) -> Digit a -> m Source #

foldr :: (a -> b -> b) -> b -> Digit a -> b Source #

foldr' :: (a -> b -> b) -> b -> Digit a -> b Source #

foldl :: (b -> a -> b) -> b -> Digit a -> b Source #

foldl' :: (b -> a -> b) -> b -> Digit a -> b Source #

foldr1 :: (a -> a -> a) -> Digit a -> a Source #

foldl1 :: (a -> a -> a) -> Digit a -> a Source #

toList :: Digit a -> [a] Source #

null :: Digit a -> Bool Source #

length :: Digit a -> Int Source #

elem :: Eq a => a -> Digit a -> Bool Source #

maximum :: Ord a => Digit a -> a Source #

minimum :: Ord a => Digit a -> a Source #

sum :: Num a => Digit a -> a Source #

product :: Num a => Digit a -> a Source #

Foldable Elem 
Instance details

Defined in Data.Sequence.Internal

Methods

fold :: Monoid m => Elem m -> m Source #

foldMap :: Monoid m => (a -> m) -> Elem a -> m Source #

foldMap' :: Monoid m => (a -> m) -> Elem a -> m Source #

foldr :: (a -> b -> b) -> b -> Elem a -> b Source #

foldr' :: (a -> b -> b) -> b -> Elem a -> b Source #

foldl :: (b -> a -> b) -> b -> Elem a -> b Source #

foldl' :: (b -> a -> b) -> b -> Elem a -> b Source #

foldr1 :: (a -> a -> a) -> Elem a -> a Source #

foldl1 :: (a -> a -> a) -> Elem a -> a Source #

toList :: Elem a -> [a] Source #

null :: Elem a -> Bool Source #

length :: Elem a -> Int Source #

elem :: Eq a => a -> Elem a -> Bool Source #

maximum :: Ord a => Elem a -> a Source #

minimum :: Ord a => Elem a -> a Source #

sum :: Num a => Elem a -> a Source #

product :: Num a => Elem a -> a Source #

Foldable FingerTree 
Instance details

Defined in Data.Sequence.Internal

Methods

fold :: Monoid m => FingerTree m -> m Source #

foldMap :: Monoid m => (a -> m) -> FingerTree a -> m Source #

foldMap' :: Monoid m => (a -> m) -> FingerTree a -> m Source #

foldr :: (a -> b -> b) -> b -> FingerTree a -> b Source #

foldr' :: (a -> b -> b) -> b -> FingerTree a -> b Source #

foldl :: (b -> a -> b) -> b -> FingerTree a -> b Source #

foldl' :: (b -> a -> b) -> b -> FingerTree a -> b Source #

foldr1 :: (a -> a -> a) -> FingerTree a -> a Source #

foldl1 :: (a -> a -> a) -> FingerTree a -> a Source #

toList :: FingerTree a -> [a] Source #

null :: FingerTree a -> Bool Source #

length :: FingerTree a -> Int Source #

elem :: Eq a => a -> FingerTree a -> Bool Source #

maximum :: Ord a => FingerTree a -> a Source #

minimum :: Ord a => FingerTree a -> a Source #

sum :: Num a => FingerTree a -> a Source #

product :: Num a => FingerTree a -> a Source #

Foldable Node 
Instance details

Defined in Data.Sequence.Internal

Methods

fold :: Monoid m => Node m -> m Source #

foldMap :: Monoid m => (a -> m) -> Node a -> m Source #

foldMap' :: Monoid m => (a -> m) -> Node a -> m Source #

foldr :: (a -> b -> b) -> b -> Node a -> b Source #

foldr' :: (a -> b -> b) -> b -> Node a -> b Source #

foldl :: (b -> a -> b) -> b -> Node a -> b Source #

foldl' :: (b -> a -> b) -> b -> Node a -> b Source #

foldr1 :: (a -> a -> a) -> Node a -> a Source #

foldl1 :: (a -> a -> a) -> Node a -> a Source #

toList :: Node a -> [a] Source #

null :: Node a -> Bool Source #

length :: Node a -> Int Source #

elem :: Eq a => a -> Node a -> Bool Source #

maximum :: Ord a => Node a -> a Source #

minimum :: Ord a => Node a -> a Source #

sum :: Num a => Node a -> a Source #

product :: Num a => Node a -> a Source #

Foldable Seq 
Instance details

Defined in Data.Sequence.Internal

Methods

fold :: Monoid m => Seq m -> m Source #

foldMap :: Monoid m => (a -> m) -> Seq a -> m Source #

foldMap' :: Monoid m => (a -> m) -> Seq a -> m Source #

foldr :: (a -> b -> b) -> b -> Seq a -> b Source #

foldr' :: (a -> b -> b) -> b -> Seq a -> b Source #

foldl :: (b -> a -> b) -> b -> Seq a -> b Source #

foldl' :: (b -> a -> b) -> b -> Seq a -> b Source #

foldr1 :: (a -> a -> a) -> Seq a -> a Source #

foldl1 :: (a -> a -> a) -> Seq a -> a Source #

toList :: Seq a -> [a] Source #

null :: Seq a -> Bool Source #

length :: Seq a -> Int Source #

elem :: Eq a => a -> Seq a -> Bool Source #

maximum :: Ord a => Seq a -> a Source #

minimum :: Ord a => Seq a -> a Source #

sum :: Num a => Seq a -> a Source #

product :: Num a => Seq a -> a Source #

Foldable ViewL 
Instance details

Defined in Data.Sequence.Internal

Methods

fold :: Monoid m => ViewL m -> m Source #

foldMap :: Monoid m => (a -> m) -> ViewL a -> m Source #

foldMap' :: Monoid m => (a -> m) -> ViewL a -> m Source #

foldr :: (a -> b -> b) -> b -> ViewL a -> b Source #

foldr' :: (a -> b -> b) -> b -> ViewL a -> b Source #

foldl :: (b -> a -> b) -> b -> ViewL a -> b Source #

foldl' :: (b -> a -> b) -> b -> ViewL a -> b Source #

foldr1 :: (a -> a -> a) -> ViewL a -> a Source #

foldl1 :: (a -> a -> a) -> ViewL a -> a Source #

toList :: ViewL a -> [a] Source #

null :: ViewL a -> Bool Source #

length :: ViewL a -> Int Source #

elem :: Eq a => a -> ViewL a -> Bool Source #

maximum :: Ord a => ViewL a -> a Source #

minimum :: Ord a => ViewL a -> a Source #

sum :: Num a => ViewL a -> a Source #

product :: Num a => ViewL a -> a Source #

Foldable ViewR 
Instance details

Defined in Data.Sequence.Internal

Methods

fold :: Monoid m => ViewR m -> m Source #

foldMap :: Monoid m => (a -> m) -> ViewR a -> m Source #

foldMap' :: Monoid m => (a -> m) -> ViewR a -> m Source #

foldr :: (a -> b -> b) -> b -> ViewR a -> b Source #

foldr' :: (a -> b -> b) -> b -> ViewR a -> b Source #

foldl :: (b -> a -> b) -> b -> ViewR a -> b Source #

foldl' :: (b -> a -> b) -> b -> ViewR a -> b Source #

foldr1 :: (a -> a -> a) -> ViewR a -> a Source #

foldl1 :: (a -> a -> a) -> ViewR a -> a Source #

toList :: ViewR a -> [a] Source #

null :: ViewR a -> Bool Source #

length :: ViewR a -> Int Source #

elem :: Eq a => a -> ViewR a -> Bool Source #

maximum :: Ord a => ViewR a -> a Source #

minimum :: Ord a => ViewR a -> a Source #

sum :: Num a => ViewR a -> a Source #

product :: Num a => ViewR a -> a Source #

Foldable Set

Folds in order of increasing key.

