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Faust Libraries

NOTE: this documentation was automatically generated.

This page provides information on how to use the Faust libraries.
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The /libraries folder contains the different Faust libraries. If you wish to add
your own functions to this library collection, you can refer to the “Contributing”
section providing a set of coding conventions.

WARNING: These libraries replace the “old” Faust libraries. They are still being
beta tested so you might encounter bugs while using them. If your codes still
use the “old” Faust libraries, you might want to try to use Bart Brouns’ script
that automatically makes an old Faust code compatible with the new libraries:
https://github.com/magnetophon /faust Compressors/blob/master /newlib.sh. If
you find a bug, please report it at rmichon_at_ccrma_ dot_ stanford dot_ edu.
Thanks ;)!

Using the Faust Libraries

The easiest and most standard way to use the Faust libraries is to import
stdfaust.lib in your Faust code:

import ("stdfaust.lib");
This will give you access to all the Faust libraries through a series of environments:

e sf: all.lib

e an: analyzer.lib

e ba: basic.lib

e co: compressor.lib
e de: delay.lib

e dm: demo.lib

e en: envelope.lib

o fi: filter.lib

e ho: hoa.lib

e ma: math.lib

o ef: misceffect.lib
e os: miscoscillator.lib
e no: noise.lib

e pf: phafla.lib

e pm: pm.lib

e re: reverb.lib

e ro: route.lib

e si: signal.lib

e sp: spat.lib

e sy: synth.1lib

e ve: vaeffect.lib

Environments can then be used as follows in your Faust code:

import ("stdfaust.lib");
process = os.osc(440);
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In this case, we're calling the osc function from miscoscillator.lib.

You can also access all the functions of all the libraries directly using the sf
environment:

import ("stdfaust.lib");
process = sf.osc(440);

Alternatively, environments can be created by hand:

os = library("miscoscillator.lib");
process = os.osc(440);

Finally, libraries can be simply imported in the Faust code (not recommended):

import("miscoscillator.1ib") ;
process = osc(440);

Contributing

If you wish to add a function to any of these libraries or if you plan to add a
new library, make sure that you follow the following conventions:

New Functions

o All functions must be preceded by a markdown documentation header
respecting the following format (open the source code of any of the libraries
for an example):

/)= functionName-—------—-—————————-
// Description

//

// #### Usage

//

/17

// Usage Example

/17

//

// Where:

//

// * argumentl: argument 1 description

/) e

e Every time a new function is added, the documentation should be updated
simply by running make doclib.

o The environment system (e.g. os.osc) should be used when calling a
function declared in another library (see the section on Using the Faust
Libraries).
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o Try to reuse exisiting functions as much as possible.
o If you have any question, send an e-mail to rmichon_ at_ccrma_ dot_ stanford dot_ edu.

New Libraries

e Any new “standard” library should be declared in stdfaust.lib with its
own environment (2 letters - see stdfaust.lib).

e Any new “standard” library must be added to generateDoc.

o Functions must be organized by sections.

e Any new library should at least declare a name and a version.

e The comment based markdown documentation of each library must respect
the following format (open the source code of any of the libraries for an
example):

[ /# R LibraryName ##H#H#H
// Description

//

// * Section Name 1

// * Section Name 2

/] % ...

!/

// It should be used using the “[...]  environment:
//

/)

// [...]1 = library("libraryName") ;

// process = [...].functionCall;

/]

//

// Another option is to import ~stdfaust.lib® which already contains the " [...

// environment:

//

// "

// import("stdfaust.lib");

// process = [...].functionCall;

/"

/[ R H BB H R R AR R R R R R

// Section Name
// Description

//

¢ If you have any question, send an e-mail to rmichon_ at_ ccrma_ dot_ stanford_dot_ edu.
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General Organization

Only the libraries that are considered to be “standard” are documented:

e analyzer.lib

e basic.lib

e compressor.lib

e delay.lib

e demo.lib

e envelope.lib

o filter.lib

e hoa.lib

e math.lib

e misceffect.lib

e miscoscillator.lib
e noise.lib

e phafla.lib

. pmllb

e reverb.lib

e route.lib

e signal.lib

e spat.lib

e synth.lib

o tonestack.lib (not documented but example in /examples/misc)
e tube.lib (not documented but example in /examples/misc)
e vaeffect.lib

Other deprecated libraries such as music.lib, etc. are present but are not
documented to not confuse new users.

The doumentation of each library can be found in /documentation/library.html
or in /documentation/library.pdf.

The /examples directory contains all the examples from the /examples folder of
the Faust distribution as well as new ones. Most of them were updated to reflect
the coding conventions described in the next section. Examples are organized
by types in different folders. The /o01d folder contains examples that are fully
deprecated, probably because they were integrated to the libraries and fully
rewritten (see freeverb.dsp for example). Examples using deprecated libraries
were integrated to the general tree but a warning comment was added at their
beginning to point readers to the right library and function.

Coding Conventions
In order to have a uniformized library system, we established the following

conventions (that hopefully will be followed by others when making modifications
to them :-) ).

14



Documentation

All the functions that we want to be “public” are documented.

We used the faust2md “standards” for each library: //### for main title
(library name - equivalent to # in markdown), //=== for section declara-
tions (equivalent to ## in markdown) and //--- for function declarations
(equivalent to #### in markdown - see basic.1ib for an example).
Sections in function documentation should be declared as #### markdown
title.

Each function documentation provides a “Usage” section (see basic.1ib).

Library Import

To prevent cross-references between libraries we generalized the use of the
library("") system for function calls in all the libraries. This means that
everytime a function declared in another library is called, the environment
corresponding to this library needs to be called too. To make things easier, a
stdfaust.lib library was created and is imported by all the libraries:

an

ba =

co
de
dm
en
fi
ho
ma
ef
os
no
pf
pm
re
ro
sSp
si
sy
ve

library("analyzer.lib") ;
library("basic.lib");
library("compressor.1lib");
library("delay.lib");
library("demo.lib");
library("envelope.lib") ;
library("filter.lib");
library("hoa.lib");
library("math.1ib");
library("misceffect.1ib");
library("miscoscillator.1lib");
library("noise.lib");
library("phafla.lib");
library("pm.lib");
library("reverb.1ib");
library("route.lib");
library("spat.lib");
library("signal.lib");
library("synth.lib");
library("vaeffect.lib");

For example, if we wanted to use the smooth function which is now declared in
signal.lib, we would do the following:

import ("stdfaust.lib");

process = si.smooth(0.999);
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This standard is only used within the libraries: nothing prevents coders to still
import signal.lib directly and call smooth without ro., etc.

“Demo” Functions

“Demo” functions are placed in demo.1lib and have a built-in user interface (UI).
Their name ends with the _demo suffix. Each of these function have a .dsp file
associated to them in the /examples folder.

Any function containing UI elements should be placed in this library and respect
these standards.

“Standard” Functions

“Standard” functions are here to simplify the life of new (or not so new) Faust
coders. They are declared in /libraries/doc/standardFunctions.md and
allow to point programmers to preferred functions to carry out a specific task. For
example, there are many different types of lowpass filters declared in filter.1lib
and only one of them is considered to be standard, etc.

The question of licensing/authoring/copyrigth

Now that Faust libraries are not author specific, each function will be able to
have its own licence/author declaration. This means that some libraries wont
have a global licence/author/copyright declaration like it used to be the case.

Standard Functions

Dozens of functions are implemented in the Faust libraries and many of them are
very specialized and not useful to beginners or to people who only need to use
Faust for basic applications. This section offers an index organized by categories
of the “standard Faust functions” (basic filters, effects, synthesizers, etc.). This
index only contains functions without a user interface (UI). Faust functions with
a built-in UT can be found in demo.1lib.

Analysis Tools

Function Type Function Name Description
Amplitude Follower an.amp_follower Classic analog audio envelope follower
Octave Analyzers an.mth_octave_analyzer[N] Octave analyzers
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Basic Elements

Function Type

Function Name Description

Beats ba.beat Pulses at a specific tempo
Block si.block Terminate n signals

Break Point Function ba.bpf Beak Point Function (BPF)
Bus si.bus Bus of n signals

Bypass (Mono) ba.bypassi Mono bypass

Bypass (Stereo) ba.bypass2 Stereo bypass

Count Elements ba.count Count elements in a list
Count Down ba.countdown  Samples count down

Count Up ba.countup Samples count up

Delay (Integer) de.delay Integer delay

Delay (Float) de.fdelay Fractional delay

Impulsify ba.impulsify  Turns a signal into an impulse
Sample and Hold ba.sAndH Sample and hold

Signal Crossing ro.cross Cross n signals

Smoother (Default) si.smoo Exponential smoothing
Smoother si.smooth Exponential smoothing with controllable pole
Take Element ba.take Take en element from a list
Time ba.time A simple timer
Conversion

Function Type

Function Name  Description

dB to Linear
Linear to dB

ba.
ba.

db2linear Converts dB to linear values
linear2db Converts linear values to dB

MIDI Key to Hz ba.midikey2hz Converts a MIDI key number into a frequency
Pole to T60 ba.pole2tau Converts a pole into a time constant (t60)
Samples to Seconds ba.samp2sec Converts samples to seconds

Seconds to Samples ba.sec2samp Converts seconds to samples

T60 to Pole ba.tau2pole Converts a time constant (t60) into a pole
Effects

Function Type Function Name Description

Auto Wah ve.autowah Auto-Wah effect

Compressor CO.Compressor_mono Dynamic range compressor
Distortion ef.cubicnl Cubic nonlinearity distortion
Crybaby ve.crybaby Crybaby wah pedal

Echo ef.echo Simple echo
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Function Type

Function Name

Description

Flanger pf.flanger_stereo Flanging effect

Gate ef .gate_mono Mono signal gate

Limiter co.limiter_1176_R4_mono Limiter

Phaser pf .phaser2_stereo Phaser effect

Reverb (FDN) re.fdnrev0 Feedback delay network reverberator
Reverb (Freeverb) re.mono_freeverb Most “famous” Schroeder reverberator
Reverb (Simple) re.jcrev Simple Schroeder reverberator
Reverb (Zita) re.zita_revl_stereo High quality FDN reverberator
Panner Sp.panner Linear stereo panner

Pitch Shift ef .transpose Simple pitch shifter

Panner Sp.spat N outputs spatializer

Speaker Simulator ef.speakerbp Simple speaker simulator

Stereo Width ef.stereo_width Stereo width effect

Vocoder ve.vocoder Simple vocoder

Wah ve.wah4 Wah effect

Envelope Generators

Function Type Function Name Description

ADSR en.adsr Attack/Decay/Sustain/Release envelope generator
AR en.ar Attack/Release envelope generator

ASR en.asr Attack/Sustain/Release envelope generator
Exponential en.smoothEnvelope Exponential envelope generator

Filters

Function Type

Function Name

Description

Bandpass (Butterworth)
Bandpass (Resonant)
Bandstop (Butterworth)
Biquad

Comb (Allpass)

Comb (Feedback)

Comb (Feedforward)
DC Blocker

Filterbank

FIR (Arbitrary Order)
High Shelf

Highpass (Butterworth)
Highpass (Resonant)

fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi

.bandpass
.resonbp
.bandstop
.tf2
.allpass_fcomb
.fb_fcomb
.ff_fcomb
.dcblocker
.filterbank
Jfir
.high_shelf
.highpass
.resonhp
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Generic butterworth bandpass
Virtual analog resonant bandpass
Generic butterworth bandstop
“Standard” biquad filter
Schroeder allpass comb filter
Feedback comb filter
Feed-forward comb filter.
Default dc blocker

Generic filter bank

Nth-order FIR filter

High shelf

Nth-order Butterworth highpass
Virtual analog resonant highpass



Function Type

Function Name

Description

ITR (Arbitrary Order)

Level Filter
Low Shelf

Lowpass (Butterworth)
Lowpass (Resonant)

Notch Filter
Peak Equalizer

fi.iir
fi.levelfilter
fi.low_shelf
fi.lowpass
fi.resonlp
fi.notchw
fi.peak_eq

Nth-order IIR filter

Dynamic level lowpass

Low shelf

Nth-order Butterworth lowpass
Virtual analog resonant lowpass
Simple notch filter

Peaking equalizer section

Oscillators/Sound Generators

Function Type

Function Name

Description

Impulse
Impulse Train
Phasor

Pink Noise
Pulse Train

os.impulse
os.imptrain
os.phasor
no.pink_noise
os.pulsetrain

Pulse Train (Low Frequency) os.lf_imptrain

Sawtooth os.sawtooth
Sawtooth (Low Frequency) os.1lf_saw
Sine (Filter-Based) 0s.o0sc

Sine (Table-Based) os.oscsin
Square os.square

Square (Low Frequency)

Triangle

os.1lf_squarewave
os.triangle

Triangle (Low Frequency) os.1lf_triangle

White Noise

no.noise

Generate an impulse on start-up
Band-limited impulse train
Simple phasor

Pink noise generator
Band-limited pulse train
Low-frequency pulse train
Band-limited sawtooth wave
Low-frequency sawtooth wave
Sine oscillator (filter-based)
Sine oscillator (table-based)
Band-limited square wave
Low-frequency square wave
Band-limited triangle wave
Low-frequency triangle wave
White noise generator

Synths

Function Type

Function Name

Description

Additive Drum

Bandpassed Sawtooth

Comb String
FM

Lowpassed Sawtooth

Popping Filter

sy.additiveDrum
sy .dubDub
sy.combString

Additive synthesis drum
Sawtooth through resonant bandpass
String model based on a comb filter

sy.fm Frequency modulation synthesizer

sy .sawTrombone

“Trombone” based on a filtered sawtooth

sy.popFilterPerc Popping filter percussion instrument
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analyzer.lib

This library contains a collection of tools to analyze signals.
It should be used using the an environment:

an = library("analyzer.lib");
process = an.functionCall;

Another option is to import stdfaust.lib which already contains the an envi-
ronment:

import ("stdfaust.lib");
process = an.functionCall;

Amplitude Tracking
amp_follower

Classic analog audio envelope follower with infinitely fast rise and exponential
decay. The amplitude envelope instantaneously follows the absolute value going
up, but then floats down exponentially. amp_follower is a standard Faust
function.

Usage
_ : amp_follower(rel)
Where:

e rel: release time = amplitude-envelope time-constant (sec) going down

Reference

e Musical Engineer’s Handbook, Bernie Hutchins, Ithaca NY, 1975 Elec-
tronotes Newsletter, Bernie Hutchins

amp_follower_ud

Envelope follower with different up and down time-constants (also called a “peak
detector”).
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Usage
_ : amp_follower_ud(att,rel)
Where:

e att: attack time = amplitude-envelope time constant (sec) going up
o rel: release time = amplitude-envelope time constant (sec) going down

Note

We assume rel >> att. Otherwise, consider rel ~ max(rel,att). For audio, att is
normally faster (smaller) than rel (e.g., 0.001 and 0.01). Use amp_follower_ar
below to remove this restriction.

Reference

¢ “Digital Dynamic Range Compressor Design — A Tutorial and Analysis”,
by Dimitrios Giannoulis, Michael Massberg, and Joshua D. Reiss http://
www.eecs.qmul.ac.uk/~josh/documents/GiannoulisMassbergReiss-dynamicrangecompression- JAES2012.
pdf

amp_follower_ar

Envelope follower with independent attack and release times. The release can
be shorter than the attack (unlike in amp_follower_ud above).

Usage

_ : amp_follower_ar(att,rel) : _;

Spectrum-Analyzers

Spectrum-analyzers split the input signal into a bank of parallel signals, one
for each spectral band. They are related to the Mth-Octave Filter-Banks in
filter.lib. The documentation of this library contains more details about the
implementation. The parameters are:

o M: number of band-slices per octave (>1)
o N: total number of bands (>2)
e ftop = upper bandlimit of the Mth-octave bands (<SR/2)
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In addition to the Mth-octave output signals, there is a highpass signal containing
frequencies from ftop to SR/2, and a “dc band” lowpass signal containing
frequencies from 0 (dc) up to the start of the Mth-octave bands. Thus, the N
output signals are

highpass(ftop), MthOctaveBands(M,N-2,ftop), dcBand(ftop*2~ (-M*(N-1)))

A Spectrum-Analyzer is defined here as any band-split whose bands span the
relevant spectrum, but whose band-signals do not necessarily sum to the original
signal, either exactly or to within an allpass filtering. Spectrum analyzer outputs
are normally at least nearly “power complementary”, i.e., the power spectra
of the individual bands sum to the original power spectrum (to within some
negligible tolerance).

Increasing Channel Isolation

Go to higher filter orders - see Regalia et al. or Vaidyanathan (cited below)
regarding the construction of more aggressive recursive filter-banks using elliptic
or Chebyshev prototype filters.

References

o “Tree-structured complementary filter banks using all-pass sections”, Re-
galia et al., IEEE Trans. Circuits & Systems, CAS-34:1470-1484, Dec.
1987

e “Multirate Systems and Filter Banks”, P. Vaidyanathan, Prentice-Hall,
1993

o Elementary filter theory: https://ccrma.stanford.edu/~jos/filters/

mth_octave_analyzer

Octave analyzer. mth_octave_analyzer [N] are standard Faust functions.

