Back to Multiple platform build/check report for BioC 3.19: simplified long |
|
This page was generated on 2024-10-18 20:40 -0400 (Fri, 18 Oct 2024).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo1 | Linux (Ubuntu 22.04.3 LTS) | x86_64 | 4.4.1 (2024-06-14) -- "Race for Your Life" | 4763 |
palomino7 | Windows Server 2022 Datacenter | x64 | 4.4.1 (2024-06-14 ucrt) -- "Race for Your Life" | 4500 |
merida1 | macOS 12.7.5 Monterey | x86_64 | 4.4.1 (2024-06-14) -- "Race for Your Life" | 4530 |
kjohnson1 | macOS 13.6.6 Ventura | arm64 | 4.4.1 (2024-06-14) -- "Race for Your Life" | 4480 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 987/2300 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.10.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo1 | Linux (Ubuntu 22.04.3 LTS) / x86_64 | OK | OK | OK | |||||||||
palomino7 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
merida1 | macOS 12.7.5 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
kjohnson1 | macOS 13.6.6 Ventura / arm64 | OK | OK | OK | OK | |||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.10.0 |
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.10.0.tar.gz |
StartedAt: 2024-10-17 06:47:37 -0400 (Thu, 17 Oct 2024) |
EndedAt: 2024-10-17 06:56:39 -0400 (Thu, 17 Oct 2024) |
EllapsedTime: 541.5 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.10.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/Users/biocbuild/bbs-3.19-bioc/meat/HPiP.Rcheck’ * using R version 4.4.1 (2024-06-14) * using platform: x86_64-apple-darwin20 * R was compiled by Apple clang version 14.0.0 (clang-1400.0.29.202) GNU Fortran (GCC) 12.2.0 * running under: macOS Monterey 12.7.6 * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.10.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... NOTE Package unavailable to check Rd xrefs: ‘ftrCOOL’ * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed FSmethod 51.468 1.800 61.499 corr_plot 51.405 1.709 60.029 var_imp 50.818 1.721 61.452 pred_ensembel 24.631 0.471 22.945 calculateTC 4.744 0.460 5.573 enrichfindP 0.914 0.081 15.509 getFASTA 0.122 0.017 10.414 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 3 NOTEs See ‘/Users/biocbuild/bbs-3.19-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.4.1 (2024-06-14) -- "Race for Your Life" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin20 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 99.663387 final value 94.026542 converged Fitting Repeat 2 # weights: 103 initial value 96.290866 final value 94.026542 converged Fitting Repeat 3 # weights: 103 initial value 98.836542 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 96.056817 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 97.286139 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 107.509824 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 103.917125 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 99.859597 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 97.976635 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 99.535888 iter 10 value 94.155594 iter 20 value 94.026571 final value 94.026542 converged Fitting Repeat 1 # weights: 507 initial value 108.539777 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 127.522054 iter 10 value 94.169184 final value 94.165117 converged Fitting Repeat 3 # weights: 507 initial value 106.900787 final value 94.026542 converged Fitting Repeat 4 # weights: 507 initial value 130.640024 iter 10 value 94.026542 iter 10 value 94.026542 iter 10 value 94.026542 final value 94.026542 converged Fitting Repeat 5 # weights: 507 initial value 98.414666 iter 10 value 93.974645 final value 93.974641 converged Fitting Repeat 1 # weights: 103 initial value 100.361870 iter 10 value 94.425129 iter 20 value 94.127413 iter 30 value 94.077531 iter 40 value 90.119592 iter 50 value 89.634414 iter 60 value 89.436666 iter 70 value 87.573825 iter 80 value 85.542393 iter 90 value 85.342168 iter 100 value 85.226697 final value 85.226697 