Instance details

Defined in Data.Set.Internal

Methods

fold :: Monoid m => Set m -> m Source #

foldMap :: Monoid m => (a -> m) -> Set a -> m Source #

foldMap' :: Monoid m => (a -> m) -> Set a -> m Source #

foldr :: (a -> b -> b) -> b -> Set a -> b Source #

foldr' :: (a -> b -> b) -> b -> Set a -> b Source #

foldl :: (b -> a -> b) -> b -> Set a -> b Source #

foldl' :: (b -> a -> b) -> b -> Set a -> b Source #

foldr1 :: (a -> a -> a) -> Set a -> a Source #

foldl1 :: (a -> a -> a) -> Set a -> a Source #

toList :: Set a -> [a] Source #

null :: Set a -> Bool Source #

length :: Set a -> Int Source #

elem :: Eq a => a -> Set a -> Bool Source #

maximum :: Ord a => Set a -> a Source #

minimum :: Ord a => Set a -> a Source #

sum :: Num a => Set a -> a Source #

product :: Num a => Set a -> a Source #

Foldable Tree 
Instance details

Defined in Data.Tree

Methods

fold :: Monoid m => Tree m -> m Source #

foldMap :: Monoid m => (a -> m) -> Tree a -> m Source #

foldMap' :: Monoid m => (a -> m) -> Tree a -> m Source #

foldr :: (a -> b -> b) -> b -> Tree a -> b Source #

foldr' :: (a -> b -> b) -> b -> Tree a -> b Source #

foldl :: (b -> a -> b) -> b -> Tree a -> b Source #

foldl' :: (b -> a -> b) -> b -> Tree a -> b Source #

foldr1 :: (a -> a -> a) -> Tree a -> a Source #

foldl1 :: (a -> a -> a) -> Tree a -> a Source #

toList :: Tree a -> [a] Source #

null :: Tree a -> Bool Source #

length :: Tree a -> Int Source #

elem :: Eq a => a -> Tree a -> Bool Source #

maximum :: Ord a => Tree a -> a Source #

minimum :: Ord a => Tree a -> a Source #

sum :: Num a => Tree a -> a Source #

product :: Num a => Tree a -> a Source #

Foldable Hashed 
Instance details

Defined in Data.Hashable.Class

Methods

fold :: Monoid m => Hashed m -> m Source #

foldMap :: Monoid m => (a -> m) -> Hashed a -> m Source #

foldMap' :: Monoid m => (a -> m) -> Hashed a -> m Source #

foldr :: (a -> b -> b) -> b -> Hashed a -> b Source #

foldr' :: (a -> b -> b) -> b -> Hashed a -> b Source #

foldl :: (b -> a -> b) -> b -> Hashed a -> b Source #

foldl' :: (b -> a -> b) -> b -> Hashed a -> b Source #

foldr1 :: (a -> a -> a) -> Hashed a -> a Source #

foldl1 :: (a -> a -> a) -> Hashed a -> a Source #

toList :: Hashed a -> [a] Source #

null :: Hashed a -> Bool Source #

length :: Hashed a -> Int Source #

elem :: Eq a => a -> Hashed a -> Bool Source #

maximum :: Ord a => Hashed a -> a Source #

minimum :: Ord a => Hashed a -> a Source #

sum :: Num a => Hashed a -> a Source #

product :: Num a => Hashed a -> a Source #

Foldable Array 
Instance details

Defined in Data.Primitive.Array

Methods

fold :: Monoid m => Array m -> m Source #

foldMap :: Monoid m => (a -> m) -> Array a -> m Source #

foldMap' :: Monoid m => (a -> m) -> Array a -> m Source #

foldr :: (a -> b -> b) -> b -> Array a -> b Source #

foldr' :: (a -> b -> b) -> b -> Array a -> b Source #

foldl :: (b -> a -> b) -> b -> Array a -> b Source #

foldl' :: (b -> a -> b) -> b -> Array a -> b Source #

foldr1 :: (a -> a -> a) -> Array a -> a Source #

foldl1 :: (a -> a -> a) -> Array a -> a Source #

toList :: Array a -> [a] Source #

null :: Array a -> Bool Source #

length :: Array a -> Int Source #

elem :: Eq a => a -> Array a -> Bool Source #

maximum :: Ord a => Array a -> a Source #

minimum :: Ord a => Array a -> a Source #

sum :: Num a => Array a -> a Source #

product :: Num a => Array a -> a Source #

Foldable SmallArray 
Instance details

Defined in Data.Primitive.SmallArray

Methods

fold :: Monoid m => SmallArray m -> m Source #

foldMap :: Monoid m => (a -> m) -> SmallArray a -> m Source #

foldMap' :: Monoid m => (a -> m) -> SmallArray a -> m Source #

foldr :: (a -> b -> b) -> b -> SmallArray a -> b Source #

foldr' :: (a -> b -> b) -> b -> SmallArray a -> b Source #

foldl :: (b -> a -> b) -> b -> SmallArray a -> b Source #

foldl' :: (b -> a -> b) -> b -> SmallArray a -> b Source #

foldr1 :: (a -> a -> a) -> SmallArray a -> a Source #

foldl1 :: (a -> a -> a) -> SmallArray a -> a Source #

toList :: SmallArray a -> [a] Source #

null :: SmallArray a -> Bool Source #

length :: SmallArray a -> Int Source #

elem :: Eq a => a -> SmallArray a -> Bool Source #

maximum :: Ord a => SmallArray a -> a Source #

minimum :: Ord a => SmallArray a -> a Source #

sum :: Num a => SmallArray a -> a Source #

product :: Num a => SmallArray a -> a Source #

Foldable HashSet 
Instance details

Defined in Data.HashSet.Internal

Methods

fold :: Monoid m => HashSet m -> m Source #

foldMap :: Monoid m => (a -> m) -> HashSet a -> m Source #

foldMap' :: Monoid m => (a -> m) -> HashSet a -> m Source #

foldr :: (a -> b -> b) -> b -> HashSet a -> b Source #

foldr' :: (a -> b -> b) -> b -> HashSet a -> b Source #

foldl :: (b -> a -> b) -> b -> HashSet a -> b Source #

foldl' :: (b -> a -> b) -> b -> HashSet a -> b Source #

foldr1 :: (a -> a -> a) -> HashSet a -> a Source #

foldl1 :: (a -> a -> a) -> HashSet a -> a Source #

toList :: HashSet a -> [a] Source #

null :: HashSet a -> Bool Source #

length :: HashSet a -> Int Source #

elem :: Eq a => a -> HashSet a -> Bool Source #

maximum :: Ord a => HashSet a -> a Source #

minimum :: Ord a => HashSet a -> a Source #

sum :: Num a => HashSet a -> a Source #

product :: Num a => HashSet a -> a Source #

Foldable Vector 
Instance details

Defined in Data.Vector

Methods

fold :: Monoid m => Vector m -> m Source #

foldMap :: Monoid m => (a -> m) -> Vector a -> m Source #

foldMap' :: Monoid m => (a -> m) -> Vector a -> m Source #

foldr :: (a -> b -> b) -> b -> Vector a -> b Source #

foldr' :: (a -> b -> b) -> b -> Vector a -> b Source #

foldl :: (b -> a -> b) -> b -> Vector a -> b Source #

foldl' :: (b -> a -> b) -> b -> Vector a -> b Source #

foldr1 :: (a -> a -> a) -> Vector a -> a Source #

foldl1 :: (a -> a -> a) -> Vector a -> a Source #

toList :: Vector a -> [a] Source #

null :: Vector a -> Bool Source #

length :: Vector a -> Int Source #

elem :: Eq a => a -> Vector a -> Bool Source #

maximum :: Ord a => Vector a -> a Source #

minimum :: Ord a => Vector a -> a Source #

sum :: Num a => Vector a -> a Source #

product :: Num a => Vector a -> a Source #

Foldable Maybe

Since: base-2.1

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => Maybe m -> m Source #

foldMap :: Monoid m => (a -> m) -> Maybe a -> m Source #

foldMap' :: Monoid m => (a -> m) -> Maybe a -> m Source #

foldr :: (a -> b -> b) -> b -> Maybe a -> b Source #

foldr' :: (a -> b -> b) -> b -> Maybe a -> b Source #

foldl :: (b -> a -> b) -> b -> Maybe a -> b Source #

foldl' :: (b -> a -> b) -> b -> Maybe a -> b Source #

foldr1 :: (a -> a -> a) -> Maybe a -> a Source #

foldl1 :: (a -> a -> a) -> Maybe a -> a Source #

toList :: Maybe a -> [a] Source #

null :: Maybe a -> Bool Source #

length :: Maybe a -> Int Source #

elem :: Eq a => a -> Maybe a -> Bool Source #

maximum :: Ord a => Maybe a -> a Source #

minimum :: Ord a => Maybe a -> a Source #

sum :: Num a => Maybe a -> a Source #

product :: Num a => Maybe a -> a Source #

Foldable Solo

Since: base-4.15

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => Solo m -> m Source #

foldMap :: Monoid m => (a -> m) -> Solo a -> m Source #

foldMap' :: Monoid m => (a -> m) -> Solo a -> m Source #

foldr :: (a -> b -> b) -> b -> Solo a -> b Source #

foldr' :: (a -> b -> b) -> b -> Solo a -> b Source #

foldl :: (b -> a -> b) -> b -> Solo a -> b Source #

foldl' :: (b -> a -> b) -> b -> Solo a -> b Source #

foldr1 :: (a -> a -> a) -> Solo a -> a Source #

foldl1 :: (a -> a -> a) -> Solo a -> a Source #

toList :: Solo a -> [a] Source #

null :: Solo a -> Bool Source #

length :: Solo a -> Int Source #

elem :: Eq a => a -> Solo a -> Bool Source #

maximum :: Ord a => Solo a -> a Source #

minimum :: Ord a => Solo a -> a Source #

sum :: Num a => Solo a -> a Source #

product :: Num a => Solo a -> a Source #

Foldable []

Since: base-2.1

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => [m] -> m Source #

foldMap :: Monoid m => (a -> m) -> [a] -> m Source #

foldMap' :: Monoid m => (a -> m) -> [a] -> m Source #

foldr :: (a -> b -> b) -> b -> [a] -> b Source #

foldr' :: (a -> b -> b) -> b -> [a] -> b Source #

foldl :: (b -> a -> b) -> b -> [a] -> b Source #

foldl' :: (b -> a -> b) -> b -> [a] -> b Source #

foldr1 :: (a -> a -> a) -> [a] -> a Source #

foldl1 :: (a -> a -> a) -> [a] -> a Source #

toList :: [a] -> [a] Source #

null :: [a] -> Bool Source #

length :: [a] -> Int Source #

elem :: Eq a => a -> [a] -> Bool Source #

maximum :: Ord a => [a] -> a Source #

minimum :: Ord a => [a] -> a Source #

sum :: Num a => [a] -> a Source #

product :: Num a => [a] -> a Source #

Foldable (Either a)

Since: base-4.7.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => Either a m -> m Source #

foldMap :: Monoid m => (a0 -> m) -> Either a a0 -> m Source #

foldMap' :: Monoid m => (a0 -> m) -> Either a a0 -> m Source #

foldr :: (a0 -> b -> b) -> b -> Either a a0 -> b Source #

foldr' :: (a0 -> b -> b) -> b -> Either a a0 -> b Source #

foldl :: (b -> a0 -> b) -> b -> Either a a0 -> b Source #

foldl' :: (b -> a0 -> b) -> b -> Either a a0 -> b Source #

foldr1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 Source #

foldl1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 Source #

toList :: Either a a0 -> [a0] Source #

null :: Either a a0 -> Bool Source #

length :: Either a a0 -> Int Source #

elem :: Eq a0 => a0 -> Either a a0 -> Bool Source #

maximum :: Ord a0 => Either a a0 -> a0 Source #

minimum :: Ord a0 => Either a a0 -> a0 Source #

sum :: Num a0 => Either a a0 -> a0 Source #

product :: Num a0 => Either a a0 -> a0 Source #

Foldable (Proxy :: Type -> Type)

Since: base-4.7.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => Proxy m -> m Source #

foldMap :: Monoid m => (a -> m) -> Proxy a -> m Source #

foldMap' :: Monoid m => (a -> m) -> Proxy a -> m Source #

foldr :: (a -> b -> b) -> b -> Proxy a -> b Source #

foldr' :: (a -> b -> b) -> b -> Proxy a -> b Source #

foldl :: (b -> a -> b) -> b -> Proxy a -> b Source #

foldl' :: (b -> a -> b) -> b -> Proxy a -> b Source #

foldr1 :: (a -> a -> a) -> Proxy a -> a Source #

foldl1 :: (a -> a -> a) -> Proxy a -> a Source #

toList :: Proxy a -> [a] Source #

null :: Proxy a -> Bool Source #

length :: Proxy a -> Int Source #

elem :: Eq a => a -> Proxy a -> Bool Source #

maximum :: Ord a => Proxy a -> a Source #

minimum :: Ord a => Proxy a -> a Source #

sum :: Num a => Proxy a -> a Source #

product :: Num a => Proxy a -> a Source #

Foldable (Array i)

Since: base-4.8.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => Array i m -> m Source #

foldMap :: Monoid m => (a -> m) -> Array i a -> m Source #

foldMap' :: Monoid m => (a -> m) -> Array i a -> m Source #

foldr :: (a -> b -> b) -> b -> Array i a -> b Source #

foldr' :: (a -> b -> b) -> b -> Array i a -> b Source #

foldl :: (b -> a -> b) -> b -> Array i a -> b Source #

foldl' :: (b -> a -> b) -> b -> Array i a -> b Source #

foldr1 :: (a -> a -> a) -> Array i a -> a Source #

foldl1 :: (a -> a -> a) -> Array i a -> a Source #

toList :: Array i a -> [a] Source #

null :: Array i a -> Bool Source #

length :: Array i a -> Int Source #

elem :: Eq a => a -> Array i a -> Bool Source #

maximum :: Ord a => Array i a -> a Source #

minimum :: Ord a => Array i a -> a Source #

sum :: Num a => Array i a -> a Source #

product :: Num a => Array i a -> a Source #

Foldable (U1 :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => U1 m -> m Source #

foldMap :: Monoid m => (a -> m) -> U1 a -> m Source #

foldMap' :: Monoid m => (a -> m) -> U1 a -> m Source #

foldr :: (a -> b -> b) -> b -> U1 a -> b Source #

foldr' :: (a -> b -> b) -> b -> U1 a -> b Source #

foldl :: (b -> a -> b) -> b -> U1 a -> b Source #

foldl' :: (b -> a -> b) -> b -> U1 a -> b Source #

foldr1 :: (a -> a -> a) -> U1 a -> a Source #

foldl1 :: (a -> a -> a) -> U1 a -> a Source #

toList :: U1 a -> [a] Source #

null :: U1 a -> Bool Source #

length :: U1 a -> Int Source #

elem :: Eq a => a -> U1 a -> Bool Source #

maximum :: Ord a => U1 a -> a Source #

minimum :: Ord a => U1 a -> a Source #

sum :: Num a => U1 a -> a Source #

product :: Num a => U1 a -> a Source #

Foldable (UAddr :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => UAddr m -> m Source #

foldMap :: Monoid m => (a -> m) -> UAddr a -> m Source #

foldMap' :: Monoid m => (a -> m) -> UAddr a -> m Source #

foldr :: (a -> b -> b) -> b -> UAddr a -> b Source #

foldr' :: (a -> b -> b) -> b -> UAddr a -> b Source #

foldl :: (b -> a -> b) -> b -> UAddr a -> b Source #

foldl' :: (b -> a -> b) -> b -> UAddr a -> b Source #

foldr1 :: (a -> a -> a) -> UAddr a -> a Source #

foldl1 :: (a -> a -> a) -> UAddr a -> a Source #

toList :: UAddr a -> [a] Source #

null :: UAddr a -> Bool Source #

length :: UAddr a -> Int Source #

elem :: Eq a => a -> UAddr a -> Bool Source #

maximum :: Ord a => UAddr a -> a Source #

minimum :: Ord a => UAddr a -> a Source #

sum :: Num a => UAddr a -> a Source #

product :: Num a => UAddr a -> a Source #

Foldable (UChar :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => UChar m -> m Source #

foldMap :: Monoid m => (a -> m) -> UChar a -> m Source #

foldMap' :: Monoid m => (a -> m) -> UChar a -> m Source #

foldr :: (a -> b -> b) -> b -> UChar a -> b Source #

foldr' :: (a -> b -> b) -> b -> UChar a -> b Source #

foldl :: (b -> a -> b) -> b -> UChar a -> b Source #

foldl' :: (b -> a -> b) -> b -> UChar a -> b Source #

foldr1 :: (a -> a -> a) -> UChar a -> a Source #

foldl1 :: (a -> a -> a) -> UChar a -> a Source #

toList :: UChar a -> [a] Source #

null :: UChar a -> Bool Source #

length :: UChar a -> Int Source #

elem :: Eq a => a -> UChar a -> Bool Source #

maximum :: Ord a => UChar a -> a Source #

minimum :: Ord a => UChar a -> a Source #

sum :: Num a => UChar a -> a Source #

product :: Num a => UChar a -> a Source #

Foldable (UDouble :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => UDouble m -> m Source #

foldMap :: Monoid m => (a -> m) -> UDouble a -> m Source #

foldMap' :: Monoid m => (a -> m) -> UDouble a -> m Source #

foldr :: (a -> b -> b) -> b -> UDouble a -> b Source #

foldr' :: (a -> b -> b) -> b -> UDouble a -> b Source #

foldl :: (b -> a -> b) -> b -> UDouble a -> b Source #

foldl' :: (b -> a -> b) -> b -> UDouble a -> b Source #

foldr1 :: (a -> a -> a) -> UDouble a -> a Source #

foldl1 :: (a -> a -> a) -> UDouble a -> a Source #

toList :: UDouble a -> [a] Source #

null :: UDouble a -> Bool Source #

length :: UDouble a -> Int Source #

elem :: Eq a => a -> UDouble a -> Bool Source #

maximum :: Ord a => UDouble a -> a Source #

minimum :: Ord a => UDouble a -> a Source #

sum :: Num a => UDouble a -> a Source #

product :: Num a => UDouble a -> a Source #

Foldable (UFloat :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => UFloat m -> m Source #

foldMap :: Monoid m => (a -> m) -> UFloat a -> m Source #

foldMap' :: Monoid m => (a -> m) -> UFloat a -> m Source #

foldr :: (a -> b -> b) -> b -> UFloat a -> b Source #

foldr' :: (a -> b -> b) -> b -> UFloat a -> b Source #

foldl :: (b -> a -> b) -> b -> UFloat a -> b Source #

foldl' :: (b -> a -> b) -> b -> UFloat a -> b Source #

foldr1 :: (a -> a -> a) -> UFloat a -> a Source #

foldl1 :: (a -> a -> a) -> UFloat a -> a Source #

toList :: UFloat a -> [a] Source #

null :: UFloat a -> Bool Source #

length :: UFloat a -> Int Source #

elem :: Eq a => a -> UFloat a -> Bool Source #

maximum :: Ord a => UFloat a -> a Source #

minimum :: Ord a => UFloat a -> a Source #

sum :: Num a => UFloat a -> a Source #

product :: Num a => UFloat a -> a Source #

Foldable (UInt :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => UInt m -> m Source #