Usage

_ : mth_octave_analyzer(0,M,ftop,N) : par(i,N,_); // Oth-order Butterworth
_ : mth_octave_analyzer6e(M,ftop,N) : par(i,N,_); // 6th-order elliptic

Also for convenience:

_ @ mth_octave_analyzer3(M,ftop,N) : par(i,N,_); // 3d-order Butterworth
_ : mth_octave_analyzer5(M,ftop,N) : par(i,N,_); // 5th-roder Butterworth
mth_octave_analyzer_default = mth_octave_analyzer6e;

Where:

e 0: order of filter used to split each frequency band into two

22



e M: number of band-slices per octave
o ftop: highest band-split crossover frequency (e.g., 20 kHz)
e N: total number of bands (including dc¢ and Nyquist)

Mth-Octave Spectral Level

Spectral Level: Display (in bar graphs) the average signal level in each spectral
band.

mth_octave_spectral_level6e

Spectral level display.

Usage:
_ : mth_octave_spectral_level6e(M,ftop,NBands,tau,dB_offset) : _;
Where:

e M: bands per octave

o ftop: lower edge frequency of top band

e NBands: number of passbands (including highpass and dc bands),
« tau: spectral display averaging-time (time constant) in seconds,
e dB_offset: constant dB offset in all band level meters.

Also for convenience:

mth_octave_spectral_level_default = mth_octave_spectral_level6e;
spectral_level = mth_octave_spectral_level(2,10000,20);

[third|half] _octave_[analyzer|filterbank]

A bunch of special cases based on the different analyzer functions described
above:

third_octave_analyzer(N) = mth_octave_analyzer_default(3,10000,N);
third_octave_filterbank(N) = mth_octave_filterbank_default(3,10000,N);
half_octave_analyzer(N) = mth_octave_analyzer_default(2,10000,N);
half_octave_filterbank(N) = mth_octave_filterbank_default(2,10000,N);
octave_filterbank(N) = mth_octave_filterbank_default(1,10000,N);
octave_analyzer(N) = mth_octave_analyzer_default(1,10000,N);

23



Usage

See mth_octave_spectral_level_demo.

Arbritary-Crossover Filter-Banks and Spectrum Analyzers

These are similar to the Mth-octave analyzers above, except that the band-split
frequencies are passed explicitly as arguments.

analyzer

Analyzer.

Usage
_ : analyzer(0,freqs) : par(i,N,_); // No delay equalizer
Where:

« 0: band-split filter order (ODD integer required for filterbank([i])
o fregs: (fcl,fc2,...,fcNs) [in numerically ascending order], where Ns=N-1
is the number of octave band-splits (total number of bands N=Ns+1).

If frequencies are listed explicitly as arguments, enclose them in parens:

_ : analyzer(3,(fcl,fc2)) : _,_,_

basic.lib

A library of basic elements for Faust organized in 5 sections:

o Conversion Tools

o Counters and Time/Tempo Tools

o Array Processing/Pattern Matching
Selectors (Conditions)

o Other Tools (Misc)

It should be used using the ba environment:

ba = library("basic.lib");
process = ba.functionCall;

Another option is to import stdfaust.lib which already contains the ba envi-
ronment:
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import ("stdfaust.1lib");
process = ba.functionCall;

Conversion Tools
samp2sec

Converts a number of samples to a duration in seconds. samp2sec is a standard
Faust function.

Usage
samp2sec(n)
Where:

e n: number of samples

sec2samp

Converts a duration in seconds to a number of samples. samp2sec is a standard
Faust function.

Usage
sec2samp(d)
Where:

e d: duration in seconds

db2linear

Converts a loudness in dB to a linear gain (0-1). db2linear is a standard Faust
function.

Usage
db2linear (1)
Where:

e 1: loudness in dB
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linear2db

Converts a linear gain (0-1) to a loudness in dB. 1inear2db is a standard Faust
function.

Usage
linear2db(g)
Where:

e g: a linear gain

lin2LogGain

Converts a linear gain (0-1) to a log gain (0-1).

Usage
_ : lin2LogGain : _

log2LinGain

Converts a log gain (0-1) to a linear gain (0-1).

Usage
_ : log2LinGain : _

tau2pole

Returns a real pole giving exponential decay. Note that t60 (time to decay 60
dB) is ~6.91 time constants. tau2pole is a standard Faust function.
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Usage
_ : smooth(tau2pole(tau))
Where:

e tau: time-constant in seconds

pole2tau

Returns the time-constant, in seconds, corresponding to the given real, positive
pole in (0,1). pole2tau is a standard Faust function.

Usage
pole2tau(pole)
Where:

e pole: the pole

midikey2hz

Converts a MIDI key number to a frequency in Hz (MIDI key 69 = A440).
midikey2hz is a standard Faust function.

Usage
midikey2hz (mk)
Where:
o mk: the MIDI key number

pianokey2hz

Converts a piano key number to a frequency in Hz (piano key 49 = A440).
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Usage
pianokey2hz(pk)
Where:
o pk: the piano key number

hz2pianokey

Converts a frequency in Hz to a piano key number (piano key 49 = A440).

Usage
hz2pianokey (f)
Where:

e f: frequency in Hz

Counters and Time/Tempo Tools
countdown

Starts counting down from n included to 0. While trig is 1 the output is n. The
countdown starts with the transition of trig from 1 to 0. At the end of the
countdown the output value will remain at 0 until the next trig. countdown is a
standard Faust function.

Usage
countdown (n,trig)
Where:

e count: the starting point of the countdown
o trig: the trigger signal (1: start at n; 0: decrease until 0)
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countup

Starts counting up from 0 to n included. While trig is 1 the output is 0. The
countup starts with the transition of trig from 1 to 0. At the end of the countup
the output value will remain at n until the next trig. countup is a standard
Faust function.

Usage
countup(n,trig)
Where:

e count: the starting point of the countup
o trig: the trigger signal (1: start at 0; 0: increase until n)

sweep

Counts from 0 to period samples repeatedly, while run is 1. Outsputs zero
while run is 0.

Usage

sweep (period,run)

time

A simple timer that counts every samples from the beginning of the process.
time is a standard Faust function.

Usage

time : _

tempo

Converts a tempo in BPM into a number of samples.
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Usage
tempo (t)
Where:
e t: tempo in BPM

period
Basic sawtooth wave of period p.
Usage

period(p)
Where:

e p: period as a number of samples

pulse

Pulses (10000) generated at period p.

Usage
pulse(p)
Where:

e p: period as a number of samples

pulsen
Pulses (11110000) of length n generated at period p.
Usage

pulsen(n,p)
Where:

e n: the length of the pulse as a number of samples
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e p: period as a number of samples

beat

Pulses at tempo t. beat is a standard Faust function.

Usage
beat (t)
Where:
e t: tempo in BPM

pulse_countup

Starts counting up pulses. While trig is 1 the output is counting up, while trig
is 0 the counter is reset to 0.

Usage
_ : pulse_countup(trig)
Where:
o trig: the trigger signal (1: start at next pulse; 0: reset to 0)

pulse_countdown

Starts counting down pulses. While trig is 1 the output is counting down, while
trig is 0 the counter is reset to 0.

Usage
_ : pulse_countdown(trig)

Where:

e trig: the trigger signal (1: start at next pulse; 0: reset to 0)
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pulse_countup_loop

Starts counting up pulses from 0 to n included. While trig is 1 the output is
counting up, while trig is 0 the counter is reset to 0. At the end of the countup
(n) the output value will be reset to 0.

Usage
_ : pulse_countup_loop(n,trig)
Where:

o n: the highest number of the countup (included) before reset to 0.
o trig: the trigger signal (1: start at next pulse; 0: reset to 0)

pulse_countdown_loop

Starts counting down pulses from 0 to n included. While trig is 1 the output
is counting down, while trig is 0 the counter is reset to 0. At the end of the
countdown (n) the output value will be reset to 0.

Usage
_ : pulse_coundown_loop(n,trig)
Where:

e n: the highest number of the countup (included) before reset to 0.
e trig: the trigger signal (1: start at next pulse; 0: reset to 0)

Array Processing/Pattern Matching
count
Count the number of elements of list 1. count is a standard Faust function.

Usage

count (1)
count ((10,20,30,40)) -> 4

Where:
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e 1: list of elements

take

Take an element from a list. take is a standard Faust function.

Usage

take(e,1)
take(3,(10,20,30,40)) -> 30

Where:

o p: position (starting at 1)
o 1: list of elements

subseq

Extract a part of a list.

Usage

subseq(l, p, n)
subseq((10,20,30,40,50,60), 1, 3) -> (20,30,40)
subseq((10,20,30,40,50,60), 4, 1) -> 50

Where:

o 1: list
o p: start point (0: begin of list)
e n: number of elements

Note:

Faust doesn’t have proper lists. Lists are simulated with parallel compositions
and there is no empty list
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Selectors (Conditions)
if

if-then-else implemented with a select2.

Usage
o if(c, t, e)
Where:

e c: condition
o t: signal selected while c is true
o e: signal selected while c is false

selector

Selects the ith input among n at compile time.

Usage

selector(i,n)

_s_s_s_ : selector(2,4) : _ // selects the 3rd input among 4
Where:

e 1i: input to select (int, numbered from 0, known at compile time)
e n: number of inputs (int, known at compile time, n > i)

selectn

Selects the ith input among N at run time.

Usage

selectn(N,i)

_s_s_»>_ : selectn(4,2) : _ // selects the 3rd input among 4
Where:

o N: number of inputs (int, known at compile time, N > 0)
o i: input to select (int, numbered from 0)
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Example test program

N=64;
process = par(n,N, (par(i,N,i) : selectn(N,n)));

select2stereo

Select between 2 stereo signals.

Usage
_s_s_»>_ : select2stereo(bpc) : _,_,_,_
Where:

e Dbpc: the selector switch (0/1)

Other

latch

Latch input on positive-going transition of “clock” (“sample-and-hold”).
Usage

_ @ latch(clocksig)

Where:
e clocksig: hold trigger (0 for hold, 1 for bypass)

sAndH

Sample And Hold. sAndH is a standard Faust function.
Usage

_ : sAndH(t)

Where:
o t: hold trigger (0 for hold, 1 for bypass)
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peakhold

Outputs current max value above zero.

Usage
_ : peakhold(mode) : _;
Where:

mode means: 0 - Pass through. A single sample 0 trigger will work as a reset. 1 -
Track and hold max value.

peakholder

Tracks abs peak and holds peak for ‘holdtime’ samples.

Usage
_ : peakholder(holdtime) : _;

impulsify

Turns the signal from a button into an impulse (1,0,0,... when button turns
on). impulsify is a standard Faust function.

Usage

button("gate") : impulsify ;

automat

Record and replay to the values the input signal in a loop.
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Usage

hslider(...) : automat(bps, size, init)

bpf
bpf is an environment (a group of related definitions) that can be used to create
break-point functions. It contains three functions :

e start(x,y) to start a break-point function
e end(x,y) to end a break-point function
e point(x,y) to add intermediate points to a break-point function

A minimal break-point function must contain at least a start and an end point :
f = bpf.start(x0,y0) : bpf.end(xl,yl);

A more involved break-point function can contains any number of intermediate
points:

f = bpf.start(x0,y0) : bpf.point(xl,yl) : bpf.point(x2,y2) : bpf.end(x3,y3);

In any case the x_{i} must be in increasing order (for all i, x_{i} < x_{i+1}).
For example the following definition :

f = bpf.start(x0,y0) : ... : bpf.point(xi,yi) : ... : bpf.end(xn,yn);

implements a break-point function f such that :

e f(x) = y_{0} when x < x_{0}
e £(x) = y_{n} when x > x_{n}
o f(x) = y_{i} + (y_{i+t1}-y_{iP)*(x-x_{i})/(x_{i+1}-x_{i}) when

x_{i} <= xand x < x_{i+1}

bpf is a standard Faust function.

bypassi1

Takes a mono input signal, route it to e and bypass it if bpc = 1. bypassli is a
standard Faust function.

Usage
_ : bypass1(bpc,e)
Where:
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e bpc: bypass switch (0/1)
e e: a mono effect

bypass2

Takes a stereo input signal, route it to e and bypass it if bpc = 1. bypass2 is a
standard Faust function.

Usage
_,_ : bypass2(bpc,e) : _,_

Where:

e bpc: bypass switch (0/1)
e e: a stereo effect

toggle
Triggered by the change of 0 to 1, it toggles the output value between 0 and 1.

Usage
_ : toggle : _

Examples

button("toggle") : toggle : vbargraph("output", 0, 1)
(an.amp_follower(0.1) > 0.01) : toggle : vbargraph("output", 0, 1) // takes audio input

on_and_off

The first channel set the output to 1, the second channel to 0.

Usage

_, _ : on_and_off : _
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Example

button("on"), button("off") : on_and_off : vbargraph("output", 0, 1)

selectoutn

Route input to the output among N at run time.

Usage
selectoutn(n, s) : _,_,...n
Where:

e n: number of outputs (int, known at compile time, N > 0)
e s: output number to route to (int, numbered from 0) (i.e. slider)

Example

process = 1 : selectoutn(3, sel) : par(i,3,bar) ;
sel = hslider("volume",0,0,2,1) : int;
bar = vbargraph("v.bargraph", 0, 1);

compressor.lib

A library of compressor effects.
It should be used using the co environment:

co = library("compressor.lib");
process = co.functionCall;

Another option is to import stdfaust.lib which already contains the co envi-
ronment:

import ("stdfaust.lib");
process = co.functionCall;
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Functions Reference
compres Sor_mono

Mono dynamic range compressors. compressor_mono is a standard Faust func-
tion

Usage
compressor_mono (ratio,thresh,att,rel)
Where:

e ratio: compression ratio (1 = no compression, >1 means compression)

e thresh: dB level threshold above which compression kicks in (0 dB = max
level)

o att: attack time = time constant (sec) when level & compression going up

o rel: release time = time constant (sec) coming out of compression

References

o http://en.wikipedia.org/wiki/Dynamic_range__compression

e https://ccrma.stanford.edu/~jos/filters/Nonlinear Filter  Example
Dynamic.html

o Albert Graef’s “faust2pd”/examples/synth/compressor_.dsp

o More features: https://github.com/magnetophon/faustCompressors

compressor_stereo

Stereo dynamic range compressors.

Usage
_,_ : compressor_stereo(ratio,thresh,att,rel) : _,_
Where:

e ratio: compression ratio (1 = no compression, >1 means compression)

o thresh: dB level threshold above which compression kicks in (0 dB = max
level)

o att: attack time = time constant (sec) when level & compression going up

o rel: release time = time constant (sec) coming out of compression
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References

o http://en.wikipedia.org/wiki/Dynamic_ range_ compression

« https://ccrma.stanford.edu/~jos/filters/Nonlinear Filter  Example
Dynamic.html

o Albert Graef’s “faust2pd”/examples/synth/compressor_.dsp

o More features: https://github.com/magnetophon/faustCompressors

limiter_1176_R4_mono

A limiter guards against hard-clipping. It can be can be implemented as a
compressor having a high threshold (near the clipping level), fast attack and
release, and high ratio. Since the ratio is so high, some knee smoothing is
desirable (“soft limiting”). This example is intended to get you started using
compressor__* as a limiter, so all parameters are hardwired to nominal values here.
Ratios: 4 (moderate compression), 8 (severe compression), 12 (mild limiting), or
20 to 1 (hard limiting) Att: 20-800 MICROseconds (Note: scaled by ratio in the
1176) Rel: 50-1100 ms (Note: scaled by ratio in the 1176) Mike Shipley likes 4:1
(Grammy-winning mixer for Queen, Tom Petty, etc.) Faster attack gives “more
bite” (e.g. on vocals) He hears a bright, clear eq effect as well (not implemented
here) limiter_1176_R4_mono is a standard Faust function.

Usage

_ ¢ limiter_1176_R4_mono : _;

Reference:

http://en.wikipedia.org/wiki/1176_ Peak Limiter

limiter_1176_R4_stereo

A limiter guards against hard-clipping. It can be can be implemented as a
compressor having a high threshold (near the clipping level), fast attack and
release, and high ratio. Since the ratio is so high, some knee smoothing is
desirable (“soft limiting”). This example is intended to get you started using
compressor__* as a limiter, so all parameters are hardwired to nominal values here.
Ratios: 4 (moderate compression), 8 (severe compression), 12 (mild limiting), or
20 to 1 (hard limiting) Att: 20-800 MICROseconds (Note: scaled by ratio in the
1176) Rel: 50-1100 ms (Note: scaled by ratio in the 1176) Mike Shipley likes 4:1
(Grammy-winning mixer for Queen, Tom Petty, etc.) Faster attack gives “more
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bite” (e.g. on vocals) He hears a bright, clear eq effect as well (not implemented
here)

Usage

_,_ : limiter_1176_R4_stereo : _,_;

Reference:

http://en.wikipedia.org/wiki/1176_ Peak_ Limiter

delay.lib

This library contains a collection of delay functions.
It should be used using the de environment:

de = library("delay.lib");
process = de.functionCall;

Another option is to import stdfaust.1lib which already contains the de envi-
ronment:

import ("stdfaust.lib");
process = de.functionCall;

Basic Delay Functions
delay

Simple d samples delay where n is the maximum delay length as a number of
samples (it needs to be a power of 2). Unlike the @ delay operator, this function
allows to preallocate memory which means that d can be changed dynamically
at run time as long as it remains smaller than n. delay is a standard Faust
function.