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 110.180364 iter 10 value 94.477927 iter 20 value 94.164411 iter 30 value 94.076891 iter 40 value 93.063702 iter 50 value 90.832043 iter 60 value 85.443876 iter 70 value 83.952046 iter 80 value 83.888426 iter 90 value 83.859743 iter 100 value 83.684447 final value 83.684447 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 102.450374 iter 10 value 94.319528 iter 20 value 94.128227 iter 30 value 94.127975 iter 40 value 86.657705 iter 50 value 83.398501 iter 60 value 83.176142 iter 70 value 83.048063 iter 80 value 82.782399 iter 90 value 82.098854 iter 100 value 80.720856 final value 80.720856 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 120.892336 iter 10 value 94.444211 iter 20 value 86.393722 iter 30 value 86.138618 iter 40 value 85.336812 iter 50 value 83.636014 iter 60 value 83.254927 iter 70 value 83.088410 iter 80 value 83.072024 iter 90 value 83.063224 final value 83.062847 converged Fitting Repeat 5 # weights: 103 initial value 100.622442 iter 10 value 88.020616 iter 20 value 83.400371 iter 30 value 83.007583 iter 40 value 82.740712 iter 50 value 82.672380 final value 82.672365 converged Fitting Repeat 1 # weights: 305 initial value 105.921585 iter 10 value 95.678643 iter 20 value 94.267267 iter 30 value 93.852246 iter 40 value 93.364653 iter 50 value 92.674723 iter 60 value 88.704900 iter 70 value 85.179953 iter 80 value 82.917163 iter 90 value 81.402489 iter 100 value 79.914601 final value 79.914601 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 101.229504 iter 10 value 94.735329 iter 20 value 94.428402 iter 30 value 89.056287 iter 40 value 86.968796 iter 50 value 84.378092 iter 60 value 82.735313 iter 70 value 82.582128 iter 80 value 82.478883 iter 90 value 82.462248 iter 100 value 82.384913 final value 82.384913 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 114.456341 iter 10 value 94.429642 iter 20 value 94.131042 iter 30 value 94.011365 iter 40 value 92.367896 iter 50 value 91.725672 iter 60 value 85.829132 iter 70 value 84.664014 iter 80 value 82.567941 iter 90 value 82.036914 iter 100 value 81.770939 final value 81.770939 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 103.435325 iter 10 value 93.116617 iter 20 value 85.574179 iter 30 value 84.919615 iter 40 value 84.857825 iter 50 value 84.417964 iter 60 value 82.090279 iter 70 value 80.024026 iter 80 value 79.097308 iter 90 value 79.012538 iter 100 value 78.864674 final value 78.864674 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 99.915376 iter 10 value 94.489282 iter 20 value 94.086427 iter 30 value 85.108521 iter 40 value 82.991461 iter 50 value 81.937538 iter 60 value 81.548015 iter 70 value 80.975661 iter 80 value 80.568479 iter 90 value 80.325841 iter 100 value 80.178829 final value 80.178829 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 122.833303 iter 10 value 94.946866 iter 20 value 90.090587 iter 30 value 83.337959 iter 40 value 80.649592 iter 50 value 80.373968 iter 60 value 80.103065 iter 70 value 80.030860 iter 80 value 79.634356 iter 90 value 79.280914 iter 100 value 79.035430 final value 79.035430 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 117.329113 iter 10 value 94.191074 iter 20 value 92.652657 iter 30 value 85.486039 iter 40 value 84.487899 iter 50 value 83.634427 iter 60 value 80.788696 iter 70 value 80.559913 iter 80 value 80.209378 iter 90 value 79.701741 iter 100 value 79.540163 final value 79.540163 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 111.183002 iter 10 value 87.547296 iter 20 value 85.525934 iter 30 value 83.600126 iter 40 value 82.677294 iter 50 value 82.519605 iter 60 value 82.329886 iter 70 value 82.240019 iter 80 value 82.157871 iter 90 value 81.790021 iter 100 value 80.702133 final value 80.702133 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 105.302327 iter 10 value 94.727860 iter 20 value 94.161875 iter 30 value 89.570137 iter 40 value 87.692297 iter 50 value 84.323363 iter 60 