foldMap :: Monoid m => (a -> m) -> UInt a -> m Source #

foldMap' :: Monoid m => (a -> m) -> UInt a -> m Source #

foldr :: (a -> b -> b) -> b -> UInt a -> b Source #

foldr' :: (a -> b -> b) -> b -> UInt a -> b Source #

foldl :: (b -> a -> b) -> b -> UInt a -> b Source #

foldl' :: (b -> a -> b) -> b -> UInt a -> b Source #

foldr1 :: (a -> a -> a) -> UInt a -> a Source #

foldl1 :: (a -> a -> a) -> UInt a -> a Source #

toList :: UInt a -> [a] Source #

null :: UInt a -> Bool Source #

length :: UInt a -> Int Source #

elem :: Eq a => a -> UInt a -> Bool Source #

maximum :: Ord a => UInt a -> a Source #

minimum :: Ord a => UInt a -> a Source #

sum :: Num a => UInt a -> a Source #

product :: Num a => UInt a -> a Source #

Foldable (UWord :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => UWord m -> m Source #

foldMap :: Monoid m => (a -> m) -> UWord a -> m Source #

foldMap' :: Monoid m => (a -> m) -> UWord a -> m Source #

foldr :: (a -> b -> b) -> b -> UWord a -> b Source #

foldr' :: (a -> b -> b) -> b -> UWord a -> b Source #

foldl :: (b -> a -> b) -> b -> UWord a -> b Source #

foldl' :: (b -> a -> b) -> b -> UWord a -> b Source #

foldr1 :: (a -> a -> a) -> UWord a -> a Source #

foldl1 :: (a -> a -> a) -> UWord a -> a Source #

toList :: UWord a -> [a] Source #

null :: UWord a -> Bool Source #

length :: UWord a -> Int Source #

elem :: Eq a => a -> UWord a -> Bool Source #

maximum :: Ord a => UWord a -> a Source #

minimum :: Ord a => UWord a -> a Source #

sum :: Num a => UWord a -> a Source #

product :: Num a => UWord a -> a Source #

Foldable (V1 :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => V1 m -> m Source #

foldMap :: Monoid m => (a -> m) -> V1 a -> m Source #

foldMap' :: Monoid m => (a -> m) -> V1 a -> m Source #

foldr :: (a -> b -> b) -> b -> V1 a -> b Source #

foldr' :: (a -> b -> b) -> b -> V1 a -> b Source #

foldl :: (b -> a -> b) -> b -> V1 a -> b Source #

foldl' :: (b -> a -> b) -> b -> V1 a -> b Source #

foldr1 :: (a -> a -> a) -> V1 a -> a Source #

foldl1 :: (a -> a -> a) -> V1 a -> a Source #

toList :: V1 a -> [a] Source #

null :: V1 a -> Bool Source #

length :: V1 a -> Int Source #

elem :: Eq a => a -> V1 a -> Bool Source #

maximum :: Ord a => V1 a -> a Source #

minimum :: Ord a => V1 a -> a Source #

sum :: Num a => V1 a -> a Source #

product :: Num a => V1 a -> a Source #

Foldable (Map k)

Folds in order of increasing key.

Instance details

Defined in Data.Map.Internal

Methods

fold :: Monoid m => Map k m -> m Source #

foldMap :: Monoid m => (a -> m) -> Map k a -> m Source #

foldMap' :: Monoid m => (a -> m) -> Map k a -> m Source #

foldr :: (a -> b -> b) -> b -> Map k a -> b Source #

foldr' :: (a -> b -> b) -> b -> Map k a -> b Source #

foldl :: (b -> a -> b) -> b -> Map k a -> b Source #

foldl' :: (b -> a -> b) -> b -> Map k a -> b Source #

foldr1 :: (a -> a -> a) -> Map k a -> a Source #

foldl1 :: (a -> a -> a) -> Map k a -> a Source #

toList :: Map k a -> [a] Source #

null :: Map k a -> Bool Source #

length :: Map k a -> Int Source #

elem :: Eq a => a -> Map k a -> Bool Source #

maximum :: Ord a => Map k a -> a Source #

minimum :: Ord a => Map k a -> a Source #

sum :: Num a => Map k a -> a Source #

product :: Num a => Map k a -> a Source #

Foldable (HashMap k) 
Instance details

Defined in Data.HashMap.Internal

Methods

fold :: Monoid m => HashMap k m -> m Source #

foldMap :: Monoid m => (a -> m) -> HashMap k a -> m Source #

foldMap' :: Monoid m => (a -> m) -> HashMap k a -> m Source #

foldr :: (a -> b -> b) -> b -> HashMap k a -> b Source #

foldr' :: (a -> b -> b) -> b -> HashMap k a -> b Source #

foldl :: (b -> a -> b) -> b -> HashMap k a -> b Source #

foldl' :: (b -> a -> b) -> b -> HashMap k a -> b Source #

foldr1 :: (a -> a -> a) -> HashMap k a -> a Source #

foldl1 :: (a -> a -> a) -> HashMap k a -> a Source #

toList :: HashMap k a -> [a] Source #

null :: HashMap k a -> Bool Source #

length :: HashMap k a -> Int Source #

elem :: Eq a => a -> HashMap k a -> Bool Source #

maximum :: Ord a => HashMap k a -> a Source #

minimum :: Ord a => HashMap k a -> a Source #

sum :: Num a => HashMap k a -> a Source #

product :: Num a => HashMap k a -> a Source #

Foldable ((,) a)

Since: base-4.7.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => (a, m) -> m Source #

foldMap :: Monoid m => (a0 -> m) -> (a, a0) -> m Source #

foldMap' :: Monoid m => (a0 -> m) -> (a, a0) -> m Source #

foldr :: (a0 -> b -> b) -> b -> (a, a0) -> b Source #

foldr' :: (a0 -> b -> b) -> b -> (a, a0) -> b Source #

foldl :: (b -> a0 -> b) -> b -> (a, a0) -> b Source #

foldl' :: (b -> a0 -> b) -> b -> (a, a0) -> b Source #

foldr1 :: (a0 -> a0 -> a0) -> (a, a0) -> a0 Source #

foldl1 :: (a0 -> a0 -> a0) -> (a, a0) -> a0 Source #

toList :: (a, a0) -> [a0] Source #

null :: (a, a0) -> Bool Source #

length :: (a, a0) -> Int Source #

elem :: Eq a0 => a0 -> (a, a0) -> Bool Source #

maximum :: Ord a0 => (a, a0) -> a0 Source #

minimum :: Ord a0 => (a, a0) -> a0 Source #

sum :: Num a0 => (a, a0) -> a0 Source #

product :: Num a0 => (a, a0) -> a0 Source #

Foldable (Const m :: Type -> Type)

Since: base-4.7.0.0

Instance details

Defined in Data.Functor.Const

Methods

fold :: Monoid m0 => Const m m0 -> m0 Source #

foldMap :: Monoid m0 => (a -> m0) -> Const m a -> m0 Source #

foldMap' :: Monoid m0 => (a -> m0) -> Const m a -> m0 Source #

foldr :: (a -> b -> b) -> b -> Const m a -> b Source #

foldr' :: (a -> b -> b) -> b -> Const m a -> b Source #

foldl :: (b -> a -> b) -> b -> Const m a -> b Source #

foldl' :: (b -> a -> b) -> b -> Const m a -> b Source #

foldr1 :: (a -> a -> a) -> Const m a -> a Source #

foldl1 :: (a -> a -> a) -> Const m a -> a Source #

toList :: Const m a -> [a] Source #

null :: Const m a -> Bool Source #

length :: Const m a -> Int Source #

elem :: Eq a => a -> Const m a -> Bool Source #

maximum :: Ord a => Const m a -> a Source #

minimum :: Ord a => Const m a -> a Source #

sum :: Num a => Const m a -> a Source #

product :: Num a => Const m a -> a Source #

Foldable f => Foldable (Ap f)

Since: base-4.12.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => Ap f m -> m Source #

foldMap :: Monoid m => (a -> m) -> Ap f a -> m Source #

foldMap' :: Monoid m => (a -> m) -> Ap f a -> m Source #

foldr :: (a -> b -> b) -> b -> Ap f a -> b Source #

foldr' :: (a -> b -> b) -> b -> Ap f a -> b Source #

foldl :: (b -> a -> b) -> b -> Ap f a -> b Source #

foldl' :: (b -> a -> b) -> b -> Ap f a -> b Source #

foldr1 :: (a -> a -> a) -> Ap f a -> a Source #

foldl1 :: (a -> a -> a) -> Ap f a -> a Source #

toList :: Ap f a -> [a] Source #

null :: Ap f a -> Bool Source #

length :: Ap f a -> Int Source #

elem :: Eq a => a -> Ap f a -> Bool Source #

maximum :: Ord a => Ap f a -> a Source #

minimum :: Ord a => Ap f a -> a Source #

sum :: Num a => Ap f a -> a Source #

product :: Num a => Ap f a -> a Source #

Foldable f => Foldable (Alt f)

Since: base-4.12.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => Alt f m -> m Source #

foldMap :: Monoid m => (a -> m) -> Alt f a -> m Source #

foldMap' :: Monoid m => (a -> m) -> Alt f a -> m Source #

foldr :: (a -> b -> b) -> b -> Alt f a -> b Source #

foldr' :: (a -> b -> b) -> b -> Alt f a -> b Source #

foldl :: (b -> a -> b) -> b -> Alt f a -> b Source #

foldl' :: (b -> a -> b) -> b -> Alt f a -> b Source #

foldr1 :: (a -> a -> a) -> Alt f a -> a Source #

foldl1 :: (a -> a -> a) -> Alt f a -> a Source #

toList :: Alt f a -> [a] Source #

null :: Alt f a -> Bool Source #

length :: Alt f a -> Int Source #

elem :: Eq a => a -> Alt f a -> Bool Source #

maximum :: Ord a => Alt f a -> a Source #

minimum :: Ord a => Alt f a -> a Source #

sum :: Num a => Alt f a -> a Source #

product :: Num a => Alt f a -> a Source #

Foldable f => Foldable (Rec1 f)

Since: base-4.9.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => Rec1 f m -> m Source #

foldMap :: Monoid m => (a -> m) -> Rec1 f a -> m Source #

foldMap' :: Monoid m => (a -> m) -> Rec1 f a -> m Source #

foldr :: (a -> b -> b) -> b -> Rec1 f a -> b Source #

foldr' :: (a -> b -> b) -> b -> Rec1 f a -> b Source #

foldl :: (b -> a -> b) -> b -> Rec1 f a -> b Source #

foldl' :: (b -> a -> b) -> b -> Rec1 f a -> b Source #

foldr1 :: (a -> a -> a) -> Rec1 f a -> a Source #

foldl1 :: (a -> a -> a) -> Rec1 f a -> a Source #

toList :: Rec1 f a -> [a] Source #

null :: Rec1 f a -> Bool Source #

length :: Rec1 f a -> Int Source #

elem :: Eq a => a -> Rec1 f a -> Bool Source #

maximum :: Ord a => Rec1 f a -> a Source #

minimum :: Ord a => Rec1 f a -> a Source #

sum :: Num a => Rec1 f a -> a Source #

product :: Num a => Rec1 f a -> a Source #

Foldable f => Foldable (ErrorT e f) 
Instance details

Defined in Control.Monad.Trans.Error

Methods

fold :: Monoid m => ErrorT e f m -> m Source #

foldMap :: Monoid m => (a -> m) -> ErrorT e f a -> m Source #

foldMap' :: Monoid m => (a -> m) -> ErrorT e f a -> m Source #

foldr :: (a -> b -> b) -> b -> ErrorT e f a -> b Source #

foldr' :: (a -> b -> b) -> b -> ErrorT e f a -> b Source #

foldl :: (b -> a -> b) -> b -> ErrorT e f a -> b Source #

foldl' :: (b -> a -> b) -> b -> ErrorT e f a -> b Source #

foldr1 :: (a -> a -> a) -> ErrorT e f a -> a Source #

foldl1 :: (a -> a -> a) -> ErrorT e f a -> a Source #

toList :: ErrorT e f a -> [a] Source #

null :: ErrorT e f a -> Bool Source #

length :: ErrorT e f a -> Int Source #

elem :: Eq a => a -> ErrorT e f a -> Bool Source #

maximum :: Ord a => ErrorT e f a -> a Source #

minimum :: Ord a => ErrorT e f a -> a Source #

sum :: Num a => ErrorT e f a -> a Source #

product :: Num a => ErrorT e f a -> a Source #

(Foldable f, Foldable g) => Foldable (f :*: g)