Usage
_ @ delay(n,d)
Where:

e n: the max delay length as a power of 2
o d: the delay length as a number of samples (integer)
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fdelay

Simple d samples fractional delay based on 2 interpolated delay lines where n is
the maximum delay length as a number of samples (it needs to be a power of 2 -
see delay()). fdelay is a standard Faust function.

Usage
_ : fdelay(n,d)
Where:

e n: the max delay length as a power of 2
o d: the delay length as a number of samples (float)

sdelay

s(mooth)delay: a mono delay that doesn’t click and doesn’t transpose when the
delay time is changed.

Usage
_ @ sdelay(N,it,dt)
Where :

e N: maximal delay in samples (must be a constant power of 2, for example
65536)

e it: interpolation time (in samples) for example 1024

o dt: delay time (in samples)

Lagrange Interpolation
fdelaylti and fdelayltv

Fractional delay line using Lagrange interpolation.
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Usage
_ : fdelaylt[i|v] (order, maxdelay, delay, inputsignal)
Where order=1,2,3, ... is the order of the Lagrange interpolation polynomial.

fdelaylti is most efficient, but designed for constant/slowly-varying delay.
fdelayltv is more expensive and more robust when the delay varies rapidly.

NOTE: The requested delay should not be less than (N-1) /2.

References

o https://ccrma.stanford.edu/~jos/pasp/Lagrange_Interpolation.html

e Timo I. Laakso et al., “Splitting the Unit Delay - Tools for Fractional
Delay Filter Design”, IEEE Signal Processing Magazine, vol. 13, no. 1,
pp- 30-60, Jan 1996.

o Philippe Depalle and Stephan Tassart, “Fractional Delay Lines using
Lagrange Interpolators”, ICMC Proceedings, pp. 341-343, 1996.

fdelay[n]

For convenience, fdelayl, fdelay2, fdelay3, fdelay4, fdelayb are also avail-
able where n is the order of the interpolation.

Thiran Allpass Interpolation

Thiran Allpass Interpolation

Reference

https://cerma.stanford.edu/~jos/pasp/Thiran_ Allpass_ Interpolators.html

fdelay([nla

Delay lines interpolated using Thiran allpass interpolation.
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Usage

_ : fdelay[N]a(maxdelay, delay, inputsignal)
(exactly like fdelay)

Where:

e N=1,2,3, or 4 is the order of the Thiran interpolation filter, and the delay
argument is at least N - 1/2.

Note

The interpolated delay should not be less than N - 1/2. (The allpass delay
ranges from N - 1/2 to N + 1/2.) This constraint can be alleviated by altering
the code, but be aware that allpass filters approach zero delay by means of
pole-zero cancellations. The delay range [N-1/2,N+1/2] is not optimal. What
is?

Delay arguments too small will produce an UNSTABLE allpass!

Because allpass interpolation is recursive, it is not as robust as Lagrange inter-
polation under time-varying conditions. (You may hear clicks when changing
the delay rapidly.)

First-order allpass interpolation, delay d in [0.5,1.5]

demo.lib

This library contains a set of demo functions based on examples located in the
/examples folder.

It should be used using the dm environment:

dm = library("demo.lib");
process = dm.functionCall;

Another option is to import stdfaust.lib which already contains the dm envi-
ronment:

import ("stdfaust.lib");
process = dm.functionCall;
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Analyzers
mth_octave_spectral_level_demo

Demonstrate mth_octave_spectral level in a standalone GUI.

Usage

_ : mth_octave_spectral_level_demo(BandsPerOctave);
_ : spectral_level_demo : _; // 2/3 octave

Filters

parametric_eq_demo

A parametric equalizer application.

Usage:

_ : parametric_eq_demo : _ ;

spectral_tilt_demo

A spectral tilt application.

Usage
_ : spectral_tilt_demo(N) : _ ;
Where:

o N: filter order (integer)

All other parameters interactive

mth_octave_filterbank_demo and filterbank_demo

Graphic Equalizer: Each filter-bank output signal routes through a fader.
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Usage

_ : mth_octave_filterbank_demo (M)
_ : filterbank_demo

Where:

e N: number of bands per octave

Effects
cubicnl_demo

Distortion demo application.

Usage:

cubicnl_demo : _;

gate_demo

Gate demo application.

Usage

_,_ : gate_demo : _,_;

compres sor_demo

Compressor demo application.

Usage

compressor_demo Lo

R

exciter

Psychoacoustic harmonic exciter, with GUI.
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Usage

_ @ exciter : _

References

o https://secure.aes.org/forum/pubs/ebriefs/?elib=16939
o https://www.researchgate.net/publication/258333577_ Modeling the
Harmonic Exciter

moog_vcf_demo

Ilustrate and compare all three Moog VCF implementations above.

Usage

_ : moog_vcf_demo : _;

wah4_demo

Wah pedal application.

Usage

_ : wah4_demo : _;

crybaby_demo

Crybaby effect application.

Usage
_ : crybaby_demo : _ ;

vocoder_demo

Use example of the vocoder function where an impulse train is used as excitation.
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Usage

_ : vocoder_demo : _;

flanger_demo

Flanger effect application.

Usage

_,_ : flanger_demo : _,_;

phaser2_demo

Phaser effect demo application.

Usage

: phaser2_demo : _,_;

R

freeverb_demo

Freeverb demo application.

Usage

_,_ : freeverb_demo : _,_;

stereo_reverb_tester

Handy test inputs for reverberator demos below.

Usage

stereo_reverb_tester : _
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fdnrevO_demo

A reverb application using fdnrev0.

Usage
_,_ : fdnrevO_demo(N,NB,BBSO) : _,_
Where:

o n: Feedback Delay Network (FDN) order / number of delay lines used =
order of feedback matrix / 2, 4, 8, or 16 [extend primes array below for 32,
64, ...]

o nb: Number of frequency bands / Number of (nearly) independent T60
controls / Integer 3 or greater

e bbso = Butterworth band-split order / order of lowpass/highpass bandsplit
used at each crossover freq / odd positive integer

zita_rev_fdn_demo

Reverb demo application based on zita_rev_fdn.

Usage

si.bus(8) : zita_rev_fdn_demo : si.bus(8)

zita_revl

Example GUI for zita_revl_stereo (mostly following the Linux zita-revi
GUI).

Ouly the dry/wet and output level parameters are “dezippered” here. If param-
eters are to be varied in real time, use smooth(0.999) or the like in the same
way.

Usage

_,_ ¢ zita_revl : _,_
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Reference

http://www.kokkinizita.net /linuxaudio/zita-rev1-doc/quickguide.html

Generators
sawtooth_demo
An application demonstrating the different sawtooth oscillators of Faust.

Usage

sawtooth_demo : _

virtual_analog_oscillator_demo

Virtual analog oscillator demo application.

Usage

virtual_analog_oscillator_demo : _

oscrs_demo

Simple application demoing filter based oscillators.

Usage

oscrs_demo : _

envelope.lib

This library contains a collection of envelope generators.

It should be used using the en environment:
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en = library("envelope.lib");
process = en.functionCall;

Another option is to import stdfaust.lib which already contains the en envi-
ronment:

import ("stdfaust.lib");
process = en.functionCall;

Functions Reference
smoothEnvelope

An envelope with an exponential attack and release. smoothEnvelope is a
standard Faust function.

Usage
smoothEnvelope(ar,t)

o ar: attack and release duration (s)
e t: trigger signal (0-1)

ar

AR (Attack, Release) envelope generator (useful to create percussion envelopes).
ar is a standard Faust function.

Usage
ar(a,r,t)
Where:

e a: attack (sec)
o 1: release (sec)
e t: trigger signal (0 or 1)

asr

ASR (Attack, Sustain, Release) envelope generator. asr is a standard Faust
function.
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Usage
asr(a,s,r,t)
Where:

e a, s, r: attack (sec), sustain (percentage of t), release (sec)
o t: trigger signal ( >0 for attack, then release is when t back to 0)

adsr

ADSR (Attack, Decay, Sustain, Release) envelope generator. adsr is a standard
Faust function.

Usage
adsr(a,d,s,r,t)

Where:

e a,d, s, r: attack (sec), decay (sec), sustain (percentage of t), release (sec)
e t: trigger signal ( >0 for attack, then release is when t back to 0)

filter.lib

A library of filters and of more advanced filter-based sound processor organized
in 18 sections:

o Basic Filters

e Comb Filters

e Direct-Form Digital Filter Sections

¢ Direct-Form Second-Order Biquad Sections

o Ladder/Lattice Digital Filters

o Useful Special Cases

o Ladder/Lattice Allpass Filters

o Digital Filter Sections Specified as Analog Filter Sections
¢ Simple Resonator Filters

o Butterworth Lowpass/Highpass Filters

o Special Filter-Bank Delay-Equalizing Allpass Filters
o Elliptic (Cauer) Lowpass Filters

o Elliptic Highpass Filters

o Butterworth Bandpass/Bandstop Filters

o Elliptic Bandpass Filters
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o Parametric Equalizers (Shelf, Peaking)
o Mth-Octave Filter-Banks
¢ Arbritary-Crossover Filter-Banks and Spectrum Analyzers

It should be used using the fi environment:

fi = library("filter.lib");
process = fi.functionCall;

Another option is to import stdfaust.lib which already contains the fi envi-
ronment:

import ("stdfaust.lib");
process = fi.functionCall;

Basic Filters

zero

One zero filter. Difference equation: y(n) = x(n) - z * x(n-1).
Usage

_ : zero(z)

Where:

o z: location of zero along real axis in z-plane

Reference

https://ccrma.stanford.edu/~jos/filters/One_ Zero.html

pole

One pole filter. Could also be called a “leaky integrator”. Difference equation:
y(@) = x(n) + p * y(n-1).

Usage
_ @ pole(z)
Where:

e p: pole location = feedback coefficient
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Reference

https://ccrma.stanford.edu/~jos/filters/One_ Pole.html

integrator

Same as pole(1) [implemented separately for block-diagram clarity].

dcblockerat

DC blocker with configurable break frequency. The amplitude response is
substantially flat above fb, and sloped at about +6 dB/octave below fb. Derived
from the analog transfer function H(s) = s / (s + 2PIfb) by the low-frequency-
matching bilinear transform method (i.e., the standard frequency-scaling constant

2*SR).

Usage
_ : dcblockerat (fb)
Where:
e fb: “break frequency” in Hz, i.e., -3 dB gain frequency.

Reference

https://ccrma.stanford.edu/~jos/pasp/Bilinear_ Transformation.html

dcblocker

DC blocker. Default dc blocker has -3dB point near 35 Hz (at 44.1 kHz) and
high-frequency gain near 1.0025 (due to no scaling). dcblocker is as standard
Faust function.

Usage
_ : dcblocker : _
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Comb Filters
ff_comb

Feed-Forward Comb Filter. Note that £f_comb requires integer delays
(uses delay internally). £f_comb is a standard Faust function.

Usage
_ : ff_comb(maxdel,intdel,b0,bM)
Where:

o maxdel: maximum delay (a power of 2)

o intdel: current (integer) comb-filter delay between 0 and maxdel
o del: current (float) comb-filter delay between 0 and maxdel

e b0: gain applied to delay-line input

e bM: gain applied to delay-line output and then summed with input

Reference

https://cerma.stanford.edu/~jos/pasp/Feedforward__Comb__ Filters.html

ff fcomb

Feed-Forward Comb Filter. Note that ££_fcomb takes floating-point delays (uses
fdelay internally). £f_fcomb is a standard Faust function.

Usage
_ : ff_fcomb(maxdel,del,bO,bM)
Where:

e maxdel: maximum delay (a power of 2)

o intdel: current (integer) comb-filter delay between 0 and maxdel
o del: current (float) comb-filter delay between 0 and maxdel

e b0: gain applied to delay-line input

e bM: gain applied to delay-line output and then summed with input

Reference

https://ccrma.stanford.edu/~jos/pasp/Feedforward Comb_ Filters.html
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ffcombfilter

Typical special case of £f_comb() where: b0 = 1.

fb_comb

Feed-Back Comb Filter (integer delay).

Usage
_ : fb_comb(maxdel,intdel,b0,aN)
Where:

o maxdel: maximum delay (a power of 2)

o intdel: current (integer) comb-filter delay between 0 and maxdel

o del: current (float) comb-filter delay between 0 and maxdel

e b0: gain applied to delay-line input and forwarded to output

e al: minus the gain applied to delay-line output before summing with the
input and feeding to the delay line

Reference

https://ccrma.stanford.edu/~jos/pasp/Feedback_Comb_ Filters.html

fb_fcomb

Feed-Back Comb Filter (floating point delay).

Usage
_ : fb_fcomb(maxdel,del,b0,aN)
Where:

¢ maxdel: maximum delay (a power of 2)

o intdel: current (integer) comb-filter delay between 0 and maxdel

o del: current (float) comb-filter delay between 0 and maxdel

e b0O: gain applied to delay-line input and forwarded to output

e al: minus the gain applied to delay-line output before summing with the
input and feeding to the delay line
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Reference

https://ccrma.stanford.edu/~jos/pasp/Feedback__Comb_ Filters.html

revl

Special case of fb_comb (revl(maxdel,N,g)). The “revl section” dates back
to the 1960s in computer-music reverberation. See the jcrev and brassrev in
reverb.lib for usage examples.

fbcombfilter and ffbcombfilter

Other special cases of Feed-Back Comb Filter.

Usage

_ ¢ fbcombfilter (maxdel,intdel,g)
_ ¢ ffbcombfilter(maxdel,del,g)

Where:

e maxdel: maximum delay (a power of 2)

o intdel: current (integer) comb-filter delay between 0 and maxdel
o del: current (float) comb-filter delay between 0 and maxdel

o g: feedback gain

Reference

https://ccrma.stanford.edu/~jos/pasp/Feedback__Comb_ Filters.html

allpass_comb

Schroeder Allpass Comb Filter. Note that
allpass_comb(maxlen,len,aN) = ff_comb(maxlen,len,aN,1) : fb_comb(maxlen,len-1,1,aN);

which is a direct-form-1 implementation, requiring two delay lines. The imple-
mentation here is direct-form-2 requiring only one delay line.
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Usage
_ : allpass_comb (maxdel,intdel,al)
Where:

¢ maxdel: maximum delay (a power of 2)

o intdel: current (integer) comb-filter delay between 0 and maxdel
o del: current (float) comb-filter delay between 0 and maxdel

e aN: minus the feedback gain

References

o https://ccrma.stanford.edu/~jos/pasp/Allpass_ Two_ Combs.html
o https://ccrma.stanford.edu/~jos/pasp/Schroeder_ Allpass_ Sections.html
o https://ccrma.stanford.edu/~jos/filters/Four_ Direct_ Forms.html

allpass_fcomb

Schroeder Allpass Comb Filter. Note that
allpass_comb(maxlen,len,aN) = ff_comb(maxlen,len,aN,1) : fb_comb(maxlen,len-1,1,aN);

which is a direct-form-1 implementation, requiring two delay lines. The imple-
mentation here is direct-form-2 requiring only one delay line.

allpass_fcomb is a standard Faust library.

Usage

_ : allpass_comb (maxdel,intdel,aN)
_ @ allpass_fcomb(maxdel,del,aN)

Where:

o maxdel: maximum delay (a power of 2)

o intdel: current (float) comb-filter delay between 0 and maxdel
o del: current (float) comb-filter delay between 0 and maxdel

e al: minus the feedback gain

References

e https://ccrma.stanford.edu/~jos/pasp/Allpass Two_ Combs.html
o https://ccrma.stanford.edu/~jos/pasp/Schroeder_ Allpass_Sections.html
¢ https://ccrma.stanford.edu/~jos/filters/Four Direct_ Forms.html
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rev2

Special case of allpass_comb (rev2(maxlen,len,g)). The “rev2 section” dates
back to the 1960s in computer-music reverberation. See the jcrev and brassrev
in reverb.1lib for usage examples.

allpass_fcomb5 and allpass_fcombla

Same as allpass_fcomb but use fdelay5 and fdelayla internally (Interpolation
helps - look at an fft of faust2octave on

“1-1' <: allpass_fcomb(1024,10.5,0.95), allpass_fcomb5(1024,10.5,0.95);7).

Direct-Form Digital Filter Sections
iir

Nth-order Infinite-Impulse-Response (IIR) digital filter, implemented in terms of
the Transfer-Function (TF) coefficients. Such filter structures are termed “direct
form”.

iir is a standard Faust function.

Usage
_ : iir(bcoeffs,acoeffs)
Where:

o order: filter order (int) = max(#poles,#zeros)
e bcoeffs: (b0,bl,... ,b_order) = TF numerator coefficients
o acoeffs: (al,...,a_order) = TF denominator coeffs (a0=1)

Reference

https://cerma.stanford.edu/~jos/filters/Four_ Direct_ Forms.html

fir

FIR filter (convolution of FIR filter coefficients with a signal)

60


https://ccrma.stanford.edu/~jos/filters/Four_Direct_Forms.html

Usage

_ : fir(bv) _
fir is standard Faust function.
Where:

e bv = b0,bl,... bn is a parallel bank of coefficient signals.

Note

bv is processed using pattern-matching at compile time, so it must have this
normal form (parallel signals).

Example
Smoothing white noise with a five-point moving average:

bv = .2,.2,.2,.2,.2;
process = noise : fir(bv);

Equivalent (note double parens):

process = noise : fir((.2,.2,.2,.2,.2));

conv and convN

Convolution of input signal with given coefficients.