value 81.133973 iter 70 value 79.996986 iter 80 value 79.555144 iter 90 value 79.419499 iter 100 value 79.126544 final value 79.126544 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 104.189019 iter 10 value 94.066949 iter 20 value 92.167098 iter 30 value 90.970448 iter 40 value 89.524913 iter 50 value 82.675641 iter 60 value 82.216404 iter 70 value 82.025301 iter 80 value 81.690021 iter 90 value 81.166767 iter 100 value 80.570587 final value 80.570587 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 101.959062 final value 94.485735 converged Fitting Repeat 2 # weights: 103 initial value 110.323998 iter 10 value 94.485966 final value 94.484331 converged Fitting Repeat 3 # weights: 103 initial value 109.749610 final value 94.485923 converged Fitting Repeat 4 # weights: 103 initial value 94.594059 iter 10 value 94.485803 iter 20 value 94.461984 iter 30 value 84.533533 iter 40 value 84.402700 iter 50 value 84.353768 iter 60 value 84.082165 iter 70 value 82.400439 final value 82.256264 converged Fitting Repeat 5 # weights: 103 initial value 98.749874 final value 94.485943 converged Fitting Repeat 1 # weights: 305 initial value 118.871893 iter 10 value 94.489315 iter 20 value 94.484423 iter 30 value 94.068815 final value 93.974941 converged Fitting Repeat 2 # weights: 305 initial value 106.325803 iter 10 value 93.960546 iter 20 value 93.882245 iter 30 value 93.708544 iter 40 value 93.676061 final value 93.675985 converged Fitting Repeat 3 # weights: 305 initial value 110.696481 iter 10 value 94.170075 iter 20 value 94.088476 final value 93.974982 converged Fitting Repeat 4 # weights: 305 initial value 99.066523 iter 10 value 94.488464 iter 20 value 94.484322 iter 30 value 94.186131 final value 94.165232 converged Fitting Repeat 5 # weights: 305 initial value 104.910667 iter 10 value 94.488588 iter 20 value 93.418566 iter 30 value 91.740551 iter 40 value 80.535572 iter 50 value 80.386433 iter 60 value 80.384191 iter 70 value 80.330075 iter 80 value 80.327466 final value 80.326165 converged Fitting Repeat 1 # weights: 507 initial value 98.354663 iter 10 value 94.456317 iter 20 value 94.448233 iter 20 value 94.448233 iter 20 value 94.448232 final value 94.448232 converged Fitting Repeat 2 # weights: 507 initial value 121.284491 iter 10 value 93.417096 iter 20 value 90.299301 iter 30 value 90.280684 iter 40 value 90.125769 iter 50 value 89.388613 iter 60 value 89.372325 iter 70 value 89.371220 final value 89.370854 converged Fitting Repeat 3 # weights: 507 initial value 95.903053 iter 10 value 92.742687 iter 20 value 92.723120 iter 30 value 92.715875 iter 40 value 92.694428 iter 50 value 92.291476 iter 60 value 85.382162 final value 84.793822 converged Fitting Repeat 4 # weights: 507 initial value 142.917281 iter 10 value 94.036231 iter 20 value 94.027961 iter 30 value 93.157986 iter 40 value 89.700503 iter 50 value 88.675878 iter 60 value 87.975649 iter 70 value 84.444167 iter 80 value 84.257006 iter 90 value 84.250549 iter 100 value 84.249995 final value 84.249995 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 95.696180 iter 10 value 94.034701 iter 20 value 94.028172 iter 30 value 93.975508 final value 93.975117 converged Fitting Repeat 1 # weights: 103 initial value 105.600718 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 106.093470 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 99.233896 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 95.273291 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 94.130840 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 95.762705 final value 94.032967 converged Fitting Repeat 2 # weights: 305 initial value 97.139078 iter 10 value 94.038342 iter 20 value 93.465590 iter 30 value 92.363276 iter 40 value 92.358142 final value 92.358089 converged Fitting Repeat 3 # weights: 305 initial value 95.661667 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 98.142882 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 96.607473 iter 10 value 