Since: base-4.9.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => (f :*: g) m -> m Source #

foldMap :: Monoid m => (a -> m) -> (f :*: g) a -> m Source #

foldMap' :: Monoid m => (a -> m) -> (f :*: g) a -> m Source #

foldr :: (a -> b -> b) -> b -> (f :*: g) a -> b Source #

foldr' :: (a -> b -> b) -> b -> (f :*: g) a -> b Source #

foldl :: (b -> a -> b) -> b -> (f :*: g) a -> b Source #

foldl' :: (b -> a -> b) -> b -> (f :*: g) a -> b Source #

foldr1 :: (a -> a -> a) -> (f :*: g) a -> a Source #

foldl1 :: (a -> a -> a) -> (f :*: g) a -> a Source #

toList :: (f :*: g) a -> [a] Source #

null :: (f :*: g) a -> Bool Source #

length :: (f :*: g) a -> Int Source #

elem :: Eq a => a -> (f :*: g) a -> Bool Source #

maximum :: Ord a => (f :*: g) a -> a Source #

minimum :: Ord a => (f :*: g) a -> a Source #

sum :: Num a => (f :*: g) a -> a Source #

product :: Num a => (f :*: g) a -> a Source #

(Foldable f, Foldable g) => Foldable (f :+: g)

Since: base-4.9.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => (f :+: g) m -> m Source #

foldMap :: Monoid m => (a -> m) -> (f :+: g) a -> m Source #

foldMap' :: Monoid m => (a -> m) -> (f :+: g) a -> m Source #

foldr :: (a -> b -> b) -> b -> (f :+: g) a -> b Source #

foldr' :: (a -> b -> b) -> b -> (f :+: g) a -> b Source #

foldl :: (b -> a -> b) -> b -> (f :+: g) a -> b Source #

foldl' :: (b -> a -> b) -> b -> (f :+: g) a -> b Source #

foldr1 :: (a -> a -> a) -> (f :+: g) a -> a Source #

foldl1 :: (a -> a -> a) -> (f :+: g) a -> a Source #

toList :: (f :+: g) a -> [a] Source #

null :: (f :+: g) a -> Bool Source #

length :: (f :+: g) a -> Int Source #

elem :: Eq a => a -> (f :+: g) a -> Bool Source #

maximum :: Ord a => (f :+: g) a -> a Source #

minimum :: Ord a => (f :+: g) a -> a Source #

sum :: Num a => (f :+: g) a -> a Source #

product :: Num a => (f :+: g) a -> a Source #

Foldable (K1 i c :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => K1 i c m -> m Source #

foldMap :: Monoid m => (a -> m) -> K1 i c a -> m Source #

foldMap' :: Monoid m => (a -> m) -> K1 i c a -> m Source #

foldr :: (a -> b -> b) -> b -> K1 i c a -> b Source #

foldr' :: (a -> b -> b) -> b -> K1 i c a -> b Source #

foldl :: (b -> a -> b) -> b -> K1 i c a -> b Source #

foldl' :: (b -> a -> b) -> b -> K1 i c a -> b Source #

foldr1 :: (a -> a -> a) -> K1 i c a -> a Source #

foldl1 :: (a -> a -> a) -> K1 i c a -> a Source #

toList :: K1 i c a -> [a] Source #

null :: K1 i c a -> Bool Source #

length :: K1 i c a -> Int Source #

elem :: Eq a => a -> K1 i c a -> Bool Source #

maximum :: Ord a => K1 i c a -> a Source #

minimum :: Ord a => K1 i c a -> a Source #

sum :: Num a => K1 i c a -> a Source #

product :: Num a => K1 i c a -> a Source #

(Foldable f, Foldable g) => Foldable (f :.: g)

Since: base-4.9.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => (f :.: g) m -> m Source #

foldMap :: Monoid m => (a -> m) -> (f :.: g) a -> m Source #

foldMap' :: Monoid m => (a -> m) -> (f :.: g) a -> m Source #

foldr :: (a -> b -> b) -> b -> (f :.: g) a -> b Source #

foldr' :: (a -> b -> b) -> b -> (f :.: g) a -> b Source #

foldl :: (b -> a -> b) -> b -> (f :.: g) a -> b Source #

foldl' :: (b -> a -> b) -> b -> (f :.: g) a -> b Source #

foldr1 :: (a -> a -> a) -> (f :.: g) a -> a Source #

foldl1 :: (a -> a -> a) -> (f :.: g) a -> a Source #

toList :: (f :.: g) a -> [a] Source #

null :: (f :.: g) a -> Bool Source #

length :: (f :.: g) a -> Int Source #

elem :: Eq a => a -> (f :.: g) a -> Bool Source #

maximum :: Ord a => (f :.: g) a -> a Source #

minimum :: Ord a => (f :.: g) a -> a Source #

sum :: Num a => (f :.: g) a -> a Source #

product :: Num a => (f :.: g) a -> a Source #

Foldable f => Foldable (M1 i c f)

Since: base-4.9.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => M1 i c f m -> m Source #

foldMap :: Monoid m => (a -> m) -> M1 i c f a -> m Source #

foldMap' :: Monoid m => (a -> m) -> M1 i c f a -> m Source #

foldr :: (a -> b -> b) -> b -> M1 i c f a -> b Source #

foldr' :: (a -> b -> b) -> b -> M1 i c f a -> b Source #

foldl :: (b -> a -> b) -> b -> M1 i c f a -> b Source #

foldl' :: (b -> a -> b) -> b -> M1 i c f a -> b Source #

foldr1 :: (a -> a -> a) -> M1 i c f a -> a Source #

foldl1 :: (a -> a -> a) -> M1 i c f a -> a Source #

toList :: M1 i c f a -> [a] Source #

null :: M1 i c f a -> Bool Source #

length :: M1 i c f a -> Int Source #

elem :: Eq a => a -> M1 i c f a -> Bool Source #

maximum :: Ord a => M1 i c f a -> a Source #

minimum :: Ord a => M1 i c f a -> a Source #

sum :: Num a => M1 i c f a -> a Source #

product :: Num a => M1 i c f a -> a Source #

elem :: (Foldable t, Eq a) => a -> t a -> Bool infix 4 Source #

Does the element occur in the structure?

Note: elem is often used in infix form.

Examples

Expand

Basic usage:

>>> 3 `elem` []
False
>>> 3 `elem` [1,2]
False
>>> 3 `elem` [1,2,3,4,5]
True

For infinite structures, the default implementation of elem terminates if the sought-after value exists at a finite distance from the left side of the structure:

>>> 3 `elem` [1..]
True
>>> 3 `elem` ([4..] ++ [3])
* Hangs forever *

Since: base-4.8.0.0

maximum :: (Foldable t, Ord a) => t a -> a Source #

The largest element of a non-empty structure.

This function is non-total and will raise a runtime exception if the structure happens to be empty. A structure that supports random access and maintains its elements in order should provide a specialised implementation to return the maximum in faster than linear time.

Examples

Expand

Basic usage:

>>> maximum [1..10]
10
>>> maximum []
*** Exception: Prelude.maximum: empty list
>>> maximum Nothing
*** Exception: maximum: empty structure

Since: base-4.8.0.0

minimum :: (Foldable t, Ord a) => t a -> a Source #

The least element of a non-empty structure.

This function is non-total and will raise a runtime exception if the structure happens to be empty. A structure that supports random access and maintains its elements in order should provide a specialised implementation to return the minimum in faster than linear time.

Examples

Expand

Basic usage:

>>> minimum [1..10]
1
>>> minimum []
*** Exception: Prelude.minimum: empty list
>>> minimum Nothing
*** Exception: minimum: empty structure

Since: base-4.8.0.0

traverse_ :: (Foldable t, Applicative f) => (a -> f b) -> t a -> f () Source #

Map each element of a structure to an Applicative action, evaluate these actions from left to right, and ignore the results. For a version that doesn't ignore the results see traverse.

traverse_ is just like mapM_, but generalised to Applicative actions.

Examples

Expand

Basic usage:

>>> traverse_ print ["Hello", "world", "!"]
"Hello"
"world"
"!"

sequenceA_ :: (Foldable t, Applicative f) => t (f a) -> f () Source #

Evaluate each action in the structure from left to right, and ignore the results. For a version that doesn't ignore the results see sequenceA.

sequenceA_ is just like sequence_, but generalised to Applicative actions.

Examples

Expand

Basic usage:

>>> sequenceA_ [print "Hello", print "world", print "!"]
"Hello"
"world"
"!"

for_ :: (Foldable t, Applicative f) => t a -> (a -> f b) -> f () Source #

for_ is traverse_ with its arguments flipped. For a version that doesn't ignore the results see for. This is forM_ generalised to Applicative actions.

for_ is just like forM_, but generalised to Applicative actions.

Examples

Expand

Basic usage:

>>> for_ [1..4] print
1
2
3
4

maximumBy :: Foldable t => (a -> a -> Ordering) -> t a -> a Source #

The largest element of a non-empty structure with respect to the given comparison function.

Examples

Expand

Basic usage:

>>> maximumBy (compare `on` length) ["Hello", "World", "!", "Longest", "bar"]
"Longest"

minimumBy :: Foldable t => (a -> a -> Ordering) -> t a -> a Source #

The least element of a non-empty structure with respect to the given comparison function.

Examples

Expand

Basic usage:

>>> minimumBy (compare `on` length) ["Hello", "World", "!", "Longest", "bar"]
"!"

class (Functor t, Foldable t) => Traversable (t :: Type -> Type) where Source #

Functors representing data structures that can be transformed to structures of the same shape by performing an Applicative (or, therefore, Monad) action on each element from left to right.

A more detailed description of what same shape means, the various methods, how traversals are constructed, and example advanced use-cases can be found in the Overview section of Data.Traversable.

For the class laws see the Laws section of Data.Traversable.

Minimal complete definition

traverse | sequenceA

Methods

traverse :: Applicative f => (a -> f b) -> t a -> f (t b) Source #

Map each element of a structure to an action, evaluate these actions from left to right, and collect the results. For a version that ignores the results see traverse_.

Examples

Expand

Basic usage:

In the first two examples we show each evaluated action mapping to the output structure.

>>> traverse Just [1,2,3,4]
Just [1,2,3,4]
>>> traverse id [Right 1, Right 2, Right 3, Right 4]
Right [1,2,3,4]

In the next examples, we show that Nothing and Left values short circuit the created structure.

>>> traverse (const Nothing) [1,2,3,4]
Nothing
>>> traverse (\x -> if odd x then Just x else Nothing)  [1,2,3,4]
Nothing
>>> traverse id [Right 1, Right 2, Right 3, Right 4, Left 0]
Left 0

sequenceA :: Applicative f => t (f a) -> f (t a) Source #

Evaluate each action in the structure from left to right, and collect the results. For a version that ignores the results see sequenceA_.

Examples

Expand

Basic usage:

For the first two examples we show sequenceA fully evaluating a a structure and collecting the results.

>>> sequenceA [Just 1, Just 2, Just 3]
Just [1,2,3]
>>> sequenceA [Right 1, Right 2, Right 3]
Right [1,2,3]

The next two example show Nothing and Just will short circuit the resulting structure if present in the input. For more context, check the Traversable instances for Either and Maybe.

>>> sequenceA [Just 1, Just 2, Just 3, Nothing]
Nothing
>>> sequenceA [Right 1, Right 2, Right 3, Left 4]
Left 4

mapM :: Monad m => (a -> m b) -> t a -> m (t b) Source #

Map each element of a structure to a monadic action, evaluate these actions from left to right, and collect the results. For a version that ignores the results see mapM_.

Examples

Expand

mapM is literally a traverse with a type signature restricted to Monad. Its implementation may be more efficient due to additional power of Monad.

sequence :: Monad m => t (m a) -> m (t a) Source #

Evaluate each monadic action in the structure from left to right, and collect the results. For a version that ignores the results see sequence_.

Examples

Expand

Basic usage:

The first two examples are instances where the input and and output of sequence are isomorphic.

>>> sequence $ Right [1,2,3,4]
[Right 1,Right 2,Right 3,Right 4]
>>> sequence $ [Right 1,Right 2,Right 3,Right 4]
Right [1,2,3,4]

The following examples demonstrate short circuit behavior for sequence.