Usage

conv((k1,k2,k3,...,kN)) : _; // Argument = one signal bank
convN(N, (k1,k2,k3,...)) : _; // Useful when N < count((kl,...))

tf1l, tf2 and t£3

tfN = N’th-order direct-form digital filter.
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Usage

: tf1(b0,bl,al)
: t£f2(b0,b1,b2,al1,a2) _
: t£3(b0,b1,b2,b3,al1,a2,a3)

Where:

e a: the poles
e b: the zeros

Reference

https://ccrma.stanford.edu/~jos/fp/Direct_ Form_ I.html

notchw

Simple notch filter based on a biquad (t£2). notchw is a standard Faust function.

Usage:
_ : notchw(width,freq)
Where:

e width: “notch width” in Hz (approximate)
e freq: “notch frequency” in Hz

Reference

https://ccrma.stanford.edu/~jos/pasp/Phasing_ 2nd_ Order__ Allpass_ Filters.
html

Direct-Form Second-Order Biquad Sections

Direct-Form Second-Order Biquad Sections

Reference

https://ccrma.stanford.edu/~jos/filters/Four Direct_ Forms.html
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tf21, t£22, t£22t and t£21t

tfN = N’th-order direct-form digital filter where:

e tf21 is tf2, direct-form 1
e t£22 is tf2, direct-form 2
e tf22t is tf2, direct-form 2 transposed
o tf21t is tf2, direct-form 1 transposed

Usage

: t£f21(b0,b1,b2,al,a2)
: t£f22(b0,b1,b2,al1,a2)
: t£22t(b0,b1,b2,a1,a2)
: t£21t(b0,b1,b2,a1,a2)

Where:

e a: the poles
e b: the zeros

Reference

https://ccrma.stanford.edu/~jos/fp/Direct_ Form ILhtml

Ladder/Lattice Digital Filters
Ladder and lattice digital filters generally have superior numerical properties

relative to direct-form digital filters. They can be derived from digital waveguide
filters, which gives them a physical interpretation.

av2sv

Compute reflection coefficients sv from transfer-function denominator av.

Usage

sv = av2sv(av)

Where:
e av: parallel signal bank al,...,aN
o sv: parallel signal bank s1,...,sN
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where ro = ith reflection coefficient, and ai = coefficient of z~ (-1i) in the filter
transfer-function denominator A(z).

Reference

https://ccrma.stanford.edu/~jos/filters/Step_ Down_ Procedure.html (where re-
flection coefficients are denoted by k rather than s).

bvav2nuv

Compute lattice tap coefficients from transfer-function coefficients.

Usage
nuv = bvav2nuv(bv,av)
Where:

e av: parallel signal bank al,...,aN
e bv: parallel signal bank b0,b1,...,aN
e nuv: parallel signal bank nui,...,nuN

where nui is the i’th tap coefficient, bi is the coefficient of z~(-1) in the filter
numerator, ai is the coefficient of z~(-1) in the filter denominator

iir_lat2

Two-multiply latice IIR filter or arbitrary order.

Usage
iir_lat2(bv,av)
Where:

e bv: zeros as a bank of parallel signals
e av: poles as a bank of parallel signals

allpassnt

Two-multiply lattice allpass (nested order-1 direct-form-ii allpasses).
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Usage
_ : allpassnt(n,sv)
Where:

o n: the order of the filter
o sv: the reflexion coefficients (-1 1)

iir_k1

Kelly-Lochbaum ladder IIR filter or arbitrary order.

Usage
_ ¢ iir_k1(bv,av)
Where:

e bv: zeros as a bank of parallel signals
e av: poles as a bank of parallel signals

allpassnklt

Kelly-Lochbaum ladder allpass.

Usage:
_ : allpassklt(n,sv)
Where:

o n: the order of the filter
o sv: the reflexion coefficients (-1 1)

iir_latl

One-multiply latice IIR filter or arbitrary order.
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Usage
_ ¢ iir_lati(bv,av)
Where:

e bv: zeros as a bank of parallel signals
e av: poles as a bank of parallel signals

allpassnimt

One-multiply lattice allpass with tap lines.

Usage
_ : allpassnimt(n,sv)
Where:

e n: the order of the filter
o sv: the reflexion coefficients (-1 1)

iir_nl

Normalized ladder filter of arbitrary order.

Usage
_ : iir_nl(bv,av)
Where:

e bv: zeros as a bank of parallel signals
e av: poles as a bank of parallel signals

References

e J. D. Markel and A. H. Gray, Linear Prediction of Speech, New York:
Springer Verlag, 1976.

o https://ccrma.stanford.edu/~jos/pasp/Normalized__Scattering__
Junctions.html
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allpassnnlt

Normalized ladder allpass filter of arbitrary order.

Usage:
_ @ allpassnnlt(n,sv)
Where:

o n: the order of the filter
o sv: the reflexion coefficients (-1,1)

References

e J. D. Markel and A. H. Gray, Linear Prediction of Speech, New York:
Springer Verlag, 1976.

o https://ccrma.stanford.edu/~jos/pasp/Normalized__Scattering__
Junctions.html

Useful Special Cases
tf2np

Biquad based on a stable second-order Normalized Ladder Filter (more robust
to modulation than t£2 and protected against instability).

Usage
_ : tf2np(b0,bl,b2,al,a2)
Where:

e a: the poles
e b: the zeros

wgr

Second-order transformer-normalized digital waveguide resonator.
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Usage
_ owgr(f,r)
Where:

o f: resonance frequency (Hz)
o r: loss factor for exponential decay (set to 1 to make a numerically stable
oscillator)

References

o https://ccrma.stanford.edu/~jos/pasp/Power Normalized Waveguide
Filters.html

o https://ccrma.stanford.edu/~jos/pasp/Digital _Waveguide_ Oscillator.
html

nlf2

Second order normalized digital waveguide resonator.

Usage
_ : nlf2(f,r)
Where:

o f: resonance frequency (Hz)
« 1: loss factor for exponential decay (set to 1 to make a sinusoidal oscillator)

Reference

https://cerma.stanford.edu/~jos/pasp/Power Normalized  Waveguide
Filters.html

apnl

Passive Nonlinear Allpass based on Pierce switching springs idea. Switch between
allpass coefficient a1l and a2 at signal zero crossings.
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Usage
_ : apnl(al,a2)
Where:

e al and a2: allpass coefficients

Reference

e “A Passive Nonlinear Digital Filter Design ...” by John R. Pierce and
Scott A. Van Duyne, JASA, vol. 101, no. 2, pp. 1120-1126, 1997

Ladder/Lattice Allpass Filters

An allpass filter has gain 1 at every frequency, but variable phase. Ladder /lattice
allpass filters are specified by reflection coefficients. They are defined here as
nested allpass filters, hence the names allpassn*.

References

o https://ccrma.stanford.edu/~jos/pasp/Conventional_Ladder_ Filters.
html

o https://ccrma.stanford.edu/~jos/pasp/Nested__Allpass_ Filters.html

e Linear Prediction of Speech, Markel and Gray, Springer Verlag, 1976

allpassn

Two-multiply lattice - each section is two multiply-adds.

Usage:

_ : allpassn(n,sv)
Where:

o n: the order of the filter
o sv: the reflexion coefficients (-1 1)
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References

e J. O. Smith and R. Michon, “Nonlinear Allpass Ladder Filters in FAUST”,
in Proceedings of the 14th International Conference on Digital Audio
Effects (DAFx-11), Paris, France, September 19-23, 2011.

allpassnn

Normalized form - four multiplies and two adds per section, but coefficients can
be time varying and nonlinear without “parametric amplification” (modulation
of signal energy).

Usage:
_ : allpassnn(n,tv)
Where:

o n: the order of the filter
o tv: the reflexion coefficients (-PI PI)

allpasskl

Kelly-Lochbaum form - four multiplies and two adds per section, but all signals
have an immediate physical interpretation as traveling pressure waves, etc.

Usage:
_ @ allpassnkl(n,sv)
Where:

o n: the order of the filter
o sv: the reflexion coefficients (-1 1)

allpassim

One-multiply form - one multiply and three adds per section. Normally the most
efficient in special-purpose hardware.
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Usage:
_ : allpassnim(n,sv)
Where:

o n: the order of the filter
o sv: the reflexion coefficients (-1 1)

Digital Filter Sections Specified as Analog Filter Sections
tf2s and tf2snp

Second-order direct-form digital filter, specified by ANALOG transfer-function
polynomials B(s)/A(s), and a frequency-scaling parameter. Digitization via the
bilinear transform is built in.

Usage
_ : tf2s(b2,b1,b0,al,a0,wl)
Where:

b2 s72 + bl s + b0

s72 + al s + a0l

and wl is the desired digital frequency (in radians/second) corresponding to
analog frequency 1 rad/sec (i.e., s = j).

Example

A second-order ANALOG Butterworth lowpass filter, normalized to have cutoff
frequency at 1 rad/sec, has transfer function

sT2 +al s +1

where al = sqrt(2). Therefore, a DIGITAL Butterworth lowpass cutting off
at SR/4 is specified as t£2s(0,0,1,sqrt(2),1,PI*SR/2) ;

Method

Bilinear transform scaled for exact mapping of wl.
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Reference

https://cerma.stanford.edu/~jos/pasp/Bilinear_ Transformation.html

t£3slf

Analogous to tf2s above, but third order, and using the typical low-frequency-
matching bilinear-transform constant 2/T (“lf” series) instead of the specific-
frequency-matching value used in tf2s and tfls. Note the lack of a “w1” argument.

Usage
_ : t£f3s1f(b3,b2,b1,b0,a3,a2,al,al)

tfls

First-order direct-form digital filter, specified by ANALOG transfer-function
polynomials B(s)/A(s), and a frequency-scaling parameter.

Usage
tf1s(b1,b0,a0,wl)
Where:

bl s + b0
H(s) = ——~ s+ a0

and wl is the desired digital frequency (in radians/second) corresponding to
analog frequency 1 rad/sec (i.e., s = j).

Example

A first-order ANALOG Butterworth lowpass filter, normalized to have cutoff
frequency at 1 rad/sec, has transfer function

1
H(s) = -s+1

so b0 = a0 = 1 and bl = 0. Therefore, a DIGITAL first-order Butterworth
lowpass with gain -3dB at SR/4 is specified as

tf1s(0,1,1,PI*SR/2); // digital half-band order 1 Butterworth
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Method

Bilinear transform scaled for exact mapping of wl.

Reference

https://ccrma.stanford.edu/~jos/pasp/Bilinear_ Transformation.html

tf2sb

Bandpass mapping of tf2s: In addition to a frequency-scaling parameter wi
(set to HALF the desired passband width in rad/sec), there is a desired center-
frequency parameter we (also in rad/s). Thus, t£2sb implements a fourth-order
digital bandpass filter section specified by the coefficients of a second-order
analog lowpass prototpe section. Such sections can be combined in series for
higher orders. The order of mappings is (1) frequency scaling (to set lowpass
cutoff wl), (2) bandpass mapping to wc, then (3) the bilinear transform, with
the usual scale parameter 2xSR. Algebra carried out in maxima and pasted here.

Usage
_ : tf2sb(b2,b1,b0,al,al,wl,wc)

tfisb

First-to-second-order lowpass-to-bandpass section mapping, analogous to tf2sb
above.

Usage
_ : tf1sb(b1,b0,a0,wl,wc)

Simple Resonator Filters
resonlp

Simple resonant lowpass filter based on tf2s (virtual analog). resonlp is a
standard Faust function.
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Usage

: resonlp(fc,Q,gain)
: resonhp(fc,Q,gain)
: resonbp(fc,Q,gain)

Where:

o fc: center frequency (Hz)
e Q¢
e gain: gain (0-1)

resonhp

Simple resonant highpass filters based on tf2s (virtual analog). resonhp is a
standard Faust function.

Usage

: resonlp(fc,Q,gain)
: resonhp(fc,Q,gain)
: resonbp(fc,Q,gain)

Where:

o fc: center frequency (Hz)
e Q:q
e gain: gain (0-1)

resonbp

Simple resonant bandpass filters based on tf2s (virtual analog). resonbp is a
standard Faust function.

Usage

: resonlp(fc,Q,gain)
: resonhp(fc,Q,gain)
: resonbp(fc,Q,gain)

Where:

o fc: center frequency (Hz)
e Qiq
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e gain: gain (0-1)

Butterworth Lowpass/Highpass Filters
lowpass

Nth-order Butterworth lowpass filter. lowpass is a standard Faust function.

Usage
_ : lowpass(N,fc)
Where:

o N: filter order (number of poles) [nonnegative constant integer]
e fc: desired cut-off frequency (-3dB frequency) in Hz

References

¢ https://ccrma.stanford.edu/~jos/filters/Butterworth Lowpass_ Design.
html
e butter function in Octave (" [z,p,g] = butter(N,1,'s');")

highpass

Nth-order Butterworth highpass filters. highpass is a standard Faust function.

Usage
_ : highpass(N,fc)
Where:

o N: filter order (number of poles) [nonnegative constant integer]
e fc: desired cut-off frequency (-3dB frequency) in Hz

References

o https://ccrma.stanford.edu/~jos/filters/Butterworth_ Lowpass_ Design.
html
e butter function in Octave (" [z,p,g] = butter(N,1,'s');")
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lowpassO_highpassi

TODO

Special Filter-Bank Delay-Equalizing Allpass Filters
These special allpass filters are needed by filterbank et al. below. They are

equivalent to (lowpass(N,fc) +|- highpass(N,fc)) /2, but with canceling pole-
zero pairs removed (which occurs for odd N).

lowpass_plus|minus_highpass

TODO

Elliptic (Cauer) Lowpass Filters
Elliptic (Cauer) Lowpass Filters

References

o <http://en.wikipedia.org/wiki/Elliptic_ filter
o functions ncauer and ellip in Octave

lowpass3e

Third-order Elliptic (Cauer) lowpass filter.

Usage
_ @ lowpass3e(fc)
Where:
e fc: -3dB frequency in Hz
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Design
For spectral band-slice level display (see octave_analyzer3e):

[z,p,g] = ncauer(Rp,Rs,3); 7 analog zeros, poles, and gain, where
Rp = 60 Y dB ripple in stopband
Rs = 0.2 % dB ripple in passband

lowpass6e

Sixth-order Elliptic/Cauer lowpass filter.

Usage
_ ¢ lowpass6e(fc)
Where:
e fc: -3dB frequency in Hz

Design
For spectral band-slice level display (see octave_analyzer6e):

[z,p,g] = ncauer(Rp,Rs,6); % analog zeros, poles, and gain, where
Rp = 80 ¥ dB ripple in stopband
Rs = 0.2  dB ripple in passband

Elliptic Highpass Filters
highpass3e
Third-order Elliptic (Cauer) highpass filter. Inversion of lowpass3e wrt unit

circle in s plane (s <- 1/s)

Usage
_ : highpass3e(fc)
Where:
e fc: -3dB frequency in Hz
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highpass6e

Sixth-order Elliptic/Cauer highpass filter. Inversion of lowpass3e wrt unit circle
in s plane (s <- 1/s)

Usage
_ : highpass6e(fc)
Where:
e fc: -3dB frequency in Hz

Butterworth Bandpass/Bandstop Filters
bandpass

Order 2*Nh Butterworth bandpass filter made using the transformation s <- s
+ wc”2/s on lowpass(Nh), where wc is the desired bandpass center frequency.
The lowpass(Nh) cutoff wi is half the desired bandpass width. bandpass is a
standard Faust function.

Usage
_ : bandpass(Nh,fl,fu)
Where:

e Nh: HALF the desired bandpass order (which is therefore even)

e f1l: lower -3dB frequency in Hz

e fu: upper -3dB frequency in Hz Thus, the passband width is fu-f1, and
its center frequency is (f1+fu)/2.

Reference

http://cnx.org/content/m16913/latest/

bandstop

Order 2*Nh Butterworth bandstop filter made using the transformation s <- s
+ wc”2/s on highpass(Nh), where wc is the desired bandpass center frequency.
The highpass(Nh) cutoff w1 is half the desired bandpass width. bandstop is a
standard Faust function.

8


http://cnx.org/content/m16913/latest/

Usage
_ : bandstop(Nh,fl,fu)
Where:

e Nh: HALF the desired bandstop order (which is therefore even)

e f1: lower -3dB frequency in Hz

o fu: upper -3dB frequency in Hz Thus, the passband (stopband) width is
fu-f1, and its center frequency is (£1+fu)/2.

Reference

http://cnx.org/content/m16913/latest/

Elliptic Bandpass Filters
bandpassé6e

Order 12 elliptic bandpass filter analogous to bandpass(6).

bandpassi2e

Order 24 elliptic bandpass filter analogous to bandpass(6).

Parametric Equalizers (Shelf, Peaking)

Parametric Equalizers (Shelf, Peaking)

References

o http://en.wikipedia.org/wiki/Equalization

o http://www.musicdsp.org/files/ Audio- EQ-Cookbook.txt

e Digital Audio Signal Processing, Udo Zolzer, Wiley, 1999, p. 124

« https://ccrma.stanford.edu/~jos/filters/Low_ High Shelving Filters.html>
o https://ccrma.stanford.edu/~jos/filters/Peaking Equalizers.html>

e maxmsp.lib in the Faust distribution

o bandfilter.dsp in the faust2pd distribution
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low_shelf

First-order “low shelf” filter (gain boost|cut between dc and some frequency)
low_shelf is a standard Faust function.