94.051407 iter 20 value 94.034652 final value 94.032967 converged Fitting Repeat 1 # weights: 507 initial value 98.167587 iter 10 value 90.947443 iter 20 value 90.658907 final value 90.658894 converged Fitting Repeat 2 # weights: 507 initial value 104.364889 final value 94.032967 converged Fitting Repeat 3 # weights: 507 initial value 101.005196 iter 10 value 88.703015 iter 20 value 85.112621 iter 30 value 84.991839 final value 84.948891 converged Fitting Repeat 4 # weights: 507 initial value 95.652123 final value 94.052910 converged Fitting Repeat 5 # weights: 507 initial value 99.694905 final value 94.052910 converged Fitting Repeat 1 # weights: 103 initial value 95.964968 iter 10 value 93.883401 iter 20 value 86.827606 iter 30 value 83.139628 iter 40 value 81.434236 iter 50 value 81.093730 iter 60 value 80.624864 iter 70 value 79.794420 iter 80 value 79.575354 iter 90 value 79.556449 final value 79.556436 converged Fitting Repeat 2 # weights: 103 initial value 107.897321 iter 10 value 94.080054 iter 20 value 90.886891 iter 30 value 85.800720 iter 40 value 84.200194 iter 50 value 84.001400 iter 60 value 83.271123 iter 70 value 83.234767 iter 80 value 83.159773 iter 90 value 82.517217 iter 100 value 81.371494 final value 81.371494 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 96.254861 iter 10 value 94.071654 iter 20 value 94.054866 iter 30 value 88.309764 iter 40 value 85.101449 iter 50 value 84.692086 iter 60 value 83.627073 iter 70 value 82.716066 iter 80 value 82.540879 iter 90 value 82.458631 iter 100 value 82.402783 final value 82.402783 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 103.743822 iter 10 value 92.037686 iter 20 value 84.074021 iter 30 value 83.911893 iter 40 value 83.290833 iter 50 value 82.588918 iter 60 value 82.043326 iter 70 value 81.975982 iter 80 value 81.969818 final value 81.969343 converged Fitting Repeat 5 # weights: 103 initial value 97.231193 iter 10 value 94.056478 iter 20 value 88.099139 iter 30 value 83.845065 iter 40 value 82.686736 iter 50 value 82.310828 iter 60 value 81.923487 iter 70 value 81.272974 iter 80 value 80.976633 final value 80.973965 converged Fitting Repeat 1 # weights: 305 initial value 100.235741 iter 10 value 93.512802 iter 20 value 82.015213 iter 30 value 81.178654 iter 40 value 79.270904 iter 50 value 78.535459 iter 60 value 78.409477 iter 70 value 78.335516 iter 80 value 78.289165 iter 90 value 78.286330 iter 100 value 78.280036 final value 78.280036 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 103.913847 iter 10 value 95.253751 iter 20 value 86.008900 iter 30 value 85.514321 iter 40 value 84.991963 iter 50 value 83.455228 iter 60 value 83.018469 iter 70 value 81.580468 iter 80 value 81.305290 iter 90 value 80.621287 iter 100 value 79.948563 final value 79.948563 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 100.914093 iter 10 value 94.066784 iter 20 value 93.614738 iter 30 value 83.486348 iter 40 value 82.565806 iter 50 value 81.243518 iter 60 value 80.207500 iter 70 value 79.205594 iter 80 value 78.845355 iter 90 value 78.255095 iter 100 value 78.126475 final value 78.126475 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 110.059284 iter 10 value 94.711070 iter 20 value 94.067400 iter 30 value 93.818485 iter 40 value 93.629281 iter 50 value 88.501274 iter 60 value 86.486315 iter 70 value 82.094467 iter 80 value 79.719093 iter 90 value 79.319263 iter 100 value 78.829869 final value 78.829869 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 101.231420 iter 10 value 94.067929 iter 20 value 88.373842 iter 30 value 84.618769 iter 40 value 84.075784 iter 50 value 83.402148 iter 60 value 82.517002 iter 70 value 82.134547 iter 80 value 81.977231 iter 90 value 81.849814 iter 100 value 81.581815 final value 81.581815 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 104.439006 iter 10 value 94.071296 iter 20 value 84.138670 iter 30 value 82.955229 iter 40 value 82.564607 iter 50 value 81.089437 iter 60 value 80.326050 