>>> sequence $ Left [1,2,3,4]
Left [1,2,3,4]
>>> sequence $ [Left 0, Right 1,Right 2,Right 3,Right 4]
Left 0

Instances

Instances details
Traversable ZipList

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> ZipList a -> f (ZipList b) Source #

sequenceA :: Applicative f => ZipList (f a) -> f (ZipList a) Source #

mapM :: Monad m => (a -> m b) -> ZipList a -> m (ZipList b) Source #

sequence :: Monad m => ZipList (m a) -> m (ZipList a) Source #

Traversable Identity

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Identity a -> f (Identity b) Source #

sequenceA :: Applicative f => Identity (f a) -> f (Identity a) Source #

mapM :: Monad m => (a -> m b) -> Identity a -> m (Identity b) Source #

sequence :: Monad m => Identity (m a) -> m (Identity a) Source #

Traversable First

Since: base-4.8.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> First a -> f (First b) Source #

sequenceA :: Applicative f => First (f a) -> f (First a) Source #

mapM :: Monad m => (a -> m b) -> First a -> m (First b) Source #

sequence :: Monad m => First (m a) -> m (First a) Source #

Traversable Last

Since: base-4.8.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Last a -> f (Last b) Source #

sequenceA :: Applicative f => Last (f a) -> f (Last a) Source #

mapM :: Monad m => (a -> m b) -> Last a -> m (Last b) Source #

sequence :: Monad m => Last (m a) -> m (Last a) Source #

Traversable Down

Since: base-4.12.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Down a -> f (Down b) Source #

sequenceA :: Applicative f => Down (f a) -> f (Down a) Source #

mapM :: Monad m => (a -> m b) -> Down a -> m (Down b) Source #

sequence :: Monad m => Down (m a) -> m (Down a) Source #

Traversable Dual

Since: base-4.8.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Dual a -> f (Dual b) Source #

sequenceA :: Applicative f => Dual (f a) -> f (Dual a) Source #

mapM :: Monad m => (a -> m b) -> Dual a -> m (Dual b) Source #

sequence :: Monad m => Dual (m a) -> m (Dual a) Source #

Traversable Product

Since: base-4.8.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Product a -> f (Product b) Source #

sequenceA :: Applicative f => Product (f a) -> f (Product a) Source #

mapM :: Monad m => (a -> m b) -> Product a -> m (Product b) Source #

sequence :: Monad m => Product (m a) -> m (Product a) Source #

Traversable Sum

Since: base-4.8.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Sum a -> f (Sum b) Source #

sequenceA :: Applicative f => Sum (f a) -> f (Sum a) Source #

mapM :: Monad m => (a -> m b) -> Sum a -> m (Sum b) Source #

sequence :: Monad m => Sum (m a) -> m (Sum a) Source #

Traversable NonEmpty

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> NonEmpty a -> f (NonEmpty b) Source #

sequenceA :: Applicative f => NonEmpty (f a) -> f (NonEmpty a) Source #

mapM :: Monad m => (a -> m b) -> NonEmpty a -> m (NonEmpty b) Source #

sequence :: Monad m => NonEmpty (m a) -> m (NonEmpty a) Source #

Traversable Par1

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Par1 a -> f (Par1 b) Source #

sequenceA :: Applicative f => Par1 (f a) -> f (Par1 a) Source #

mapM :: Monad m => (a -> m b) -> Par1 a -> m (Par1 b) Source #

sequence :: Monad m => Par1 (m a) -> m (Par1 a) Source #

Traversable IntMap

Traverses in order of increasing key.

Instance details

Defined in Data.IntMap.Internal

Methods

traverse :: Applicative f => (a -> f b) -> IntMap a -> f (IntMap b) Source #

sequenceA :: Applicative f => IntMap (f a) -> f (IntMap a) Source #

mapM :: Monad m => (a -> m b) -> IntMap a -> m (IntMap b) Source #

sequence :: Monad m => IntMap (m a) -> m (IntMap a) Source #

Traversable Digit 
Instance details

Defined in Data.Sequence.Internal

Methods

traverse :: Applicative f => (a -> f b) -> Digit a -> f (Digit b) Source #

sequenceA :: Applicative f => Digit (f a) -> f (Digit a) Source #

mapM :: Monad m => (a -> m b) -> Digit a -> m (Digit b) Source #

sequence :: Monad m => Digit (m a) -> m (Digit a) Source #

Traversable Elem 
Instance details

Defined in Data.Sequence.Internal

Methods

traverse :: Applicative f => (a -> f b) -> Elem a -> f (Elem b) Source #

sequenceA :: Applicative f => Elem (f a) -> f (Elem a) Source #

mapM :: Monad m => (a -> m b) -> Elem a -> m (Elem b) Source #

sequence :: Monad m => Elem (m a) -> m (Elem a) Source #

Traversable FingerTree 
Instance details

Defined in Data.Sequence.Internal

Methods

traverse :: Applicative f => (a -> f b) -> FingerTree a -> f (FingerTree b) Source #

sequenceA :: Applicative f => FingerTree (f a) -> f (FingerTree a) Source #

mapM :: Monad m => (a -> m b) -> FingerTree a -> m (FingerTree b) Source #

sequence :: Monad m => FingerTree (m a) -> m (FingerTree a) Source #

Traversable Node 
Instance details

Defined in Data.Sequence.Internal

Methods

traverse :: Applicative f => (a -> f b) -> Node a -> f (Node b) Source #

sequenceA :: Applicative f => Node (f a) -> f (Node a) Source #

mapM :: Monad m => (a -> m b) -> Node a -> m (Node b) Source #

sequence :: Monad m => Node (m a) -> m (Node a) Source #

Traversable Seq 
Instance details

Defined in Data.Sequence.Internal

Methods

traverse :: Applicative f => (a -> f b) -> Seq a -> f (Seq b) Source #

sequenceA :: Applicative f => Seq (f a) -> f (Seq a) Source #

mapM :: Monad m => (a -> m b) -> Seq a -> m (Seq b) Source #

sequence :: Monad m => Seq (m a) -> m (Seq a) Source #

Traversable ViewL 
Instance details

Defined in Data.Sequence.Internal

Methods

traverse :: Applicative f => (a -> f b) -> ViewL a -> f (ViewL b) Source #

sequenceA :: Applicative f => ViewL (f a) -> f (ViewL a) Source #

mapM :: Monad m => (a -> m b) -> ViewL a -> m (ViewL b) Source #

sequence :: Monad m => ViewL (m a) -> m (ViewL a) Source #

Traversable ViewR 
Instance details

Defined in Data.Sequence.Internal

Methods

traverse :: Applicative f => (a -> f b) -> ViewR a -> f (ViewR b) Source #

sequenceA :: Applicative f => ViewR (f a) -> f (ViewR a) Source #

mapM :: Monad m => (a -> m b) -> ViewR a -> m (ViewR b) Source #

sequence :: Monad m => ViewR (m a) -> m (ViewR a) Source #

Traversable Tree 
Instance details

Defined in Data.Tree

Methods

traverse :: Applicative f => (a -> f b) -> Tree a -> f (Tree b) Source #

sequenceA :: Applicative f => Tree (f a) -> f (Tree a) Source #

mapM :: Monad m => (a -> m b) -> Tree a -> m (Tree b) Source #

sequence :: Monad m => Tree (m a) -> m (Tree a) Source #

Traversable Array 
Instance details

Defined in Data.Primitive.Array

Methods

traverse :: Applicative f => (a -> f b) -> Array a -> f (Array b) Source #

sequenceA :: Applicative f => Array (f a) -> f (Array a) Source #

mapM :: Monad m => (a -> m b) -> Array a -> m (Array b) Source #

sequence :: Monad m => Array (m a) -> m (Array a) Source #

Traversable SmallArray 
Instance details

Defined in Data.Primitive.SmallArray

Methods

traverse :: Applicative f => (a -> f b) -> SmallArray a -> f (SmallArray b) Source #

sequenceA :: Applicative f => SmallArray (f a) -> f (SmallArray a) Source #

mapM :: Monad m => (a -> m b) -> SmallArray a -> m (SmallArray b) Source #

sequence :: Monad m => SmallArray (m a) -> m (SmallArray a) Source #

Traversable Vector 
Instance details

Defined in Data.Vector

Methods

traverse :: Applicative f => (a -> f b) -> Vector a -> f (Vector b) Source #

sequenceA :: Applicative f => Vector (f a) -> f (Vector a) Source #

mapM :: Monad m => (a -> m b) -> Vector a -> m (Vector b) Source #

sequence :: Monad m => Vector (m a) -> m (Vector a) Source #

Traversable Maybe

Since: base-2.1

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Maybe a -> f (Maybe b) Source #

sequenceA :: Applicative f => Maybe (f a) -> f (Maybe a) Source #

mapM :: Monad m => (a -> m b) -> Maybe a -> m (Maybe b) Source #

sequence :: Monad m => Maybe (m a) -> m (Maybe a) Source #

Traversable Solo

Since: base-4.15

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Solo a -> f (Solo b) Source #

sequenceA :: Applicative f => Solo (f a) -> f (Solo a) Source #

mapM :: Monad m => (a -> m b) -> Solo a -> m (Solo b) Source #

sequence :: Monad m => Solo (m a) -> m (Solo a) Source #

Traversable []

Since: base-2.1

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> [a] -> f [b] Source #

sequenceA :: Applicative f => [f a] -> f [a] Source #

mapM :: Monad m => (a -> m b) -> [a] -> m [b] Source #

sequence :: Monad m => [m a] -> m [a] Source #

Traversable (Either a)

Since: base-4.7.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a0 -> f b) -> Either a a0 -> f (Either a b) Source #

sequenceA :: Applicative f => Either a (f a0) -> f (Either a a0) Source #

mapM :: Monad m => (a0 -> m b) -> Either a a0 -> m (Either a b) Source #

sequence :: Monad m => Either a (m a0) -> m (Either a a0) Source #

Traversable (Proxy :: Type -> Type)

Since: base-4.7.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Proxy a -> f (Proxy b) Source #

sequenceA :: Applicative f => Proxy (f a) -> f (Proxy a) Source #

mapM :: Monad m => (a -> m b) -> Proxy a -> m (Proxy b) Source #

sequence :: Monad m => Proxy (m a) -> m (Proxy a) Source #

Ix i => Traversable (Array i)

Since: base-2.1

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Array i a -> f (Array i b) Source #

sequenceA :: Applicative f => Array i (f a) -> f (Array i a) Source #

mapM :: Monad m => (a -> m b) -> Array i a -> m (Array i b) Source #

sequence :: Monad m => Array i (m a) -> m (Array i a) Source #

Traversable (U1 :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> U1 a -> f (U1 b) Source #

sequenceA :: Applicative f => U1 (f a) -> f (U1 a) Source #

mapM :: Monad m => (a -> m b) -> U1 a -> m (U1 b) Source #

sequence :: Monad m => U1 (m a) -> m (U1 a) Source #

Traversable (UAddr :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> UAddr a -> f (UAddr b) Source #

sequenceA :: Applicative f => UAddr (f a) -> f (UAddr a) Source #

mapM :: Monad m => (a -> m b) -> UAddr a -> m (UAddr b) Source #

sequence :: Monad m => UAddr (m a) -> m (UAddr a) Source #

Traversable (UChar :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> UChar a -> f (UChar b) Source #

sequenceA :: Applicative f => UChar (f a) -> f (UChar a) Source #

mapM :: Monad m => (a -> m b) -> UChar a -> m (UChar b) Source #

sequence :: Monad m => UChar (m a) -> m (UChar a) Source #

Traversable (UDouble :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> UDouble a -> f (UDouble b) Source #

sequenceA :: Applicative f => UDouble (f a) -> f (UDouble a) Source #

mapM :: Monad m => (a -> m b) -> UDouble a -> m (UDouble b) Source #

sequence :: Monad m => UDouble (m a) -> m (UDouble a) Source #

Traversable (UFloat :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> UFloat a -> f (UFloat b) Source #

sequenceA :: Applicative f => UFloat (f a) -> f (UFloat a) Source #

mapM :: Monad m => (a -> m b) -> UFloat a -> m (UFloat b) Source #

sequence :: Monad m => UFloat (m a) -> m (UFloat a) Source #

Traversable (UInt :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> UInt a -> f (UInt b) Source #

sequenceA :: Applicative f => UInt (f a) -> f (UInt a) Source #

mapM :: Monad m => (a -> m b) -> UInt a -> m (UInt b) Source #

sequence :: Monad m => UInt (m a) -> m (UInt a) Source #

Traversable (UWord :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> UWord a -> f (UWord b) Source #

sequenceA :: Applicative f => UWord (f a) -> f (UWord a) Source #

mapM :: Monad m => (a -> m b) -> UWord a -> m (UWord b) Source #

sequence :: Monad m => UWord (m a) -> m (UWord a) Source #

Traversable (V1 :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> V1 a -> f (V1 b) Source #

sequenceA :: Applicative f => V1 (f a) -> f (V1 a) Source #

mapM :: Monad m => (a -> m b) -> V1 a -> m (V1 b) Source #

sequence :: Monad m => V1 (m a) -> m (V1 a) Source #

Traversable (Map k)

Traverses in order of increasing key.