Usage

_ : lowshelf(N,LO,fx) _
_ : low_shelf(LO,fx) : _ // default case (order 3)
_ : lowshelf_other_freq(N,LO,fx)

Where: * N: filter order 1, 3, 5, ... (odd only). (default should be 3) * LO: desired
level (dB) between dc and fx (boost LO>0 or cut L0<0) * fx: -3dB frequency of
lowpass band (L0>0) or upper band (L0<0) (see “SHELF SHAPE” below).

The gain at SR/2 is constrained to be 1. The generalization to arbitrary odd
orders is based on the well known fact that odd-order Butterworth band-splits
are allpass-complementary (see filterbank documentation below for references).

Shelf Shape

The magnitude frequency response is approximately piecewise-linear on a log-log
plot (“BODE PLOT?”). The Bode “stick diagram” approximation L(1f) is easy
to state in dB versus dB-frequency If = dB(f):

« LO>0:

o L(If) = LO, f between 0 and fx = 1st corner frequencys;

o L(f) =L0- N * (If - Ifx), f between fx and {2 = 2nd corner frequency;
o L(If) = 0, If > 1f2.

e 1f2 = 1fx + LO/N = dB-frequency at which level gets back to 0 dB.

« LO<O:

o L(If) = LO, f between 0 and fl1 = 1st corner frequency;

o L(If) =-N* (Ifx - If), f between 1 and lfx = 2nd corner frequency;

o L(If) = 0, If > 1fx.

o Ifl = 1fx + LO/N = dB-frequency at which level goes up from LO.

See lowshelf other_freq.

high_shelf

First-order “high shelf” filter (gain boost|cut above some frequency). high_shelf
is a standard Faust function.
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Usage

_ : highshelf(N,Lpi,fx)

_ ¢ high_shelf(LO,fx) : _ // default case (order 3)
_ : highshelf_other_freq(N,Lpi,fx)

Where:

o N: filter order 1, 3, 5, ... (odd only).

e Lpi: desired level (dB) between fx and SR/2 (boost Lpi>0 or cut Lpi<0)

o fx: -3dB frequency of highpass band (L0>0) or lower band (L0<0) (Use
highshelf other_ freq() below to find the other one.)

The gain at dc is constrained to be 1. See lowshelf documentation above for
more details on shelf shape.

peak_eq

Second order “peaking equalizer” section (gain boost or cut near some frequency)
Also called a “parametric equalizer” section. peak_eq is a standard Faust
function.

Usage
_ : peak_eq(Lfx,fx,B) : _;
Where:

o Lfx: level (dB) at fx (boost Lfx>0 or cut Lfx<0)
o fx: peak frequency (Hz)
¢ B: bandwidth (B) of peak in Hz

peak_eq_cq

Constant-Q second order peaking equalizer section.

Usage
_ : peak_eq_cq(Lfx,fx,Q) : _;
Where:

o Lfx: level (dB) at fx
o fx: boost or cut frequency (Hz)
e Q: “Quality factor” = fx/B where B = bandwidth of peak in Hz
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peak_eq_rm

Regalia-Mitra second order peaking equalizer section

Usage
_ @ peak_eq_rm(Lfx,fx,tanPiBT) : _;
Where:

e Lfx: level (dB) at fx

o fx: boost or cut frequency (Hz)

o tanPiBT: tan(PI*B/SR), where B = -3dB bandwidth (Hz) when
10" (Lfx/20) = 0 ~ PT*B/SR for narrow bandwidths B

Reference

P.A. Regalia, S.K. Mitra, and P.P. Vaidyanathan, “The Digital All-Pass Filter: A
Versatile Signal Processing Building Block” Proceedings of the IEEE, 76(1):19-37,
Jan. 1988. (See pp. 29-30.)

spectral_tilt

Spectral tilt filter, providing an arbitrary spectral rolloff factor alpha in (-1,1),
where -1 corresponds to one pole (-6 dB per octave), and +1 corresponds to one
zero (+6 dB per octave). In other words, alpha is the slope of the In magnitude
versus In frequency. For a “pinking filter” (e.g., to generate 1/f noise from white
noise), set alpha to -1/2.

Usage
_ : spectral_tilt(N,f0,bw,alpha)
Where:

o N: desired integer filter order (fixed at compile time)

e fO: lower frequency limit for desired roll-off band

e bw: bandwidth of desired roll-off band

e alpha: slope of roll-off desired in nepers per neper (In mag / In radian
freq)
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Examples

See spectral_tilt_demo.

Reference

Link to appear here when write up is done

levelfilter

Dynamic level lowpass filter. levelfilter is a standard Faust function.

Usage
_ ¢ levelfilter(L,freq)
Where:

o L: desired level (in dB) at Nyquist limit (SR/2), e.g., -60
e freq: corner frequency (-3dB point) usually set to fundamental freq
o N: Number of filters in series where L = L/N

Reference

https://ccrma.stanford.edu/realsimple/faust_strings/Dynamic_ Level
Lowpass_ Filter.html

levelfilterN

Dynamic level lowpass filter.

Usage
_ ¢ levelfilterN(N,freq,L)
Where:

o L: desired level (in dB) at Nyquist limit (SR/2), e.g., -60
e freq: corner frequency (-3dB point) usually set to fundamental freq
o N: Number of filters in series where L = L/N
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Reference

https://ccrma.stanford.edu/realsimple/faust__strings/Dynamic_ Level
Lowpass_ Filter.html

Mth-Octave Filter-Banks

Mth-octave filter-banks split the input signal into a bank of parallel signals, one
for each spectral band. They are related to the Mth-Octave Spectrum-Analyzers
in analysis.lib. The documentation of this library contains more details about
the implementation. The parameters are:

o M: number of band-slices per octave (>1)
o N: total number of bands (>2)
o ftop: upper bandlimit of the Mth-octave bands (<SR/2)

In addition to the Mth-octave output signals, there is a highpass signal containing
frequencies from ftop to SR/2, and a “dc band” lowpass signal containing
frequencies from 0 (dc) up to the start of the Mth-octave bands. Thus, the N
output signals are

highpass(ftop), MthOctaveBands(M,N-2,ftop), dcBand(ftop*2~(-Mx(N-1)))

A Filter-Bank is defined here as a signal bandsplitter having the property that
summing its output signals gives an allpass-filtered version of the filter-bank
input signal. A more conventional term for this is an “allpass-complementary
filter bank”. If the allpass filter is a pure delay (and possible scaling), the filter
bank is said to be a “perfect-reconstruction filter bank” (see Vaidyanathan-1993
cited below for details). A “graphic equalizer”, in which band signals are scaled
by gains and summed, should be based on a filter bank.

The filter-banks below are implemented as Butterworth or Elliptic spectrum-
analyzers followed by delay equalizers that make them allpass-complementary.

Increasing Channel Isolation

Go to higher filter orders - see Regalia et al. or Vaidyanathan (cited below)
regarding the construction of more aggressive recursive filter-banks using elliptic
or Chebyshev prototype filters.

References

o “Tree-structured complementary filter banks using all-pass sections”, Re-
galia et al., IEEE Trans. Circuits & Systems, CAS-34:1470-1484, Dec.
1987
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e “Multirate Systems and Filter Banks”, P. Vaidyanathan, Prentice-Hall,
1993
o Elementary filter theory: https://ccrma.stanford.edu/~jos/filters/

mth_octave_filterbank[n]

Allpass-complementary filter banks based on Butterworth band-splitting. For
Butterworth band-splits, the needed delay equalizer is easily found.

Usage

_ @ mth_octave_filterbank(0,M,ftop,N) : par(i,N,_); // Oth-order
_ : mth_octave_filterbank_alt(0,M,ftop,N) : par(i,N,_); // dc-inverted version

Also for convenience:

_ : mth_octave_filterbank3(M,ftop,N) : par(i,N,_); // 3d-order Butterworth
_ : mth_octave_filterbank5(M,ftop,N) : par(i,N,_); // 5th-roder Butterworth
mth_octave_filterbank_default = mth_octave_analyzer6e;

Where:

e 0: order of filter used to split each frequency band into two
e M: number of band-slices per octave

o ftop: highest band-split crossover frequency (e.g., 20 kHz)
o N: total number of bands (including dec and Nyquist)

Arbritary-Crossover Filter-Banks and Spectrum Analyzers

These are similar to the Mth-octave analyzers above, except that the band-split
frequencies are passed explicitly as arguments.

filterbank

Filter bank. filterbank is a standard Faust function.

Usage
_ @ filterbank (0,freqs) : par(i,N,_); // Butterworth band-splits
Where:

« 0: band-split filter order (ODD integer required for filterbank][i])
o fregs: (fcl,fc2,...,fcNs) [in numerically ascending order], where Ns=N-1
is the number of octave band-splits (total number of bands N=Ns+1).
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If frequencies are listed explicitly as arguments, enclose them in parens:

_ ¢ filterbank(3, (fcl,fc2)) : _,_,_

filterbanki

Inverted-dc filter bank.

Usage
_ @ filterbanki(0,freqs) : par(i,N,_); // Inverted-dc version
Where:

 0: band-split filter order (ODD integer required for filterbank[i])
o fregs: (fcl,fc2,...,fcNs) [in numerically ascending order], where Ns=N-1
is the number of octave band-splits (total number of bands N=Ns+1).

If frequencies are listed explicitly as arguments, enclose them in parens:

_ ¢ filterbanki(3, (fc1,fc2)) : _,_,_

hoa.lib

Faust library for high order ambisonic.
It should be used using the ho environment:

ho = library("ho.lib");
process = ho.functionCall;

Another option is to import stdfaust.lib which already contains the ho envi-
ronment:

import ("stdfaust.1lib");
process = ho.functionCall;

encoder

Ambisonic encoder. Encodes a signal in the circular harmonics domain depending
on an order of decomposition and an angle.
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Usage
encoder(n, x, a)
Where:

e n: the order
e x: the signal
e a: the angle

decoder
Decodes an ambisonics sound field for a circular array of loudspeakers.
Usage

_ : decoder(n, p)
Where:

e n: the order
e p: the number of speakers

Note

Number of loudspeakers must be greater or equal to 2n+1. It’s preferable to use
2n+2 loudspeakers.

decoderStereo

Decodes an ambisonic sound field for stereophonic configuration. An “home
made” ambisonic decoder for stereophonic restitution (30° - 330°) : Sound field
lose energy around 180°. You should use inPhase optimization with ponctual

sources. ###+# Usage

_ : decoderStereo(n)

Where:

e n: the order
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Optimization Functions

Functions to weight the circular harmonics signals depending to the ambisonics
optimization. It can be basic for no optimization, maxRe or inPhase.

optimBasic
The basic optimization has no effect and should be used for a perfect circle of

loudspeakers with one listener at the perfect center loudspeakers array.

Usage
_ : optimBasic(n)
Where:

e n: the order

optimMaxRe

The maxRe optimization optimize energy vector. It should be used for an
auditory confined in the center of the loudspeakers array.

Usage
_ : optimMaxRe(n)
Where:

e n: the order

optimInPhase

The inPhase Optimization optimize energy vector and put all loudspeakers
signals n phase. It should be used for an auditory.

Usage

“ optimInPhase(n) : _
here:

n: the order
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wider

Can be used to wide the diffusion of a localized sound. The order depending
signals are weighted and appear in a logarithmic way to have linear changes.

Usage
_ : wider(n,w)
Where:

e n: the order
e w: the width value between 0 - 1

map

It simulate the distance of the source by applying a gain on the signal and a
wider processing on the soundfield.

Usage
map(n, x, r, a)
Where:

: the order

: the signal

: the radius

: the angle in radian

PR X B

rotate

Rotates the sound field.

Usage
_ : rotate(n, a)
Where:

e n: the order
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e a: the angle in radian

math.lib

Mathematic library for Faust. Some functions are implemenented as Faust
foreign functions of math.h functions that are not part of Faust’s primitives.
Defines also various constants and several utilities.

It should be used using the fi environment:

ma = library("math.lib");
process = ma.functionCall;

Another option is to import stdfaust.lib which already contains the ma envi-
ronment:

import ("stdfaust.lib");
process = ma.functionCall;

Functions Reference
SR

Current sampling rate (between 1Hz and 192000Hz). Constant during program
execution.

Usage
SR :

BS

Current block-size. Can change during the execution.

Usage
BS :
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PI

Constant PI in double precisio.n

Usage
PI :

FTZ

Flush to zero: force samples under the “maximum subnormal number” to be
zero. Usually not needed in C++ because the architecture file take care of this,
but can be useful in javascript for instance.

Usage
: ftz

See : http://docs.oracle.com/cd/E19957-01/806-3568 /ncg_ math.html

neg

Invert the sign (-x) of a signal.

Usage

_ ! neg : _

sub(x,y)

Subtract x and y.

inv

Compute the inverse (1/x) of the input signal.
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Usage

inv :

cbrt

Computes the cube root of of the input signal.

Usage

_ ¢ cbrt : _

hypot

Computes the euclidian distance of the two input signals sqrt(xz+yy) without
undue overflow or underflow.

Usage
_»>_ : hypot : _

ldexp

Takes two input signals: x and n, and multiplies x by 2 to the power n.

Usage
_,_ : ldexp : _

scalb

Takes two input signals: x and n, and multiplies x by 2 to the power n.

Usage

_,_ : scalb : _
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loglp

Computes log(1 4+ x) without undue loss of accuracy when x is nearly zero.

Usage
_ : loglp : _

logb

Return exponent of the input signal as a floating-point number.

Usage
_ : logb : _

ilogb

Return exponent of the input signal as an integer number.

Usage
ilogb : _

log2

Returns the base 2 logarithm of x.

Usage
_ : log2 :

expml

Return exponent of the input signal minus 1 with better precision.
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Usage

_ : expml

acosh

Computes the principle value of the inverse hyperbolic cosine of the input signal.

Usage

_ : acosh : _

asinh

Computes the inverse hyperbolic sine of the input signal.

Usage

_ : asinh : _

atanh

Computes the inverse hyperbolic tangent of the input signal.

Usage

_ : atanh : _

sinh

Computes the hyperbolic sine of the input signal.

Usage

_ ¢ sinh : _
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cosh

Computes the hyperbolic cosine of the input signal.

Usage

cosh : _

tanh

Computes the hyperbolic tangent of the input signal.

Usage

_ ¢ tanh : _

erf

Computes the error function of the input signal.

Usage

. erf

erfc

Computes the complementary error function of the input signal.

Usage

_ : erfc : _

gamma

Computes the gamma function of the input signal.
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Usage

! gamma : _

lgamma

Calculates the natural logorithm of the absolute value of the gamma function of
the input signal.

Usage

_ : lgamma : _

JO

Computes the Bessel function of the first kind of order 0 of the input signal.

Usage
: JO

J1

Computes the Bessel function of the first kind of order 1 of the input signal.

Usage
: J1

Jn

Computes the Bessel function of the first kind of order n (first input signal) of
the second input signal.
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Usage

YO

Computes the linearly independent Bessel function of the second kind of order 0
of the input signal.

Usage
: YO

Y1

Computes the linearly independent Bessel function of the second kind of order 1
of the input signal.

Usage
: YO

Yn

Computes the linearly independent Bessel function of the second kind of order n
(first input signal) of the second input signal.

Usage
: Yn :

- P

fabs, fmax, fmin

Just for compatibility. ..
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fabs = abs
fmax = max
fmin = min
np2

Gives the next power of 2 of x.

Usage
np2(n)
Where:

e n: an integer

frac

Gives the fractional part of n.

Usage
frac(n)
Where:

e n: a decimal number

isnan

Return non-zero if and only if x is a NaN.

Usage

isnan(x)
isnan : _

Where:

e x: signal to analyse
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chebychev

Chebychev transformation of order n.

Usage
_ @ chebychev(n)
Where:

e n: the order of the polynomial

Semantics

TOl(x) =1,

T[] (x) = x,

TIn] (x) = 2x*T[n-1](x) - T[n-2](x)

Reference

http://en.wikipedia.org/wiki/Chebyshev_ polynomial

chebychevpoly
Linear combination of the first Chebyshev polynomials.
Usage

_ : chebychevpoly((cO,cl,...,cn))
Where:

e cn: the different Chebychevs polynomials such that:

chevpoly((c0,cl,...,cn)) = Sum of chebychev(i)*ci

Reference

http://www.csounds.com/manual/html/chebyshevpoly.html

diffn

Negated first-roder difference.
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Usage
_ ¢ diffn : _

misceffect.lib

This library contains a collection of audio effects.
It should be used using the ef environment:

ef = library("misceffect.lib");
process = ef.functionCall;

Another option is to import stdfaust.lib which already contains the ef envi-
ronment:

import ("stdfaust.lib");
process = ef.functionCall;

Dynamic
cubicnl

Cubic nonlinearity distortion. cubicnl is a standard Faust library.

Usage:

cubicnl(drive,offset)
cubicnl_nodc(drive,offset)

Where:

e drive: distortion amount, between 0 and 1

e offset: constant added before nonlinearity to give even harmonics. Note:
offset can introduce a nonzero mean - feed cubicnl output to dcblocker to
remove this.

References:

o https://ccrma.stanford.edu/~jos/pasp/Cubic__Soft_ Clipper.html
o https://ccrma.stanford.edu/~jos/pasp/Nonlinear_ Distortion.html
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gate_mono

Mono signal gate. gate_mono is a standard Faust function.