Instance details

Defined in Data.Map.Internal

Methods

traverse :: Applicative f => (a -> f b) -> Map k a -> f (Map k b) Source #

sequenceA :: Applicative f => Map k (f a) -> f (Map k a) Source #

mapM :: Monad m => (a -> m b) -> Map k a -> m (Map k b) Source #

sequence :: Monad m => Map k (m a) -> m (Map k a) Source #

Traversable (HashMap k) 
Instance details

Defined in Data.HashMap.Internal

Methods

traverse :: Applicative f => (a -> f b) -> HashMap k a -> f (HashMap k b) Source #

sequenceA :: Applicative f => HashMap k (f a) -> f (HashMap k a) Source #

mapM :: Monad m => (a -> m b) -> HashMap k a -> m (HashMap k b) Source #

sequence :: Monad m => HashMap k (m a) -> m (HashMap k a) Source #

Traversable ((,) a)

Since: base-4.7.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a0 -> f b) -> (a, a0) -> f (a, b) Source #

sequenceA :: Applicative f => (a, f a0) -> f (a, a0) Source #

mapM :: Monad m => (a0 -> m b) -> (a, a0) -> m (a, b) Source #

sequence :: Monad m => (a, m a0) -> m (a, a0) Source #

Traversable (Const m :: Type -> Type)

Since: base-4.7.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Const m a -> f (Const m b) Source #

sequenceA :: Applicative f => Const m (f a) -> f (Const m a) Source #

mapM :: Monad m0 => (a -> m0 b) -> Const m a -> m0 (Const m b) Source #

sequence :: Monad m0 => Const m (m0 a) -> m0 (Const m a) Source #

Traversable f => Traversable (Ap f)

Since: base-4.12.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f0 => (a -> f0 b) -> Ap f a -> f0 (Ap f b) Source #

sequenceA :: Applicative f0 => Ap f (f0 a) -> f0 (Ap f a) Source #

mapM :: Monad m => (a -> m b) -> Ap f a -> m (Ap f b) Source #

sequence :: Monad m => Ap f (m a) -> m (Ap f a) Source #

Traversable f => Traversable (Alt f)

Since: base-4.12.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f0 => (a -> f0 b) -> Alt f a -> f0 (Alt f b) Source #

sequenceA :: Applicative f0 => Alt f (f0 a) -> f0 (Alt f a) Source #

mapM :: Monad m => (a -> m b) -> Alt f a -> m (Alt f b) Source #

sequence :: Monad m => Alt f (m a) -> m (Alt f a) Source #

Traversable f => Traversable (Rec1 f)

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f0 => (a -> f0 b) -> Rec1 f a -> f0 (Rec1 f b) Source #

sequenceA :: Applicative f0 => Rec1 f (f0 a) -> f0 (Rec1 f a) Source #

mapM :: Monad m => (a -> m b) -> Rec1 f a -> m (Rec1 f b) Source #

sequence :: Monad m => Rec1 f (m a) -> m (Rec1 f a) Source #

Traversable f => Traversable (ErrorT e f) 
Instance details

Defined in Control.Monad.Trans.Error

Methods

traverse :: Applicative f0 => (a -> f0 b) -> ErrorT e f a -> f0 (ErrorT e f b) Source #

sequenceA :: Applicative f0 => ErrorT e f (f0 a) -> f0 (ErrorT e f a) Source #

mapM :: Monad m => (a -> m b) -> ErrorT e f a -> m (ErrorT e f b) Source #

sequence :: Monad m => ErrorT e f (m a) -> m (ErrorT e f a) Source #

(Traversable f, Traversable g) => Traversable (f :*: g)

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f0 => (a -> f0 b) -> (f :*: g) a -> f0 ((f :*: g) b) Source #

sequenceA :: Applicative f0 => (f :*: g) (f0 a) -> f0 ((f :*: g) a) Source #

mapM :: Monad m => (a -> m b) -> (f :*: g) a -> m ((f :*: g) b) Source #

sequence :: Monad m => (f :*: g) (m a) -> m ((f :*: g) a) Source #

(Traversable f, Traversable g) => Traversable (f :+: g)

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f0 => (a -> f0 b) -> (f :+: g) a -> f0 ((f :+: g) b) Source #

sequenceA :: Applicative f0 => (f :+: g) (f0 a) -> f0 ((f :+: g) a) Source #

mapM :: Monad m => (a -> m b) -> (f :+: g) a -> m ((f :+: g) b) Source #

sequence :: Monad m => (f :+: g) (m a) -> m ((f :+: g) a) Source #

Traversable (K1 i c :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> K1 i c a -> f (K1 i c b) Source #

sequenceA :: Applicative f => K1 i c (f a) -> f (K1 i c a) Source #

mapM :: Monad m => (a -> m b) -> K1 i c a -> m (K1 i c b) Source #

sequence :: Monad m => K1 i c (m a) -> m (K1 i c a) Source #

(Traversable f, Traversable g) => Traversable (f :.: g)

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f0 => (a -> f0 b) -> (f :.: g) a -> f0 ((f :.: g) b) Source #

sequenceA :: Applicative f0 => (f :.: g) (f0 a) -> f0 ((f :.: g) a) Source #

mapM :: Monad m => (a -> m b) -> (f :.: g) a -> m ((f :.: g) b) Source #

sequence :: Monad m => (f :.: g) (m a) -> m ((f :.: g) a) Source #

Traversable f => Traversable (M1 i c f)

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f0 => (a -> f0 b) -> M1 i c f a -> f0 (M1 i c f b) Source #

sequenceA :: Applicative f0 => M1 i c f (f0 a) -> f0 (M1 i c f a) Source #

mapM :: Monad m => (a -> m b) -> M1 i c f a -> m (M1 i c f b) Source #

sequence :: Monad m => M1 i c f (m a) -> m (M1 i c f a) Source #

for :: (Traversable t, Applicative f) => t a -> (a -> f b) -> f (t b) Source #

for is traverse with its arguments flipped. For a version that ignores the results see for_.

Enhanced exports

Simpler name for a typeclassed operation

map :: Functor f => (a -> b) -> f a -> f b Source #

map = fmap

empty :: Monoid w => w Source #

Deprecated: Use mempty

empty = mempty

(++) :: Monoid w => w -> w -> w infixr 5 Source #

(++) = mappend

concat :: Monoid w => [w] -> w Source #

concat = mconcat

intercalate :: Monoid w => w -> [w] -> w Source #

intercalate = mconcat .: intersperse

Strict implementation

sum :: (Foldable f, Num a) => f a -> a Source #

Compute the sum of a finite list of numbers.

product :: (Foldable f, Num a) => f a -> a Source #

Compute the product of a finite list of numbers.

Text for Read and Show operations

tshow :: Show a => a -> Text Source #

Convert a value to readable Text

Since: 0.6.0

fromShow :: (Show a, IsString b) => a -> b Source #

Convert a value to readable IsString

Since 0.3.12

read :: Read a => Text -> a Source #

Parse Text to a value

readIO :: (MonadIO m, Read a) => Text -> m a Source #

The readIO function is similar to read except that it signals parse failure to the IO monad instead of terminating the program.

Since: 0.7.0

FilePath for file operations

readFile :: MonadIO m => FilePath -> m Text Source #

Read a file and return the contents of the file as Text. The entire file is read strictly.

Since: 0.7.0

writeFile :: MonadIO m => FilePath -> Text -> m () Source #

Write Text to a file. The file is truncated to zero length before writing begins.

Since: 0.7.0

appendFile :: MonadIO m => FilePath -> Text -> m () Source #

Write Text to the end of a file.

Since: 0.7.0

Text exports

Text operations (Pure)

lines :: Text -> [Text] Source #

O(n) Breaks a Text up into a list of Texts at newline Chars. The resulting strings do not contain newlines.

words :: Text -> [Text] Source #

O(n) Breaks a Text up into a list of words, delimited by Chars representing white space.

unlines :: [Text] -> Text Source #

O(n) Joins lines, after appending a terminating newline to each.

unwords :: [Text] -> Text Source #

O(n) Joins words using single space characters.

fpToText :: FilePath -> Text Source #

Deprecated: Use Data.Text.pack

This function assumes file paths are encoded in UTF8. If it cannot decode the FilePath, the result is just an approximation.

Since 0.3.13

fpFromText :: Text -> FilePath Source #

Deprecated: Use Data.Text.unpack

Since 0.3.13

fpToString :: FilePath -> String Source #

Deprecated: Use id

Since 0.3.13

encodeUtf8 :: Text -> ByteString Source #

Encode text using UTF-8 encoding.

decodeUtf8 :: ByteString -> Text Source #

Note that this is not the standard Data.Text.Encoding.decodeUtf8. That function will throw impure exceptions on any decoding errors. This function instead uses decodeLenient.

Text operations (IO)

getLine :: MonadIO m => m Text Source #

Since: 0.7.0

getContents :: MonadIO m => m LText Source #

Since: 0.7.0

interact :: MonadIO m => (LText -> LText) -> m () Source #

Since: 0.7.0

Miscellaneous prelude re-exports

Math

gcd :: Integral a => a -> a -> a Source #

gcd x y is the non-negative factor of both x and y of which every common factor of x and y is also a factor; for example gcd 4 2 = 2, gcd (-4) 6 = 2, gcd 0 4 = 4. gcd 0 0 = 0. (That is, the common divisor that is "greatest" in the divisibility preordering.)

Note: Since for signed fixed-width integer types, abs minBound < 0, the result may be negative if one of the arguments is minBound (and necessarily is if the other is 0 or minBound) for such types.

lcm :: Integral a => a -> a -> a Source #

lcm x y is the smallest positive integer that both x and y divide.

Show and Read

class Show a where Source #

Conversion of values to readable Strings.

Derived instances of Show have the following properties, which are compatible with derived instances of Read:

  • The result of show is a syntactically correct Haskell expression containing only constants, given the fixity declarations in force at the point where the type is declared. It contains only the constructor names defined in the data type, parentheses, and spaces. When labelled constructor fields are used, braces, commas, field names, and equal signs are also used.
  • If the constructor is defined to be an infix operator, then showsPrec will produce infix applications of the constructor.
  • the representation will be enclosed in parentheses if the precedence of the top-level constructor in x is less than d (associativity is ignored). Thus, if d is 0 then the result is never surrounded in parentheses; if d is 11 it is always surrounded in parentheses, unless it is an atomic expression.
  • If the constructor is defined using record syntax, then show will produce the record-syntax form, with the fields given in the same order as the original declaration.

For example, given the declarations

infixr 5 :^:
data Tree a =  Leaf a  |  Tree a :^: Tree a

the derived instance of Show is equivalent to

instance (Show a) => Show (Tree a) where

       showsPrec d (Leaf m) = showParen (d > app_prec) $
            showString "Leaf " . showsPrec (app_prec+1) m
         where app_prec = 10

       showsPrec d (u :^: v) = showParen (d > up_prec) $
            showsPrec (up_prec+1) u .
            showString " :^: "      .
            showsPrec (up_prec+1) v
         where up_prec = 5

Note that right-associativity of :^: is ignored. For example,

  • show (Leaf 1 :^: Leaf 2 :^: Leaf 3) produces the string "Leaf 1 :^: (Leaf 2 :^: Leaf 3)".

Minimal complete definition

showsPrec | show

Methods

showsPrec Source #

Arguments

:: Int

the operator precedence of the enclosing context (a number from 0 to 11). Function application has precedence 10.

-> a

the value to be converted to a String

-> ShowS 

Convert a value to a readable String.

showsPrec should satisfy the law

showsPrec d x r ++ s  ==  showsPrec d x (r ++ s)

Derived instances of Read and Show satisfy the following:

That is, readsPrec parses the string produced by showsPrec, and delivers the value that showsPrec started with.

show :: a -> String Source #

A specialised variant of showsPrec, using precedence context zero, and returning an ordinary String.

showList :: [a] -> ShowS Source #

The method showList is provided to allow the programmer to give a specialised way of showing lists of values. For example, this is used by the predefined Show instance of the Char type, where values of type String should be shown in double quotes, rather than between square brackets.