Usage
_ @ gate_mono(thresh,att,hold,rel)
Where:

o thresh: dB level threshold above which gate opens (e.g., -60 dB)

e att: attack time = time constant (sec) for gate to open (e.g., 0.0001 s =
0.1 ms)

e hold: hold time = time (sec) gate stays open after signal level < thresh
(e.g., 0.1s)

e rel: release time = time constant (sec) for gate to close (e.g., 0.020 s =
20 ms)

References

o http://en.wikipedia.org/wiki/Noise gate
o http://www.soundonsound.com/sos/apr01/articles/advanced.asp
e http://en.wikipedia.org/wiki/Gating_ (sound_ engineering)

gate_stereo

Stereo signal gates. gate_stereo is a standard Faust function.

Usage

_,_ : gate_stereo(thresh,att,hold,rel) : _,

Where:

e thresh: dB level threshold above which gate opens (e.g., -60 dB)
e att: attack time = time constant (sec) for gate to open (e.g., 0.0001 s =

0.1 ms)

e hold: hold time = time (sec) gate stays open after signal level < thresh
(e.g., 0.1s)

e rel: release time = time constant (sec) for gate to close (e.g., 0.020 s =
20 ms)
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References

o http://en.wikipedia.org/wiki/Noise_ gate
e http://www.soundonsound.com/sos/apr01/articles/advanced.asp
o http://en.wikipedia.org/wiki/Gating (sound_ engineering)

Filtering
speakerbp
Dirt-simple speaker simulator (overall bandpass eq with observed roll-offs above

and below the passband).

Low-frequency speaker model = +12 dB/octave slope breaking to flat near f1.
Implemented using two dc blockers in series.

High-frequency model = -24 dB/octave slope implemented using a fourth-order
Butterworth lowpass.

Example based on measured Celestion G12 (12" speaker):

speakerbp is a standard Faust function

Usage

speakerbp(f1,£2)
_ : speakerbp(130,5000)

piano_dispersion_filter

Piano dispersion allpass filter in closed form.

Usage

piano_dispersion_filter(M,B,f0)
_ : piano_dispersion_filter(1,B,f0) : +(totalDelay),_ : fdelay(maxDelay)

Where:

o M: number of first-order allpass sections (compile-time only) Keep below
20. 8 is typical for medium-sized piano strings.

e B: string inharmonicity coefficient (0.0001 is typical)

e fO: fundamental frequency in Hz
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Outputs

e MINUS the estimated delay at £0 of allpass chain in samples, provided in
negative form to facilitate subtraction from delay-line length.
e Output signal from allpass chain

stereo_width

Stereo Width effect using the Blumlein Shuffler technique. stereo_width is a
standard Faust function.

Usage
_,_ : stereo_width(w) : _,_
Where:

e w: stereo width between 0 and 1

At w=0, the output signal is mono ((left+right)/2 in both channels). At w=1,
there is no effect (original stereo image). Thus, w between 0 and 1 varies stereo
width from 0 to “original”.

Reference

e “Applications of Blumlein Shuffling to Stereo Microphone Techniques”
Michael A. Gerzon, JAES vol. 42, no. 6, June 1994

Time Based

echo

A simple echo effect.

echo is a standard Faust function

Usage
_ : echo(maxDuration,duration,feedback)
Where:

e« maxDuration: the max echo duration in seconds
e duration: the echo duration in seconds
o feedback: the feedback coeflicient
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Pitch Shifting

transpose

A simple pitch shifter based on 2 delay lines. transpose is a standard Faust
function.

Usage
_ : transpose(w, x, s)
Where:

o w: the window length (samples)
e x: crossfade duration duration (samples)
o s: shift (semitones)

Meshes

mesh_square

Square Rectangular Digital Waveguide Mesh.

Usage
bus (4%N) : mesh_square(N) : bus(4xN);
Where:

e N: number of nodes along each edge - a power of two (1,2,4,8,...)

Reference

https://cerma.stanford.edu/~jos/pasp/Digital_ Waveguide_ Mesh.html

Signal Order In and Out

The mesh is constructed recursively using 2x2 embeddings. Thus, the top level
of mesh_square (M) is a block 2x2 mesh, where each block is a mesh(M/2). Let
these blocks be numbered 1,2,3,4 in the geometry NW,NE,SW,SE ie.,as 123
4 Each block has four vector inputs and four vector outputs, where the length
of each vector is M/2. Label the input vectors as Ni,Ei,Wi,Si, i.e., as the inputs
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from the North, East South, and West, and similarly for the outputs. Then, for
example, the upper left input block of M/2 signals is labeled 1Ni. Most of the
connections are internal, such as 1Eo -> 2Wi. The 8*(M/2) input signals are
grouped in the order 1Ni 2Ni 3Si 451 1Wi 3Wi 2Ei 4Ei and the output signals
are 1No 1Wo 2No 2FEo 3So 3Wo 4S50 4Eo or

In: 1No 1Wo 2No 2Eo 3So 3Wo 4So 4Eo
Out: 1Ni 2Ni 3Si 4Si 1Wi 3Wi 2Ei 4FEi

Thus, the inputs are grouped by direction N,S;W E, while the outputs are
grouped by block number 1,2,3,4, which can also be interpreted as directions
NW, NE, SW, SE. A simple program illustrating these orderings is process =
mesh_square(2) ;.

Example
Reflectively terminated mesh impulsed at one corner:

mesh_square_test(N,x) = mesh_square(N)~(busi(4#N,x)) // input to corner
with { busi(N,x) = bus(N) : par(i,N,*(-1)) : par(i,N-1,_), +(x); };
process = 1-1' : mesh_square_test(4); // all modes excited forever

In this simple example, the mesh edges are connected as follows:
1No -> 1Ni, 1Wo -> 2Ni, 2No -> 3Si, 2Eo -> 4Si,
3So -> 1Wi, 3Wo -> 3Wi, 4So -> 2Ei, 4Eo -> 4Fi

A routing matrix can be used to obtain other connection geometries.

miscoscillator.lib

This library contains a collection of sound generators.
It should be used using the os environment:

os = library("miscoscillator.lib");
process = os.functionCall;

Another option is to import stdfaust.lib which already contains the os envi-
ronment:

import ("stdfaust.lib");
process = os.functionCall;
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Wave-Table-Based Oscillators

sinwaveform

Sine waveform ready to use with a rdtable.

Usage
sinwaveform(tablesize)
Where:

e tablesize: the table size

coswaveform

Cosine waveform ready to use with a rdtable.

Usage
coswaveform(tablesize)
Where:

e tablesize: the table size

phasor

A simple phasor to be used with a rdtable. phasor is a standard Faust function.

Usage
phasor(tablesize,freq)
Where:

e tablesize: the table size
o freq: the frequency of the wave (Hz)

oscsin

Sine wave oscillator. oscsin is a standard Faust function.
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Usage
oscsin(freq)
Where:
o freq: the frequency of the wave (Hz)

0ScCos

Cosine wave oscillator.

Usage
osccos (freq)
Where:
o freq: the frequency of the wave (Hz)

oscp
A sine wave generator with controllable phase.
Usage

oscp(freq,p)
Where:

e freq: the frequency of the wave (Hz)
o p: the phase in radian

osci

Interpolated phase sine wave oscillator.
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Usage
osci(freq)
Where:
o freq: the frequency of the wave (Hz)

LFOs

Low-frequency oscillators have prefix 1f_ (no aliasing suppression, signal-means
not necessarily zero).

1f_imptrain

Unit-amplitude low-frequency impulse train. 1f_imptrain is a standard Faust
function.

Usage
1f_imptrain(freq)
Where:

o freq: frequency in Hz

1f_pulsetrainpos

Unit-amplitude nonnegative LF pulse train, duty cycle between 0 and 1

Usage
1f_pulsetrainpos(freq,duty)
Where:

e freq: frequency in Hz
e duty: duty cycle between 0 and 1

1f_squarewavepos

Positive LF square wave in [0,1]
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Usage
1f_squarewavepos (freq)
Where:

e freq: frequency in Hz

1f_squarewave

Zero-mean unit-amplitude LF square wave. 1f_squarewave is a standard Faust
function.

Usage
1f_squarewave (freq)
Where:

e freq: frequency in Hz

1f_trianglepos

Positive unit-amplitude LF positive triangle wave

Usage
1f_trianglepos(freq)
Where:

e freq: frequency in Hz

1f_triangle

Positive unit-amplitude LF triangle wave 1f_triangle is a standard Faust
function.
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Usage
1f_triangle(freq)
Where:

e freq: frequency in Hz

Low Frequency Sawtooths

Sawtooth waveform oscillators for virtual analog synthesis et al. The ‘simple’
versions (1f_rawsaw, 1f_sawpos and sawl), are mere samplings of the ideal
continuous-time (“analog”) waveforms. While simple, the aliasing due to sam-
pling is quite audible. The differentiated polynomial waveform family (saw2,
sawN, and derived functions) do some extra processing to suppress aliasing (not
audible for very low fundamental frequencies). According to Lehtonen et al.
(JASA 2012), the aliasing of saw2 should be inaudible at fundamental frequencies
below 2 kHz or so, for a 44.1 kHz sampling rate and 60 dB SPL presentation
level; fundamentals 415 and below required no aliasing suppression (i.e., sawl is
ok).

1f_rawsaw

Simple sawtooth waveform oscillator between 0 and period in samples.

Usage
1f_rawsaw(periodsamps)
Where:

e periodsamps: number of periods per samples

1f_sawpos

Simple sawtooth waveform oscillator between 0 and 1.

Usage
1f_sawpos (freq)
Where:
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e freq: frequency

1f_saw

Simple sawtooth waveform. 1f_saw is a standard Faust function.

Usage
1f_saw(freq)
Where:

e freq: frequency

1f_sawpos_phase

Simple sawtooth waveform oscillator between 0 and 1 with phase control.

Usage
1f_sawpos_phase(freq,phase)
Where:

e freq: frequency
o phase: phase

Bandlimited Sawtooth

Bandlimited Sawtooth

sawN(N,freq), sawNp, saw2dpw(freq), saw2(freq), saw3(freq), sawd (freq),
sawb (freq), saw6(freq), sawtooth(freq), saw2f2(freq) saw2f4(freq)

Method 1 (saw2)

Polynomial Transition Regions (PTR) (for aliasing suppression)
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Reference

¢ Kleimola, J.; Valimaki, V., “Reducing Aliasing from Synthetic Audio
Signals Using Polynomial Transition Regions,” in Signal Processing Letters,
IEEE , vol.19, no.2, pp.67-70, Feb. 2012

« https://aaltodoc.aalto.fi/bitstream/handle/123456789/7747 /publication6.
pdf?sequence=9

o http://research.spa.aalto.fi/publications/papers/spl-ptr/

Method 2 (sawN)
Differentiated Polynomial Waves (DPW) (for aliasing suppression)

Reference

“Alias-Suppressed Oscillators based on Differentiated Polynomial Waveforms”,
Vesa Valimaki, Juhan Nam, Julius Smith, and Jonathan Abel, IEEE Tr. Acous-
tics, Speech, and Language Processing (IEEE-ASLP), Vol. 18, no. 5, May
2010.

Other Cases

Correction-filtered versions of saw2: saw2f2, saw2f4 The correction filter com-
pensates “droop” near half the sampling rate. See reference for sawN.

Usage

sawN(N,freq)
sawNp (N, freq,phase)

saw2dpw (freq)

saw2(freq)

saw3(freq) : _ // based on sawlN
saw4(freq) : _ // based on sawlN
sawb(freq) : _ // based on sawlN
saw6(freq) : _ // based on sawN
sawtooth(freq) : _ // = saw2
saw2f2(freq)

saw2f4 (freq)

Where:

e N: polynomial order
o freq: frequency in Hz
e phase: phase
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sawN

TODO: implemented but not documented. For now, you can look at the source
code.

sawNp

TODO: implemented but not documented. For now, you can look at the source
code.

saw2dpw

TODO: implemented but not documented. For now, you can look at the source
code.

saw3

TODO: implemented but not documented. For now, you can look at the source
code.

sawtooth

Alias-free sawtooth wave. 2nd order interpolation (based on saw2). sawtooth is
a standard Faust function.

Usage
sawtooth(freq)
Where:

o freq: frequency
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saw2f2

TODO: implemented but not documented. For now, you can look at the source
code.

saw2f4

TODO: implemented but not documented. For now, you can look at the source
code.

Bandlimited Pulse, Square, and Impulse Trains

Bandlimited Pulse, Square, and Impulse Trains
pulsetrainNl, pulsetrain, squareN, square, imptrain, imptrainNl, triangle,
triangleN

All are zero-mean and meant to oscillate in the audio frequency range. Use
simpler sample-rounded If * versions above for LFOs.

Usage

pulsetrainN(N,freq,duty)

pulsetrain(freq, duty) : _ // = pulsetrainN(2)
squareN(N, freq)

square : _ // = squareN(2)

imptrainN(N,freq) : _

imptrain : _ // = imptrainN(2)
triangleN(N,freq)

triangle : _ // = triangleN(2)

Where:

e N: polynomial order
e freq: frequency in Hz

pulsetrainN

TODO: implemented but not documented. For now, you can look at the source
code.
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pulsetrain

Bandlimited pulse train oscillator. Based on pulsetrainN(2). pulsetrain is a
standard Faust function.

Usage
pulsetrain(freq, duty)
Where:

o freq: frequency
e duty: duty cycle between 0 and 1

squareN

TODO: implemented but not documented. For now, you can look at the source
code.

square

Bandlimited square wave oscillator. Based on squareN(2). square is a standard
Faust function.

Usage
square (freq)
Where:

o freq: frequency

impulse

One-time impulse generated when the Faust process is started. impulse is a
standard Faust function.
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Usage

impulse : _

imptrainN

TODO: implemented but not documented. For now, you can look at the source
code.

imptrain

Bandlimited impulse train generator. Based on imptrainN(2). imptrain is a
standard Faust function.

Usage
imptrain(freq)
Where:

o freq: frequency

triangleN

TODO: implemented but not documented. For now, you can look at the source
code.

triangle
Bandlimited triangle wave oscillator. Based on triangleN(2). triangle is a

standard Faust function.

Usage
triangle(freq)
Where:

e freq: frequency
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Filter-Based Oscillators
Filter-Based Oscillators

Usage

osclblrlrsl|rcls|w] (f), where f = frequency in Hz.

References

« http://lac.linuxaudio.org/2012/download/lac12-slides-jos.pdf
 https://ccrma.stanford.edu/~jos/pdf/lac12-paper-jos.pdf

oschb

Sinusoidal oscillator based on the biquad.

Usage
oscb(freq)
Where:

o freq: frequency

oscrq

Sinusoidal (sine and cosine) oscillator based on 2D vector rotation, = undamped
“coupled-form” resonator = lossless 2nd-order normalized ladder filter.

Usage
oscrq(freq) : _,
Where:

o freq: frequency
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Reference

o https://ccrma.stanford.edu/~jos/pasp/Normalized__Scattering__
Junctions.html

oscrs

Sinusoidal (sine) oscillator based on 2D vector rotation, = undamped “coupled-
form” resonator = lossless 2nd-order normalized ladder filter.

Usage
oscrs(freq)
Where:

e freq: frequency

Reference

o https://ccrma.stanford.edu/~jos/pasp/Normalized__Scattering__
Junctions.html

oscrc

Sinusoidal (cosine) oscillator based on 2D vector rotation, = undamped “coupled-
form” resonator = lossless 2nd-order normalized ladder filter.

Usage
oscrc(freq)
Where:

o freq: frequency

Reference

o https://ccrma.stanford.edu/~jos/pasp/Normalized Scattering
Junctions.html
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oscC

Default sine wave oscillator (same as oscrs). osc is a standard Faust function.

Usage
osc(freq)
Where:
o freq: the frequency of the wave (Hz)

oscs

Sinusoidal oscillator based on the state variable filter = undamped “modified-
coupled-form” resonator = “magic circle” algorithm used in graphics

Waveguide-Resonator-Based Osccilators

Sinusoidal oscillator based on the waveguide resonator wgr.

osSCcw

Sinusoidal oscillator based on the waveguide resonator wgr. Unit-amplitude
cosine oscillator.

Usage
oscwc(freq)
Where:

o freq: frequency

Reference

o https://ccrma.stanford.edu/~jos/pasp/Digital _Waveguide Oscillator.
html
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OSCws

Sinusoidal oscillator based on the waveguide resonator wgr. Unit-amplitude sine
oscillator

Usage
oscws (freq)
Where:

o freq: frequency

Reference

o https://ccrma.stanford.edu/~jos/pasp/Digital_Waveguide_ Oscillator.
html

oscwq

Sinusoidal oscillator based on the waveguide resonator wgr. Unit-amplitude
cosine and sine (quadrature) oscillator.

Usage
oscwq(freq)
Where:

o freq: frequency

Reference

o https://ccrma.stanford.edu/~jos/pasp/Digital_Waveguide_ Oscillator.
html

osScw

Sinusoidal oscillator based on the waveguide resonator wgr. Unit-amplitude
cosine oscillator (default)
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Usage
oscw(freq)
Where:

e freq: frequency

Reference

o https://ccrma.stanford.edu/~jos/pasp/Digital _Waveguide_ Oscillator.
html

noise.lib

A library of noise generators.
It should be used using the no environment:

no = library("noise.lib");
process = no.functionCall;

Another option is to import stdfaust.lib which already contains the no envi-
ronment:

import ("stdfaust.lib");
process = no.functionCall;

Functions Reference
noise

White noise generator (outputs random number between -1 and 1). Noise is a
standard Faust function.