Instances

Instances details
Show All

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Show Any

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Show SomeTypeRep

Since: base-4.10.0.0

Instance details

Defined in Data.Typeable.Internal

Show Version

Since: base-2.1

Instance details

Defined in Data.Version

Show CBool 
Instance details

Defined in Foreign.C.Types

Show CChar 
Instance details

Defined in Foreign.C.Types

Show CClock 
Instance details

Defined in Foreign.C.Types

Show CDouble 
Instance details

Defined in Foreign.C.Types

Show CFloat 
Instance details

Defined in Foreign.C.Types

Show CInt 
Instance details

Defined in Foreign.C.Types

Show CIntMax 
Instance details

Defined in Foreign.C.Types

Show CIntPtr 
Instance details

Defined in Foreign.C.Types

Show CLLong 
Instance details

Defined in Foreign.C.Types

Show CLong 
Instance details

Defined in Foreign.C.Types

Show CPtrdiff 
Instance details

Defined in Foreign.C.Types

Show CSChar 
Instance details

Defined in Foreign.C.Types

Show CSUSeconds 
Instance details

Defined in Foreign.C.Types

Show CShort 
Instance details

Defined in Foreign.C.Types

Show CSigAtomic 
Instance details

Defined in Foreign.C.Types

Show CSize 
Instance details

Defined in Foreign.C.Types

Show CTime 
Instance details

Defined in Foreign.C.Types

Show CUChar 
Instance details

Defined in Foreign.C.Types

Show CUInt 
Instance details

Defined in Foreign.C.Types

Show CUIntMax 
Instance details

Defined in Foreign.C.Types

Show CUIntPtr 
Instance details

Defined in Foreign.C.Types

Show CULLong 
Instance details

Defined in Foreign.C.Types

Show CULong 
Instance details

Defined in Foreign.C.Types

Show CUSeconds 
Instance details

Defined in Foreign.C.Types

Show CUShort 
Instance details

Defined in Foreign.C.Types

Show CWchar 
Instance details

Defined in Foreign.C.Types

Show ArithException

Since: base-4.0.0.0

Instance details

Defined in GHC.Exception.Type

Show SomeException

Since: base-3.0

Instance details

Defined in GHC.Exception.Type

Show Associativity

Since: base-4.6.0.0

Instance details

Defined in GHC.Generics

Show DecidedStrictness

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Show Fixity

Since: base-4.6.0.0

Instance details

Defined in GHC.Generics

Show SourceStrictness

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Show SourceUnpackedness

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Show MaskingState

Since: base-4.3.0.0

Instance details

Defined in GHC.IO

Show AllocationLimitExceeded

Since: base-4.7.1.0

Instance details

Defined in GHC.IO.Exception

Show ArrayException

Since: base-4.1.0.0

Instance details

Defined in GHC.IO.Exception

Show AssertionFailed

Since: base-4.1.0.0

Instance details

Defined in GHC.IO.Exception

Show AsyncException

Since: base-4.1.0.0

Instance details

Defined in GHC.IO.Exception

Show BlockedIndefinitelyOnMVar

Since: base-4.1.0.0

Instance details

Defined in GHC.IO.Exception

Show BlockedIndefinitelyOnSTM

Since: base-4.1.0.0

Instance details

Defined in GHC.IO.Exception

Show CompactionFailed

Since: base-4.10.0.0

Instance details

Defined in GHC.IO.Exception

Show Deadlock

Since: base-4.1.0.0

Instance details

Defined in GHC.IO.Exception

Show ExitCode 
Instance details

Defined in GHC.IO.Exception

Show FixIOException

Since: base-4.11.0.0

Instance details

Defined in GHC.IO.Exception

Show IOErrorType

Since: base-4.1.0.0

Instance details

Defined in GHC.IO.Exception

Show IOException

Since: base-4.1.0.0

Instance details

Defined in GHC.IO.Exception

Show SomeAsyncException

Since: base-4.7.0.0

Instance details

Defined in GHC.IO.Exception

Show BufferMode

Since: base-4.2.0.0

Instance details

Defined in GHC.IO.Handle.Types

Show Handle

Since: base-4.1.0.0

Instance details

Defined in GHC.IO.Handle.Types

Show HandleType

Since: base-4.1.0.0

Instance details

Defined in GHC.IO.Handle.Types

Show Newline

Since: base-4.3.0.0

Instance details

Defined in GHC.IO.Handle.Types

Show NewlineMode

Since: base-4.3.0.0

Instance details

Defined in GHC.IO.Handle.Types

Show Int16

Since: base-2.1

Instance details

Defined in GHC.Int

Show Int32

Since: base-2.1

Instance details

Defined in GHC.Int

Show Int64

Since: base-2.1

Instance details

Defined in GHC.Int

Show Int8

Since: base-2.1

Instance details

Defined in GHC.Int

Show CallStack

Since: base-4.9.0.0

Instance details

Defined in GHC.Show

Show SrcLoc

Since: base-4.9.0.0

Instance details

Defined in GHC.Show

Show GeneralCategory

Since: base-2.1

Instance details

Defined in GHC.Unicode

Show Word16

Since: base-2.1

Instance details

Defined in GHC.Word

Show Word32

Since: base-2.1

Instance details

Defined in GHC.Word

Show Word64

Since: base-2.1

Instance details

Defined in GHC.Word

Show Lexeme

Since: base-2.1

Instance details

Defined in Text.Read.Lex

Show Number

Since: base-4.6.0.0

Instance details

Defined in Text.Read.Lex

Show ByteString 
Instance details

Defined in Data.ByteString.Internal

Show ByteString 
Instance details

Defined in Data.ByteString.Lazy.Internal

Show ShortByteString 
Instance details

Defined in Data.ByteString.Short.Internal

Show IntSet 
Instance details

Defined in Data.IntSet.Internal

Show Relation 
Instance details

Defined in Data.IntSet.Internal

Methods

showsPrec :: Int -> Relation -> ShowS Source #

show :: Relation -> String Source #

showList :: [Relation] -> ShowS Source #

Show ForeignSrcLang 
Instance details

Defined in GHC.ForeignSrcLang.Type

Show Extension 
Instance details

Defined in GHC.LanguageExtensions.Type

Show KindRep 
Instance details

Defined in GHC.Show

Show Module

Since: base-4.9.0.0

Instance details

Defined in GHC.Show

Show Ordering

Since: base-2.1

Instance details

Defined in GHC.Show

Show TrName

Since: base-4.9.0.0

Instance details

Defined in GHC.Show

Show TyCon

Since: base-2.1

Instance details

Defined in GHC.Show

Show TypeLitSort

Since: base-4.11.0.0

Instance details

Defined in GHC.Show

Show ByteArray 
Instance details

Defined in Data.Primitive.ByteArray

Methods

showsPrec :: Int -> ByteArray -> ShowS Source #

show :: ByteArray -> String Source #

showList :: [ByteArray] -> ShowS Source #

Show AnnLookup 
Instance details

Defined in Language.Haskell.TH.Syntax

Show AnnTarget 
Instance details

Defined in Language.Haskell.TH.Syntax

Show Bang 
Instance details

Defined in Language.Haskell.TH.Syntax

Show Body 
Instance details

Defined in Language.Haskell.TH.Syntax

Show Bytes 
Instance details

Defined in Language.Haskell.TH.Syntax

Show Callconv 
Instance details

Defined in Language.Haskell.TH.Syntax

Show Clause 
Instance details

Defined in Language.Haskell.TH.Syntax

Show Con 
Instance details

Defined in Language.Haskell.TH.Syntax

Show Dec 
Instance details

Defined in Language.Haskell.TH.Syntax

Show DecidedStrictness 
Instance details

Defined in Language.Haskell.TH.Syntax

Show DerivClause 
Instance details

Defined in Language.Haskell.TH.Syntax

Show DerivStrategy 
Instance details

Defined in Language.Haskell.TH.Syntax

Show Exp 
Instance details

Defined in Language.Haskell.TH.Syntax

Show FamilyResultSig 
Instance details

Defined in Language.Haskell.TH.Syntax

Show Fixity 
Instance details

Defined in Language.Haskell.TH.Syntax

Show FixityDirection 
Instance details

Defined in Language.Haskell.TH.Syntax

Show Foreign 
Instance details

Defined in Language.Haskell.TH.Syntax

Show FunDep 
Instance details

Defined in Language.Haskell.TH.Syntax

Show Guard 
Instance details

Defined in Language.Haskell.TH.Syntax

Show Info 
Instance details

Defined in Language.Haskell.TH.Syntax

Show InjectivityAnn 
Instance details

Defined in Language.Haskell.TH.Syntax

Show Inline 
Instance details

Defined in Language.Haskell.TH.Syntax

Show Lit 
Instance details

Defined in Language.Haskell.TH.Syntax

Show Loc 
Instance details

Defined in Language.Haskell.TH.Syntax

Show Match 
Instance details

Defined in Language.Haskell.TH.Syntax

Show ModName 
Instance details

Defined in Language.Haskell.TH.Syntax

Show Module 
Instance details

Defined in Language.Haskell.TH.Syntax

Show ModuleInfo 
Instance details

Defined in Language.Haskell.TH.Syntax

Show Name 
Instance details

Defined in Language.Haskell.TH.Syntax

Show NameFlavour 
Instance details

Defined in Language.Haskell.TH.Syntax

Show NameSpace 
Instance details

Defined in Language.Haskell.TH.Syntax

Show OccName 
Instance details

Defined in Language.Haskell.TH.Syntax

Show Overlap 
Instance details

Defined in Language.Haskell.TH.Syntax

Show Pat 
Instance details

Defined in Language.Haskell.TH.Syntax

Show PatSynArgs 
Instance details

Defined in Language.Haskell.TH.Syntax

Show PatSynDir 
Instance details

Defined in Language.Haskell.TH.Syntax

Show Phases 
Instance details

Defined in Language.Haskell.TH.Syntax

Show PkgName 
Instance details

Defined in Language.Haskell.TH.Syntax

Show Pragma 
Instance details

Defined in Language.Haskell.TH.Syntax

Show Range 
Instance details

Defined in Language.Haskell.TH.Syntax

Show Role 
Instance details

Defined in Language.Haskell.TH.Syntax

Show RuleBndr 
Instance details

Defined in Language.Haskell.TH.Syntax

Show RuleMatch 
Instance details

Defined in Language.Haskell.TH.Syntax

Show Safety 
Instance details

Defined in Language.Haskell.TH.Syntax

Show SourceStrictness 
Instance details

Defined in Language.Haskell.TH.Syntax

Show SourceUnpackedness 
Instance details

Defined in Language.Haskell.TH.Syntax

Show Specificity 
Instance details

Defined in Language.Haskell.TH.Syntax

Show Stmt 
Instance details

Defined in Language.Haskell.TH.Syntax

Show TyLit 
Instance details

Defined in Language.Haskell.TH.Syntax

Show TySynEqn 
Instance details

Defined in Language.Haskell.TH.Syntax

Show Type 
Instance details

Defined in Language.Haskell.TH.Syntax

Show TypeFamilyHead 
Instance details

Defined in Language.Haskell.TH.Syntax

Show CodePoint 
Instance details

Defined in Data.Text.Encoding

Methods

showsPrec :: Int -> CodePoint -> ShowS Source #

show :: CodePoint -> String Source #

showList :: [CodePoint] -> ShowS Source #

Show DecoderState 
Instance details

Defined in Data.Text.Encoding

Methods

showsPrec :: Int -> DecoderState -> ShowS Source #

show :: DecoderState -> String Source #

showList :: [DecoderState] -> ShowS Source #

Show Decoding 
Instance details

Defined in Data.Text.Encoding

Show UnicodeException 
Instance details

Defined in Data.Text.Encoding.Error

Show Word8

Since: base-2.1

Instance details

Defined in GHC.Word

Show Integer

Since: base-2.1

Instance details

Defined in GHC.Show

Show Natural

Since: base-4.8.0.0

Instance details

Defined in GHC.Show

Show ()

Since: base-2.1

Instance details

Defined in GHC.Show

Methods

showsPrec :: Int -> () -> ShowS Source #

show :: () -> String Source #

showList :: [()] -> ShowS Source #

Show Bool

Since: base-2.1

Instance details

Defined in GHC.Show

Show Char

Since: base-2.1

Instance details

Defined in GHC.Show

Show Int

Since: base-2.1

Instance details

Defined in GHC.Show

Show RuntimeRep

Since: base-4.11.0.0

Instance details

Defined in GHC.Show

Show VecCount

Since: base-4.11.0.0

Instance details

Defined in GHC.Show

Show VecElem

Since: base-4.11.0.0

Instance details

Defined in GHC.Show

Show Word

Since: base-2.1

Instance details

Defined in GHC.Show

Show a => Show (ZipList a)

Since: base-4.7.0.0

Instance details

Defined in Control.Applicative

Show a => Show (Identity a)

This instance would be equivalent to the derived instances of the Identity newtype if the runIdentity field were removed

Since: base-4.8.0.0

Instance details

Defined in Data.Functor.Identity

Show a => Show (First a)

Since: base-2.1

Instance details

Defined in Data.Monoid

Show a => Show (Last a)

Since: base-2.1

Instance details

Defined in Data.Monoid

Methods

showsPrec :: Int -> Last a -> ShowS Source #

show :: Last a -> String Source #

showList :: [Last a] -> ShowS Source #

Show a => Show (Down a)

This instance would be equivalent to the derived instances of the Down newtype if the getDown field were removed

Since: base-4.7.0.0

Instance details

Defined in Data.Ord

Methods

showsPrec :: Int -> Down a -> ShowS Source #

show :: Down a -> String Source #

showList :: [Down a] -> ShowS Source #

Show a => Show (Dual a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

showsPrec :: Int -> Dual a -> ShowS Source #

show :: Dual a -> String Source #

showList :: [Dual a] -> ShowS Source #

Show a => Show (Product a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Show a => Show (Sum a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

showsPrec :: Int -> Sum a -> ShowS Source #

show :: Sum a -> String Source #

showList :: [Sum a] -> ShowS Source #

Show a => Show (NonEmpty a)

Since: base-4.11.0.0

Instance details

Defined in GHC.Show

Show p => Show (Par1 p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Generics

Methods

showsPrec :: Int -> Par1 p -> ShowS Source #

show :: Par1 p -> String Source #

showList :: [Par1 p] -> ShowS Source #

Show (FunPtr a)

Since: base-2.1

Instance details

Defined in GHC.Ptr

Show (Ptr a)

Since: base-2.1

Instance details

Defined in GHC.Ptr

Methods

showsPrec :: Int -> Ptr a -> ShowS Source #

show :: Ptr a -> String Source #

showList :: [Ptr a] -> ShowS Source #

Show a => Show (Ratio a)

Since: base-2.0.1

Instance details

Defined in GHC.Real

Show a => Show (IntMap a) 
Instance details

Defined in Data.IntMap.Internal

Show a => Show (Seq a) 
Instance details

Defined in Data.Sequence.Internal

Methods

showsPrec :: Int -> Seq a -> ShowS Source #

show :: Seq a -> String Source #

showList :: [Seq a] -> ShowS Source #

Show a => Show (ViewL a) 
Instance details

Defined in Data.Sequence.Internal

Show a => Show (ViewR a) 
Instance details

Defined in Data.Sequence.Internal

Show a => Show (Set a) 
Instance details

Defined in Data.Set.Internal

Methods

showsPrec :: Int -> Set a -> ShowS Source #

show :: Set a -> String Source #

showList :: [Set a] -> ShowS Source #

Show a => Show (Tree a) 
Instance details

Defined in Data.Tree

Methods

showsPrec :: Int -> Tree a -> ShowS Source #

show :: Tree a -> String Source #

showList :: [Tree a] -> ShowS Source #

Show a => Show (Hashed a) 
Instance details

Defined in Data.Hashable.Class

Show a => Show (Array a) 
Instance details

Defined in Data.Primitive.Array

Methods

showsPrec :: Int -> Array a -> ShowS Source #

show :: Array a -> String Source #

showList :: [Array a] -> ShowS Source #

(Show a, Prim a) => Show (PrimArray a) 
Instance details

Defined in Data.Primitive.PrimArray

Methods

showsPrec :: Int -> PrimArray a -> ShowS Source #

show :: PrimArray a -> String Source #

showList :: [PrimArray a] -> ShowS Source #

Show a => Show (SmallArray a) 
Instance details

Defined in Data.Primitive.SmallArray

Methods

showsPrec :: Int -> SmallArray a -> ShowS Source #

show :: SmallArray a -> String Source #

showList :: [SmallArray a] -> ShowS Source #

Show flag => Show (TyVarBndr flag) 
Instance details

Defined in Language.Haskell.TH.Syntax

Show a => Show (HashSet a) 
Instance details

Defined in Data.HashSet.Internal

Show a => Show (Vector a) 
Instance details

Defined in Data.Vector

(Show a, Prim a) => Show (Vector a) 
Instance details

Defined in Data.Vector.Primitive

(Show a, Storable a) => Show (Vector a) 
Instance details

Defined in Data.Vector.Storable

Show a => Show (Maybe a)

Since: base-2.1

Instance details

Defined in GHC.Show

Show a => Show (a)

Since: base-4.15

Instance details

Defined in GHC.Show

Methods

showsPrec :: Int -> (a) -> ShowS Source #

show :: (a) -> String Source #

showList :: [(a)] -> ShowS Source #

Show a => Show [a]

Since: base-2.1

Instance details

Defined in GHC.Show

Methods

showsPrec :: Int -> [a] -> ShowS Source #

show :: [a] -> String Source #

showList :: [[a]] -> ShowS Source #

(Show a, Show b) => Show (Either a b)

Since: base-3.0

Instance details

Defined in Data.Either

Methods

showsPrec :: Int -> Either a b -> ShowS Source #

show :: Either a b -> String Source #

showList :: [Either a b] -> ShowS Source #

Show (Proxy s)

Since: base-4.7.0.0

Instance details

Defined in Data.Proxy

Show (TypeRep a) 
Instance details

Defined in Data.Typeable.Internal

(Ix a, Show a, Show b) => Show (Array a b)

Since: base-2.1

Instance details

Defined in GHC.Arr

Methods

showsPrec :: Int -> Array a b -> ShowS Source #

show :: Array a b -> String Source #

showList :: [Array a b] -> ShowS Source #

Show (U1 p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

showsPrec :: Int -> U1 p -> ShowS Source #

show :: U1 p -> String Source #

showList :: [U1 p] -> ShowS Source #

Show (V1 p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

showsPrec :: Int -> V1 p -> ShowS Source #

show :: V1 p -> String Source #

showList :: [V1 p] -> ShowS Source #

(Show k, Show a) => Show (Map k a) 
Instance details

Defined in Data.Map.Internal

Methods

showsPrec :: Int -> Map k a -> ShowS Source #

show :: Map k a -> String Source #

showList :: [Map k a] -> ShowS Source #

(Show k, Show v) => Show (HashMap k v) 
Instance details

Defined in Data.HashMap.Internal

Methods

showsPrec :: Int -> HashMap k v -> ShowS Source #

show :: HashMap k v -> String Source #

showList :: [HashMap k v] -> ShowS Source #

(Show a, Show b) => Show (a, b)

Since: base-2.1

Instance details

Defined in GHC.Show

Methods

showsPrec :: Int -> (a, b) -> ShowS Source #

show :: (a, b) -> String Source #

showList :: [(a, b)] -> ShowS Source #

Show a => Show (Const a b)

This instance would be equivalent to the derived instances of the Const newtype if the getConst field were removed

Since: base-4.8.0.0

Instance details

Defined in Data.Functor.Const

Methods

showsPrec :: Int -> Const a b -> ShowS Source #

show :: Const a b -> String Source #

showList :: [Const a b] -> ShowS Source #

Show (f a) => Show (Ap f a)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

showsPrec :: Int -> Ap f a -> ShowS Source #

show :: Ap f a -> String Source #

showList :: [Ap f a] -> ShowS Source #

Show (f a) => Show (Alt f a)

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

showsPrec :: Int -> Alt f a -> ShowS Source #

show :: Alt f a -> String Source #

showList :: [Alt f a] -> ShowS Source #

Show (f p) => Show (Rec1 f p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Generics

Methods

showsPrec :: Int -> Rec1 f p -> ShowS Source #

show :: Rec1 f p -> String Source #

showList :: [Rec1 f p] -> ShowS Source #

Show (URec Char p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Show (URec Double p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Show (URec Float p) 
Instance details

Defined in GHC.Generics

Show (URec Int p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Show (URec Word p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

(Show e, Show1 m, Show a) => Show (ErrorT e m a) 
Instance details

Defined in Control.Monad.Trans.Error

Methods

showsPrec :: Int -> ErrorT e m a -> ShowS Source #

show :: ErrorT e m a -> String Source #

showList :: [ErrorT e m a] -> ShowS Source #

(Show a, Show b, Show c) => Show (a, b, c)

Since: base-2.1

Instance details

Defined in GHC.Show

Methods

showsPrec :: Int -> (a, b, c) -> ShowS Source #

show :: (a, b, c) -> String Source #

showList :: [(a, b, c)] -> ShowS Source #

(Show (f p), Show (g p)) => Show ((f :*: g) p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Generics

Methods

showsPrec :: Int -> (f :*: g) p -> ShowS Source #

show :: (f :*: g) p -> String Source #

showList :: [(f :*: g) p] -> ShowS Source #

(Show (f p), Show (g p)) => Show ((f :+: g) p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Generics

Methods

showsPrec :: Int -> (f :+: g) p -> ShowS Source #

show :: (f :+: g) p -> String Source #

showList :: [(f :+: g) p] -> ShowS Source #

Show c => Show (K1 i c p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Generics

Methods

showsPrec :: Int -> K1 i c p -> ShowS Source #

show :: K1 i c p -> String Source #

showList :: [K1 i c p] -> ShowS Source #

(Show a, Show b, Show c, Show d) => Show (a, b, c, d)

Since: base-2.1

Instance details

Defined in GHC.Show

Methods

showsPrec :: Int -> (a, b, c, d) -> ShowS Source #

show :: (a, b, c, d) -> String Source #

showList :: [(a, b, c, d)] -> ShowS Source #

Show (f (g p)) => Show ((f :.: g) p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Generics

Methods

showsPrec :: Int -> (f :.: g) p -> ShowS Source #

show :: (f :.: g) p -> String Source #

showList :: [(f :.: g) p] -> ShowS Source #

Show (f p) => Show (M1 i c f p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Generics

Methods

showsPrec :: Int -> M1 i c f p -> ShowS Source #

show :: M1 i c f p -> String Source #

showList :: [M1 i c f p] -> ShowS Source #

(Show a, Show b, Show c, Show d, Show e) => Show (a, b, c, d, e)

Since: base-2.1

Instance details

Defined in GHC.Show

Methods

showsPrec :: Int -> (a, b, c, d, e) -> ShowS Source #

show :: (a, b, c, d, e) -> String Source #

showList :: [(a, b, c, d, e)] -> ShowS Source #

(Show a, Show b, Show c, Show d, Show e, Show f) => Show (a, b, c, d, e, f)

Since: base-2.1

Instance details

Defined in GHC.Show

Methods

showsPrec :: Int -> (a, b, c, d, e, f) -> ShowS Source #

show :: (a, b, c, d, e, f) -> String Source #

showList :: [(a, b, c, d, e, f)] -> ShowS Source #

(Show a, Show b, Show c, Show d, Show e, Show f, Show g) => Show (a, b, c, d, e, f, g)

Since: base-2.1

Instance details

Defined in GHC.Show

Methods

showsPrec :: Int -> (a, b, c, d, e, f, g) -> ShowS Source #

show :: (a, b, c, d, e, f, g) -> String Source #

showList :: [(a, b, c, d, e, f, g)] -> ShowS Source #

(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h) => Show (a, b, c, d, e, f, g, h)

Since: base-2.1

Instance details

Defined in GHC.Show

Methods

showsPrec :: Int -> (a, b, c, d, e, f, g, h) -> ShowS Source #

show :: (a, b, c, d, e, f, g, h) -> String Source #

showList :: [(a, b, c, d, e, f, g, h)] -> ShowS Source #

(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i) => Show (a, b, c, d, e, f, g, h, i)

Since: base-2.1

Instance details

Defined in GHC.Show

Methods

showsPrec :: Int -> (a, b, c, d, e, f, g, h, i) -> ShowS Source #

show :: (a, b, c, d, e, f, g, h, i) -> String Source #

showList :: [(a, b, c, d, e, f, g, h, i)] -> ShowS Source #

(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j) => Show (a, b, c, d, e, f, g, h, i, j)

Since: base-2.1

Instance details

Defined in GHC.Show

Methods

showsPrec :: Int -> (a, b, c, d, e, f, g, h, i, j) -> ShowS Source #

show :: (a, b, c, d, e, f, g, h, i, j) -> String Source #

showList :: [(a, b, c, d, e, f, g, h, i, j)] -> ShowS Source #

(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k) => Show (a, b, c, d, e, f, g, h, i, j, k)

Since: base-2.1

Instance details

Defined in GHC.Show

Methods

showsPrec :: Int -> (a, b, c, d, e, f, g, h, i, j, k) -> ShowS Source #

show :: (a, b, c, d, e, f, g, h, i, j, k) -> String Source #

showList :: [(a, b, c, d, e, f, g, h, i, j, k)] -> ShowS Source #

(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l) => Show (a, b, c, d, e, f, g, h, i, j, k, l)

Since: base-2.1

Instance details

Defined in GHC.Show

Methods

showsPrec :: Int -> (a, b, c, d, e, f, g, h, i, j, k, l) -> ShowS Source #

show :: (a, b, c, d, e, f, g, h, i, j, k, l) -> String Source #

showList :: [(a, b, c, d, e, f, g, h, i, j, k, l)] -> ShowS Source #

(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l, Show m) => Show (a, b, c, d, e, f, g, h, i, j, k, l, m)

Since: base-2.1

Instance details

Defined in GHC.Show

Methods

showsPrec :: Int -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> ShowS Source #

show :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> String Source #

showList :: [(a, b, c, d, e, f, g, h, i, j, k, l, m)] -> ShowS Source #

(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l, Show m, Show n) => Show (a, b, c, d, e, f, g, h, i, j, k, l, m, n)

Since: base-2.1

Instance details

Defined in GHC.Show

Methods

showsPrec :: Int -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> ShowS Source #

show :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> String Source #

showList :: [(a, b, c, d, e, f, g, h, i, j, k, l, m, n)] -> ShowS Source #

(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l, Show m, Show n, Show o) => Show (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o)

Since: base-2.1

Instance details

Defined in GHC.Show

Methods

showsPrec :: Int -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> ShowS Source #

show :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> String Source #

showList :: [(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o)] -> ShowS Source #

type ShowS = String -> String Source #

The shows functions return a function that prepends the output String to an existing String. This allows constant-time concatenation of results using function composition.

shows :: Show a => a -> ShowS Source #

equivalent to showsPrec with a precedence of 0.

showChar :: Char -> ShowS Source #

utility function converting a Char to a show function that simply prepends the character unchanged.

showString :: String -> ShowS Source #

utility function converting a String to a show function that simply prepends the string unchanged.

showParen :: Bool -> ShowS -> ShowS Source #

utility function that surrounds the inner show function with parentheses when the Bool parameter is True.

type ReadS a = String -> [(a, String)] Source #

A parser for a type a, represented as a function that takes a String and returns a list of possible parses as (a,String) pairs.

Note that this kind of backtracking parser is very inefficient; reading a large structure may be quite slow (cf ReadP).

readsPrec Source #

Arguments

:: Read a 
=> Int

the operator precedence of the enclosing context (a number from 0 to 11). Function application has precedence 10.

-> ReadS a 

attempts to parse a value from the front of the string, returning a list of (parsed value, remaining string) pairs. If there is no successful parse, the returned list is empty.

Derived instances of Read and Show satisfy the following:

That is, readsPrec parses the string produced by showsPrec, and delivers the value that showsPrec started with.

readList :: Read a => ReadS [a] Source #

The method readList is provided to allow the programmer to give a specialised way of parsing lists of values. For example, this is used by the predefined Read instance of the Char type, where values of type String should be are expected to use double quotes, rather than square brackets.

reads :: Read a => ReadS a Source #

equivalent to readsPrec with a precedence of 0.

readParen :: Bool -> ReadS a -> ReadS a Source #

readParen True p parses what p parses, but surrounded with parentheses.

readParen False p parses what p parses, but optionally surrounded with parentheses.

lex :: ReadS String Source #

The lex function reads a single lexeme from the input, discarding initial white space, and returning the characters that constitute the lexeme. If the input string contains only white space, lex returns a single successful `lexeme' consisting of the empty string. (Thus lex "" = [("","")].) If there is no legal lexeme at the beginning of the input string, lex fails (i.e. returns []).

This lexer is not completely faithful to the Haskell lexical syntax in the following respects:

  • Qualified names are not handled properly
  • Octal and hexadecimal numerics are not recognized as a single token
  • Comments are not treated properly

readMay :: Read a => Text -> Maybe a Source #

IO operations

getChar :: MonadIO m => m Char Source #

Since: 0.7.0

putChar :: MonadIO m => Char -> m () Source #

Since: 0.7.0

readLn :: (MonadIO m, Read a) => m a Source #

The readLn function combines getLine and readIO.

Since: 0.7.0