Usage

noise : _

multirandom

Generates multiple decorrelated random numbers in parallel.
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Usage
multirandom(n)
Where:

e n: the number of decorrelated random numbers in parallel

multinoise
Generates multiple decorrelated noises in parallel.
Usage

multinoise(n)

Where:

e n: the number of decorrelated random numbers in parallel

noises

TODO.

pink_noise

Pink noise (1/f noise) generator (third-order approximation) pink_noise is a
standard Faust function.

Usage

pink_noise : _;

Reference:

https://ccrma.stanford.edu/~jos/sasp/Example Synthesis 1 F Noise.html
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pink_noise_vm

Multi pink noise generator.

Usage
pink_noise_vm(N) : _;
Where:

o N: number of latched white-noise processes to sum, not to exceed sizeof(int)
in C++ (typically 32).

References

o http://www.dsprelated.com/showarticle/908.php
o http://www.firstpr.com.au/dsp/pink-noise/# Voss-McCartney

1fnoise, 1fnoise0 and lfnoiseN

Low-frequency noise generators (Butterworth-filtered downsampled white noise)

Usage

lfnoiseO(rate) : _; // new random number every int(SR/rate) samples or so
1lfnoiseN(N,rate) : _; // same as "lfnoiseO(rate) : lowpass(N,rate)" [see filter.lib]
lfnoise(rate) : _; // same as "lfnoiseO(rate) : seq(i,5,lowpass(N,rate))" (no overshoot)
Example

(view waveforms in faust2octave):

rate = SR/100.0; // new random value every 100 samples (SR from music.lib)

process = lfnoiseO(rate), // sampled/held noise (piecewise constant)
1fnoiseN(3,rate), // 1lfnoise0 smoothed by 3rd order Butterworth LPF
lfnoise(rate); // lfnoise0 smoothed with no overshoot

phafla.lib

A library of compressor effects.

It should be used using the pf environment:
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pf = library("phafla.lib");
process = pf.functionCall;

Another option is to import stdfaust.lib which already contains the pf envi-
ronment:

import ("stdfaust.lib");
process = pf.functionCall;

Functions Reference
flanger_mono

Mono flanging effect.

Usage:
_ : flanger_mono(dmax,curdel,depth,fb,invert) : _;
Where:

¢ dmax: maximum delay-line length (power of 2) - 10 ms typical
o curdel: current dynamic delay (not to exceed dmax)

e depth: effect strength between 0 and 1 (1 typical)

o fb: feedback gain between 0 and 1 (0 typical)

e invert: 0 for normal, 1 to invert sign of flanging sum

Reference

https://ccrma.stanford.edu/~jos/pasp/Flanging.html

flanger_stereo

Stereo flanging effect. flanger_stereo is a standard Faust function.

Usage:
_,_ : flanger_stereo(dmax,curdell,curdel2,depth,fb,invert) : _,_;
Where:

o dmax: maximum delay-line length (power of 2) - 10 ms typical
e curdel: current dynamic delay (not to exceed dmax)

o depth: effect strength between 0 and 1 (1 typical)

o fb: feedback gain between 0 and 1 (0 typical)
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e invert: 0 for normal, 1 to invert sign of flanging sum

Reference

https://ccrma.stanford.edu/~jos/pasp/Flanging. html

phaser2_mono

Mono phasing effect.

Phaser
_ : phaser2_mono(Notches,phase,width,frqmin,fratio,frqmax,speed,depth,fb,invert)
Where:

e Notches: number of spectral notches (MACRO ARGUMENT - not a
signal)

o phase: phase of the oscillator (0-1)

e width: approximate width of spectral notches in Hz

e frgmin: approximate minimum frequency of first spectral notch in Hz

o fratio: ratio of adjacent notch frequencies

e frgmax: approximate maximum frequency of first spectral notch in Hz

e speed: LFO frequency in Hz (rate of periodic notch sweep cycles)

o depth: effect strength between 0 and 1 (1 typical) (aka “intensity”) when
depth=2, “vibrato mode” is obtained (pure allpass chain)

o fb: feedback gain between -1 and 1 (0 typical)

o invert: O for normal, 1 to invert sign of flanging sum

Reference:

o https://ccrma.stanford.edu/~jos/pasp/Phasing.html

o http://www.geofex.com/Article_ Folders/phasers/phase.html

e ‘An Allpass Approach to Digital Phasing and Flanging’, Julius O. Smith
11, Proc. Int. Computer Music Conf. (ICMC-84), pp. 103-109, Paris,
1984.

o CCRMA Tech. Report STAN-M-21: https://ccrma.stanford.edu/STANM/
stanms/stanm21/

phaser2_stereo

Stereo phasing effect. phaser2_stereo is a standard Faust function.
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Phaser
_ : phaser2_stereo (Notches, phase,width,frgmin,fratio,frgmax,speed,depth,fb, invert)
Where:

o Notches: number of spectral notches (MACRO ARGUMENT - not a
signal)

o phase: phase of the oscillator (0-1)

e width: approximate width of spectral notches in Hz

e frgmin: approximate minimum frequency of first spectral notch in Hz

e fratio: ratio of adjacent notch frequencies

e frgmax: approximate maximum frequency of first spectral notch in Hz

o speed: LFO frequency in Hz (rate of periodic notch sweep cycles)

o depth: effect strength between 0 and 1 (1 typical) (aka “intensity”) when
depth=2, “vibrato mode” is obtained (pure allpass chain)

o fb: feedback gain between -1 and 1 (0 typical)

e invert: O for normal, 1 to invert sign of flanging sum

Reference:

 https://ccrma.stanford.edu/~jos/pasp/Phasing.html

o http://www.geofex.com/Article_Folders/phasers/phase.html

e ‘An Allpass Approach to Digital Phasing and Flanging’, Julius O. Smith
ITI, Proc. Int. Computer Music Conf. (ICMC-84), pp. 103-109, Paris,
1984.

o CCRMA Tech. Report STAN-M-21: https://ccrma.stanford.edu/STANM/
stanms/stanm21/

pm.lib

Faust physical modeling library.
It should be used using the £i environment:

pm = library("pm.lib");
process = pm.functionCall;

Another option is to import stdfaust.lib which already contains the pm envi-
ronment:

import ("stdfaust.lib");
process = pm.functionCall;
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chain(A:B:...)

Creates a chain of bidirectional blocks. Blocks must have 3 inputs and out-
puts. The first input/output correspond to the left going signal, the second
input /output correspond to the right going signal and the third input/output
is the mix of the main signal output. The implied one sample delay created by
the ~ operator is generalized to the left and right going waves. Thus, n blocks
in chain() will add an n samples delay to both the left and right going waves.

##+# Usage

rightGoingWaves,leftGoingWaves,mixedOutput : chain(A:B) : rightGoingWaves,leftGoingWaves,mi:
with{

A= _, ,_;
B =

i o |

};

Requires

filter.lib (crossnn)

input(x)

Adds a waveguide input anywhere between 2 blocks in a chain of blocks (see
chain()). ##4# Usage

string(x) = chain(A:input(x):B)

Where x is the input signal to be added to the chain.

output()

Adds a waveguide output anywhere between 2 blocks in a chain of blocks and
sends it to the mix output channel (see chain()). ### Usage

chain(A:output:B)

terminations(a,b,c)

Creates terminations on both sides of a chain() without closing the inputs and
outputs of the bidirectional signals chain. As for chain(), this function adds a
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1 sample delay to the bidirectional signal both ways. ### Usage

rightGoingWaves,leftGoingWaves,mixedOutput : terminations(a,b,c) : rightGoingWaves,leftGoing
with{

a = x(-1); // left termination
b = chain(D:E:F); // bidirectional chain of blocks (D, E, F, etc.)
c = *(-1); // right termination

};

Requires

filter.lib (crossnn)

fullTerminations(a,b,c)

Same as terminations() but closes the inputs and outputs of the bidirectional
chain (only the mixed output remains). ### Usage

terminations(a,b,c)

with{
a = *(-1); // left termination
b = chain(D:E:F); // bidirectional chain of blocks (D, E, F, etc.)
¢ = *x(-1); // right termination

};

Requires

filter.1lib (crossnn)

left Termination(a,b)

Creates a termination on the left side of a chain() without closing the inputs
and outputs of the bidirectional signals chain. This function adds a 1 sample
delay near the termination. ### Usage

rightGoingWaves,leftGoingWaves,mixedOutput : terminations(a,b) : rightGoingWaves,leftGoingW:

with{
a
b

*(-1); // left termination
chain(D:E:F); // bidirectional chain of blocks (D, E, F, etc.)

};
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Requires

filter.lib (crossnn)

right Termination(b,c)

Creates a termination on the right side of a chain() without closing the inputs
and outputs of the bidirectional signals chain. This function adds a 1 sample
delay near the termination. ### Usage

rightGoingWaves,leftGoingWaves,mixedOutput : terminations(b,c) : rightGoingWaves,leftGoingW:
with{

chain(D:E:F); // bidirectional chain of blocks (D, E, F, etc.)

= *(-1); // right termination

o o
|

};

Requires

filter.lib (crossnn)

waveguide(nMax,n)

A simple waveguide block based on a 4th order fractional delay. ### Usage
rightGoingWaves,leftGoingWaves,mixedOutput : waveguide(nMax,n) : rightGoingWaves,leftGoingW:

With: * nMax: the maximum length of the waveguide in samples * n the length
of the waveguide in samples. ### Requires filter.lib (fdelay4)

idealString(length,reflexion,xPosition,x)

An ideal string with rigid terminations and where the plucking position and the
pick-up position are the same. ### Usage

1-1' : idealString(length,reflexion,xPosition,x)

With: * length: the length of the string in meters * reflexion: the coefficient
of reflexion (0-0.99999999) * pluckPosition: the plucking position (0.001-
0.999) * x: the input signal for the excitation ##+# Requires filter.lib
(fdelay4,crossnn)
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reverb.lib

A library of reverb effects.
It should be used using the re environment:

re = library("reverb.1lib");
process = re.functionCall;

Another option is to import stdfaust.lib which already contains the re envi-
ronment:

import ("stdfaust.lib");
process = re.functionCall;

Functions Reference
jcrev

This artificial reverberator take a mono signal and output stereo (satrev)
and quad (jcrev). They were implemented by John Chowning in the MUS10
computer-music language (descended from Music V by Max Mathews). They
are Schroeder Reverberators, well tuned for their size. Nowadays, the more
expensive freeverb is more commonly used (see the Faust examples directory).

jerev reverb below was made from a listing of “RV”, dated April 14, 1972, which
was recovered from an old SAIL DART backup tape. John Chowning thinks this
might be the one that became the well known and often copied JCREV.

jcrev is a standard Faust function

Usage

_ : jerev : _,_,_,_

satrev

This artificial reverberator take a mono signal and output stereo (satrev)
and quad (jcrev). They were implemented by John Chowning in the MUS10
computer-music language (descended from Music V by Max Mathews). They
are Schroeder Reverberators, well tuned for their size. Nowadays, the more
expensive freeverb is more commonly used (see the Faust examples directory).
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satrev was made from a listing of “SATREV”, dated May 15, 1971, which was
recovered from an old SAIL DART backup tape. John Chowning thinks this might
be the one used on his often-heard brass canon sound examples, one of which
can be found at https://ccrma.stanford.edu/~jos/wav/FM__ BrassCanon2.wav

Usage

_ ¢ satrev : _,_

mono_freeverb

A simple Schroeder reverberator primarily developed by “Jezar at Dreampoint”
that is extensively used in the free-software world. It uses four Schroeder allpasses
in series and eight parallel Schroeder-Moorer filtered-feedback comb-filters for
each audio channel, and is said to be especially well tuned.

mono_freeverb is a standard Faust function.

Usage
_ : mono_freeverb(fbl, fb2, damp, spread) HE
Where:

o fbl: coefficient of the lowpass comb filters (0-1)

o £b2: coefficient of the allpass comb filters (0-1)

o damp: damping of the lowpass comb filter (0-1)

e spread: spatial spread in number of samples (for stereo)

stereo_freeverb

A simple Schroeder reverberator primarily developed by “Jezar at Dreampoint”
that is extensively used in the free-software world. It uses four Schroeder allpasses
in series and eight parallel Schroeder-Moorer filtered-feedback comb-filters for
each audio channel, and is said to be especially well tuned.

Usage
_,_ : stereo_freeverb(fbl, fb2, damp, spread) : _,_;
Where:

o fbl: coefficient of the lowpass comb filters (0-1)
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o £b2: coefficient of the allpass comb filters (0-1)
o damp: damping of the lowpass comb filter (0-1)
e spread: spatial spread in number of samples (for stereo)

fdnrevO

Pure Feedback Delay Network Reverberator (generalized for easy scaling).
fdnrev0 is a standard Faust function.

Usage

<1,2,4,...,N signals> <:
fdnrevO (MAXDELAY,delays,BBSO,freqgs,durs,loopgainmax,nonl) :>
<1,2,4,...,N signals>

Where:

e N:2,4,8, ... (power of 2)

e MAXDELAY: power of 2 at least as large as longest delay-line length

e delays: N delay lines, N a power of 2, lengths perferably coprime

e BBSO0: odd positive integer = order of bandsplit desired at freqs

e fregs: NB-1 crossover frequencies separating desired frequency bands
o durs: NB decay times (t60) desired for the various bands

e loopgainmax: scalar gain between 0 and 1 used to “squelch” the reverb
o nonl: nonlinearity (0 to 0.999..., 0 being linear)

Reference

https://ccrma.stanford.edu/~jos/pasp/FDN__Reverberation.html

zita_rev_fdn

Internal 8x8 late-reverberation FDN used in the FOSS Linux reverb zita-revl by
Fons Adriaensen fons@linuxaudio.org. This is an FDN reverb with allpass comb
filters in each feedback delay in addition to the damping filters.

Usage
bus(8) : zita_rev_fdn(f1,f2,t60dc,t60m,fsmax) : bus(8)
Where:

o f1: crossover frequency (Hz) separating de and midrange frequencies
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o £2: frequency (Hz) above f1 where T60 = t60m/2 (see below)
e t60dc: desired decay time (t60) at frequency 0 (sec)

e t60m: desired decay time (t60) at midrange frequencies (sec)
e fsmax: maximum sampling rate to be used (Hz)

Reference

o http://www.kokkinizita.net/linuxaudio/zita-revl-doc/quickguide.html
o https://ccrma.stanford.edu/~jos/pasp/Zita_ Rev1.html

zita_revl_stereo

Extend zita_rev_fdn to include zita_revl input/output mapping in stereo
mode. zita_revl_stereo is a standard Faust function.

Usage
_,_ : zita_revl_stereo(rdel,f1,f2,t60dc,t60m,fsmax) : _,

Where:

rdel = delay (in ms) before reverberation begins (e.g., 0 to ~100 ms) (remaining
args and refs as for zita_rev_fdn above)

zita_revl_ambi

Extend zita_rev_ fdn to include zita_ revl input/output mapping in “ambisonics
mode”, as provided in the Linux C++ version.

Usage
_»_ : zita_revl_ambi(rgxyz,rdel,f1,f2,t60dc,t60m,fsmax) : _,_,_,_
Where:

rgxyz = relative gain of lanes 1,4,2 to lane 0 in output (e.g., -9 to 9) (remaining
args and references as for zita_revl_stereo above)
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route.lib

A library of basic elements to handle signal routing in Faust.
It should be used using the si environment:

ro = library("route.lib");
process = ro.functionCall;

Another option is to import stdfaust.lib which already contains the si envi-
ronment:

import ("stdfaust.lib");
process = ro.functionCall;

Functions Reference
Cross

Cross n signals: (x1,x2,..,xn) -> (xn,..,x2,x1). cross is a standard Faust
function.

Usage

cross(n)
_,_,_ :+cross(3) : _,_,_

Where:

o n: number of signals (int, must be known at compile time)

Note
Special case: cross2:

cross2 = _,cross(2),_;

crossnn

Cross two bus(n)s.
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Usage
—s_s+-. 2 crossmm(n) : _,_,...
Where:

e n: the number of signals in the bus

crossnl

Cross bus(n) and bus(1).

Usage
—s_se.. : crossnl(n) : _,_,...
Where:

e n: the number of signals in the first bus

interleave
Interleave rowcol cables from column order to row order. input : z(0), z(1), x(2)

.., z(rowcol-1) output: x(04+0row), z(0+1row), x(0+2row), ..., z(1+0row),
x(14+1row), z(1+2row), ...

s s_»s_»_»_ : interleave(row,column) : _,_,_, ,_,_

o row: the number of row (int, known at compile time)
e column: the number of column (int, known at compile time)

butterfly

Addition (first half) then substraction (second half) of interleaved signals.
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Usage
_s_s_»_ @ butterfly(m) : _,_,_,_
Where:

o n: size of the butterfly (n is int, even and known at compile time)

hadamard

Hadamard matrix function of size n = 27k.

Usage
_+_s_,_ : hadamard(n) : _,_,_,_
Where:

e n: 27k, size of the matrix (int, must be known at compile time)

Note:
Implementation contributed by Remy Muller.

recursivize
Create a recursion from two arbitrary processors p and q.
Usage

_,_ : recursivize(p,q)

Where:

e

o p: the forward arbitrary processor
e q: the feedback arbitrary processor
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signal.lib

A library of basic elements to handle signals in Faust.
It should be used using the si environment:

si = library("signal.lib");
process = si.functionCall;

Another option is to import stdfaust.lib which already contains the si envi-
ronment:

import ("stdfaust.lib");
process = si.functionCall;

Functions Reference
bus

n parallel cables. bus is a standard Faust function.

Usage

bus(n)
bus(4) : _,_,_,_

Where:

e n: is an integer known at compile time that indicates the number of parallel
cables.

block

Block - terminate n signals. block is a standard Faust function.

Usage
—s_se.. : block(m) : _,...
Where:

e n: the number of signals to be blocked

137



interpolate

Linear interpolation between two signals.

Usage
_,_ : interpolate(i)
Where:

e 1i: interpolation control between 0 and 1 (0: first input; 1: second input)

smooth

Exponential smoothing by a unity-dc-gain one-pole lowpass. smooth is a standard
Faust function.

Usage:
_ : smooth(tau2pole(tau))
Where:
e tau: desired smoothing time constant in seconds, or
hslider(...) : smooth(s)
Where:

e s: smoothness between 0 and 1. s=0 for no smoothing, s=0.999 is “very
smooth”, s>1 is unstable, and s=1 yields the zero signal for all inputs.
The exponential time-constant is approximately 1/(1-s) samples, when s is
close to (but less than) 1.

Reference:

https://ccrma.stanford.edu/~jos/mdft/Convolution_ Example 2 ADSR.html

Smoo

Smoothing function based on smooth ideal to smooth UT signals (sliders, etc.)
down. smoo is a standard Faust function.
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Usage

hslider(...) : smoo;

polySmooth

A smoothing function based on smooth that doesn’t smooth when a trigger
signal is given. This is very useful when making polyphonic synthesizer to make
sure that the value of the parameter is the right one when the note is started.

Usage
hslider(...) : polysmooth(g,s,d)
Where:

o g: the gate/trigger signal used when making polyphonic synths

o s: the smoothness (see smooth)

e d: the number of samples to wait before the signal start being smoothed
after g switched to 1

bsmooth

Block smooth linear interpolation during a block of samples.

Usage
hslider(...) : bsmooth : _

lag_ud

Lag filter with separate times for up and down.

Usage
_ ¢ lag_ud(up, dn, signal) : _;
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dot

Dot product for two vectors of size n.

o n: size of the vectors (int, must be known at compile time)

spat.lib

This library contains a collection of tools for sound spatialization.
It should be used using the sp environment:

sp = library("spat.lib");
process = sp.functionCall;

Another option is to import stdfaust.lib which already contains the sp envi-
ronment:

import ("stdfaust.lib");
process = sp.functionCall;

panner
A simple linear stereo panner. panner is a standard Faust function.
Usage

_ : panner(g)
Where:

N

o g: the panning (0-1)

spat

GMEM SPAT: n-outputs spatializer. spat is a standard Faust function.
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Usage
_ ¢ spat(n,r,d) : _,_,...
Where:

e n: number of outputs
o r: rotation (between 0 et 1)
o d: distance of the source (between 0 et 1)

stereoize

Transform an arbitrary processor p into a stereo processor with 2 inputs and 2
outputs.

Usage
_,_ : stereoize(p)

Where:

o p: the arbitrary processor

synth.lib

This library contains a collection of envelope generators.
It should be used using the sy environment:

sy = library("synth.1lib");
process = sy.functionCall;

Another option is to import stdfaust.lib which already contains the sy envi-
ronment:

import ("stdfaust.lib");
process = sy.functionCall;

popFilterPerc

A simple percussion instrument based on a “popped” resonant bandpass filter.
popFilterPerc is a standard Faust function.
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Usage
popFilterDrum(freq,q,gate) : _;
Where:

e freq: the resonance frequency of the instrument
o q: the q of the res filter (typically, 5 is a good value)
o gate: the trigger signal (0 or 1)

dubDub

A simple synth based on a sawtooth wave filtered by a resonant lowpass. dubDub
is a standard Faust function.

Usage
dubDub(freq,ctFreq,q,gate) : _;
Where:

e freq: frequency of the sawtooth

e ctFreq: cutoff frequency of the filter
e q: Q of the filter

o gate: the trigger signal (0 or 1)

sawTrombone

A simple trombone based on a lowpassed sawtooth wave. sawTrombone is a
standard Faust function.

Usage
sawTrombone (att,freq,gain,gate)
Where:

o att: exponential attack duration in s (typically 0.01)
e freq: the frequency

e gain: the gain (0-1)

o gate: the gate (0 or 1)
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combString

Simplest string physical model ever based on a comb filter. combString is a
standard Faust function.

Usage

combString(freq,res,gate) : _;

Where:

freq: the frequency of the string
res: string T60 (resonance time) in second
gate: trigger signal (0 or 1)

additiveDrum

A simple drum using additive synthesis. additiveDrum is a standard Faust
function.

Usage

additiveDrum(freq,freqRatio,gain,harmDec,att,rel,gate)

Where:

fm

freq: the resonance frequency of the drum

freqRatio: a list of ratio to choose the frequency of the mode in func-
tion of freq e.g.(1 1.2 1.5 ...). The first element should always be one
(fundamental).

gain: the gain of each mode as a list (1 0.9 0.8 ...). The first element is
the gain of the fundamental.

harmDec: harmonic decay ratio (0-1): configure the speed at which higher
modes decay compare to lower modes.

att: attack duration in second

rel: release duration in second

gate: trigger signal (0 or 1)

An FM synthesizer with an arbitrary number of modulators connected as a
sequence. fm is a standard Faust function.
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Usage

freqs = (300,400,...);
indices = (20,...);
fm(freqgs,indices)

Where:

o fregs: a list of frequencies where the first one is the frequency of the
carrier and the others, the frequency of the modulator(s)
e indices: the indices of modulation (Nfregs-1)

vaeffect.lib

A library of virtual analog filter effects.
It should be used using the ve environment:

ve = library("vaeffect.lib");
process = ve.functionCall;

Another option is to import stdfaust.lib which already contains the ve envi-
ronment:

import ("stdfaust.lib");
process = ve.functionCall;

Functions Reference
moog_vcf

Moog “Voltage Controlled Filter” (VCF) in “analog” form. Moog VCF im-
plemented using the same logical block diagram as the classic analog circuit.
As such, it neglects the one-sample delay associated with the feedback path
around the four one-poles. This extra delay alters the response, especially at
high frequencies (see reference [1] for details). See moog_vcf_2b below for a
more accurate implementation.

Usage
moog_vcf (res,fr)
Where:

o fr: corner-resonance frequency in Hz ( less than SR/6.3 or so )
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o res: Normalized amount of corner-resonance between 0 and 1 (0 is no
resonance, 1 is maximum)

References

¢ https://ccrma.stanford.edu/~stilti/papers/moogvef.pdf
o https://ccrma.stanford.edu/~jos/pasp/vegf.html

moog_vcf_2b[n]

Moog “Voltage Controlled Filter” (VCF) as two biquads. Implementation of
the ideal Moog VCF transfer function factored into second-order sections. As
a result, it is more accurate than moog_vcf above, but its coefficient formulas
are more complex when one or both parameters are varied. Here, res is the
fourth root of that in moog_vcf, so, as the sampling rate approaches infinity,
moog_vcf (res,fr) becomes equivalent to moog_vcf_2b[n] (res”4,fr) (when
res and fr are constant). moog_vcf_2b uses two direct-form biquads (t£2).
moog_vcf_2bn uses two protected normalized-ladder biquads (tf2np).

Usage

moog_vcf_2b(res,fr)
moog_vcf_2bn(res,fr)

Where:

o fr: corner-resonance frequency in Hz
o res: Normalized amount of corner-resonance between 0 and 1 (0 is min
resonance, 1 is maximum)

wah4

Wah effect, 4th order. wah4 is a standard Faust function.

Usage
_ : wah4(fr)
Where:

e fr: resonance frequency in Hz
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Reference

https://ccrma.stanford.edu/~jos/pasp/vegf.html

autowah

Auto-wah effect. autowah is a standard Faust function.

Usage
_ : autowah(level) : _;
Where:

o level: amount of effect desired (0 to 1).

crybaby

Digitized CryBaby wah pedal. crybaby is a standard Faust function.

Usage
_ : crybaby(wah)
Where:

e wah: “pedal angle” from 0 to 1

Reference

https://ccrma.stanford.edu/~jos/pasp/vegt.html

vocoder

A very simple vocoder where the spectrum of the modulation signal is analyzed
using a filter bank. vocoder is a standard Faust function.
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Usage
_ : vocoder(nBands,att,rel,BWRatio,source,excitation) : _;
Where:

¢ nBands: Number of vocoder bands

e att: Attack time in seconds

e rel: Release time in seconds

e BWRatio: Coefficient to adjust the bandwidth of each band (0.1 - 2)
e source: Modulation signal

o excitation: Excitation/Carrier signal

147



	Faust Libraries
	Using the Faust Libraries
	Contributing
	New Functions
	New Libraries

	General Organization
	Coding Conventions
	Documentation
	Library Import
	Demo Functions
	Standard Functions

	The question of licensing/authoring/copyrigth

	Standard Functions
	Analysis Tools
	Basic Elements
	Conversion
	Effects
	Envelope Generators
	Filters
	Oscillators/Sound Generators
	Synths

	analyzer.lib
	Amplitude Tracking
	amp_follower
	amp_follower_ud
	amp_follower_ar

	Spectrum-Analyzers
	mth_octave_analyzer

	Mth-Octave Spectral Level
	mth_octave_spectral_level6e
	[third|half]_octave_[analyzer|filterbank]

	Arbritary-Crossover Filter-Banks and Spectrum Analyzers
	analyzer


	basic.lib
	Conversion Tools
	samp2sec
	sec2samp
	db2linear
	linear2db
	lin2LogGain
	log2LinGain
	tau2pole
	pole2tau
	midikey2hz
	pianokey2hz
	hz2pianokey

	Counters and Time/Tempo Tools
	countdown
	countup
	sweep
	time
	tempo
	period
	pulse
	pulsen
	beat
	pulse_countup
	pulse_countdown
	pulse_countup_loop
	pulse_countdown_loop

	Array Processing/Pattern Matching
	count
	take
	subseq

	Selectors (Conditions)
	if
	selector
	selectn
	select2stereo

	Other
	latch
	sAndH
	peakhold
	peakholder
	impulsify
	automat
	bpf
	bypass1
	bypass2
	toggle
	on_and_off
	selectoutn


	compressor.lib
	Functions Reference
	compressor_mono
	compressor_stereo
	limiter_1176_R4_mono
	limiter_1176_R4_stereo


	delay.lib
	Basic Delay Functions
	delay
	fdelay
	sdelay

	Lagrange Interpolation
	fdelaylti and fdelayltv
	fdelay[n]

	Thiran Allpass Interpolation
	fdelay[n]a


	demo.lib
	Analyzers
	mth_octave_spectral_level_demo

	Filters
	parametric_eq_demo
	spectral_tilt_demo
	mth_octave_filterbank_demo and filterbank_demo

	Effects
	cubicnl_demo
	gate_demo
	compressor_demo
	exciter
	moog_vcf_demo
	wah4_demo
	crybaby_demo
	vocoder_demo
	flanger_demo
	phaser2_demo
	freeverb_demo
	stereo_reverb_tester
	fdnrev0_demo
	zita_rev_fdn_demo
	zita_rev1

	Generators
	sawtooth_demo
	virtual_analog_oscillator_demo
	oscrs_demo


	envelope.lib
	Functions Reference
	smoothEnvelope
	ar
	asr
	adsr


	filter.lib
	Basic Filters
	zero
	pole
	integrator
	dcblockerat
	dcblocker

	Comb Filters
	ff_comb
	ff_fcomb
	ffcombfilter
	fb_comb
	fb_fcomb
	rev1
	fbcombfilter and ffbcombfilter
	allpass_comb
	allpass_fcomb
	rev2
	allpass_fcomb5 and allpass_fcomb1a

	Direct-Form Digital Filter Sections
	iir
	fir
	conv and convN
	tf1, tf2 and tf3
	notchw

	Direct-Form Second-Order Biquad Sections
	tf21, tf22, tf22t and tf21t

	Ladder/Lattice Digital Filters
	av2sv
	bvav2nuv
	iir_lat2
	allpassnt
	iir_kl
	allpassnklt
	iir_lat1
	allpassn1mt
	iir_nl
	allpassnnlt

	Useful Special Cases
	tf2np
	wgr
	nlf2
	apnl

	Ladder/Lattice Allpass Filters
	allpassn
	allpassnn
	allpasskl
	allpass1m

	Digital Filter Sections Specified as Analog Filter Sections
	tf2s and tf2snp
	tf3slf
	tf1s
	tf2sb
	tf1sb

	Simple Resonator Filters
	resonlp
	resonhp
	resonbp

	Butterworth Lowpass/Highpass Filters
	lowpass
	highpass
	lowpass0_highpass1

	Special Filter-Bank Delay-Equalizing Allpass Filters
	lowpass_plus|minus_highpass

	Elliptic (Cauer) Lowpass Filters
	lowpass3e
	lowpass6e

	Elliptic Highpass Filters
	highpass3e
	highpass6e

	Butterworth Bandpass/Bandstop Filters
	bandpass
	bandstop

	Elliptic Bandpass Filters
	bandpass6e
	bandpass12e

	Parametric Equalizers (Shelf, Peaking)
	low_shelf
	high_shelf
	peak_eq
	peak_eq_cq
	peak_eq_rm
	spectral_tilt
	levelfilter
	levelfilterN

	Mth-Octave Filter-Banks
	mth_octave_filterbank[n]

	Arbritary-Crossover Filter-Banks and Spectrum Analyzers
	filterbank
	filterbanki


	hoa.lib
	encoder
	decoder
	decoderStereo

	Optimization Functions
	optimBasic
	optimMaxRe
	optimInPhase
	Usage
	wider
	map
	rotate


	math.lib
	Functions Reference
	SR
	BS
	PI
	FTZ
	neg
	sub(x,y)
	inv
	cbrt
	hypot
	ldexp
	scalb
	log1p
	logb
	ilogb
	log2
	expm1
	acosh
	asinh
	atanh
	sinh
	cosh
	tanh
	erf
	erfc
	gamma
	lgamma
	J0
	J1
	Jn
	Y0
	Y1
	Yn
	fabs, fmax, fmin
	np2
	frac
	isnan
	chebychev
	chebychevpoly
	diffn


	misceffect.lib
	Dynamic
	cubicnl
	gate_mono
	gate_stereo

	Filtering
	speakerbp
	piano_dispersion_filter
	stereo_width

	Time Based
	echo

	Pitch Shifting
	transpose

	Meshes
	mesh_square


	miscoscillator.lib
	Wave-Table-Based Oscillators
	sinwaveform
	coswaveform
	phasor
	oscsin
	oscos
	oscp
	osci

	LFOs
	lf_imptrain
	lf_pulsetrainpos
	lf_squarewavepos
	lf_squarewave
	lf_trianglepos
	lf_triangle

	Low Frequency Sawtooths
	lf_rawsaw
	lf_sawpos
	lf_saw
	lf_sawpos_phase

	Bandlimited Sawtooth
	sawN
	sawNp
	saw2dpw
	saw3
	sawtooth
	saw2f2
	saw2f4

	Bandlimited Pulse, Square, and Impulse Trains
	pulsetrainN
	pulsetrain
	squareN
	square
	impulse
	imptrainN
	imptrain
	triangleN
	triangle

	Filter-Based Oscillators
	oscb
	oscrq
	oscrs
	oscrc
	osc
	oscs

	Waveguide-Resonator-Based Osccilators
	oscw
	oscws
	oscwq
	oscw


	noise.lib
	Functions Reference
	noise
	multirandom
	multinoise
	noises
	pink_noise
	pink_noise_vm
	lfnoise, lfnoise0 and lfnoiseN


	phafla.lib
	Functions Reference
	flanger_mono
	flanger_stereo
	phaser2_mono
	phaser2_stereo


	pm.lib
	chain(A:B:…)
	Requires
	input(x)
	output()
	terminations(a,b,c)
	Requires
	fullTerminations(a,b,c)
	Requires
	leftTermination(a,b)
	Requires
	rightTermination(b,c)
	Requires
	waveguide(nMax,n)
	idealString(length,reflexion,xPosition,x)


	reverb.lib
	Functions Reference
	jcrev
	satrev
	mono_freeverb
	stereo_freeverb
	fdnrev0
	zita_rev_fdn
	zita_rev1_stereo
	zita_rev1_ambi


	route.lib
	Functions Reference
	cross
	crossnn
	crossn1
	interleave
	butterfly
	hadamard
	recursivize


	signal.lib
	Functions Reference
	bus
	block
	interpolate
	smooth
	smoo
	polySmooth
	bsmooth
	lag_ud
	dot


	spat.lib
	panner
	spat
	stereoize


	synth.lib
	popFilterPerc
	dubDub
	sawTrombone
	combString
	additiveDrum
	fm


	vaeffect.lib
	Functions Reference
	moog_vcf
	moog_vcf_2b[n]
	wah4
	autowah
	crybaby
	vocoder