iter 70 value 79.169691 iter 80 value 78.658257 iter 90 value 78.405248 iter 100 value 78.346212 final value 78.346212 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 122.229075 iter 10 value 94.137150 iter 20 value 91.472034 iter 30 value 83.809927 iter 40 value 80.906107 iter 50 value 79.367160 iter 60 value 78.622778 iter 70 value 78.142805 iter 80 value 77.997675 iter 90 value 77.955851 iter 100 value 77.901130 final value 77.901130 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 109.815881 iter 10 value 96.570440 iter 20 value 91.528838 iter 30 value 86.690022 iter 40 value 84.740198 iter 50 value 81.654624 iter 60 value 79.016368 iter 70 value 78.665546 iter 80 value 78.329557 iter 90 value 78.207945 iter 100 value 78.174139 final value 78.174139 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 102.629727 iter 10 value 90.960344 iter 20 value 83.197596 iter 30 value 81.620539 iter 40 value 79.449391 iter 50 value 79.200350 iter 60 value 78.851328 iter 70 value 78.397652 iter 80 value 78.335711 iter 90 value 78.321530 iter 100 value 78.249765 final value 78.249765 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 105.200341 iter 10 value 94.227774 iter 20 value 87.163884 iter 30 value 84.817888 iter 40 value 83.907313 iter 50 value 83.152548 iter 60 value 82.385710 iter 70 value 81.000379 iter 80 value 80.231660 iter 90 value 79.179668 iter 100 value 78.506599 final value 78.506599 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.459720 iter 10 value 94.054566 iter 20 value 94.052908 iter 30 value 83.958601 iter 40 value 82.418628 iter 50 value 82.392071 final value 82.392049 converged Fitting Repeat 2 # weights: 103 initial value 102.335939 final value 94.054676 converged Fitting Repeat 3 # weights: 103 initial value 95.545507 iter 10 value 94.054679 iter 20 value 94.050135 iter 30 value 82.853010 iter 40 value 82.390307 iter 50 value 82.169576 iter 60 value 81.919409 final value 81.842896 converged Fitting Repeat 4 # weights: 103 initial value 103.282588 iter 10 value 94.054637 iter 20 value 94.052610 iter 30 value 89.666798 iter 40 value 89.018161 iter 40 value 89.018161 iter 40 value 89.018161 final value 89.018161 converged Fitting Repeat 5 # weights: 103 initial value 95.472453 iter 10 value 91.845466 iter 20 value 91.255321 iter 30 value 91.181281 iter 40 value 91.181106 iter 50 value 91.179732 iter 60 value 91.168487 iter 70 value 91.166787 iter 80 value 91.165754 iter 90 value 87.196486 iter 100 value 83.016182 final value 83.016182 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 97.191364 iter 10 value 93.609809 iter 20 value 93.604346 iter 30 value 91.384008 iter 40 value 86.439295 iter 50 value 86.211876 iter 60 value 86.198974 iter 70 value 86.197471 iter 80 value 86.120694 iter 90 value 79.424938 iter 100 value 79.140814 final value 79.140814 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 103.452466 iter 10 value 94.058281 iter 20 value 94.050291 iter 30 value 92.094731 iter 40 value 90.954088 iter 50 value 90.774685 iter 60 value 90.769378 final value 90.769274 converged Fitting Repeat 3 # weights: 305 initial value 96.997212 iter 10 value 94.057522 iter 20 value 94.048135 iter 30 value 83.204007 iter 40 value 82.506246 iter 50 value 82.348901 iter 60 value 77.898534 iter 70 value 77.125093 iter 80 value 77.117557 iter 90 value 77.070676 iter 100 value 76.951635 final value 76.951635 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 94.210373 iter 10 value 87.331220 iter 20 value 86.626642 iter 30 value 86.620140 iter 40 value 86.374836 iter 50 value 83.566955 iter 60 value 83.566291 iter 70 value 83.519337 iter 80 value 83.514028 final value 83.513995 converged Fitting Repeat 5 # weights: 305 initial value 105.429111 iter 10 value 94.058124 iter 20 value 93.972532 iter 30 value 92.008416 iter 40 value 91.139270 iter 50 value 91.138626 iter 60 value 91.137998 iter 70 value 90.904202 iter 80 value 90.798670 iter 90 value 90.653655 final value 90.652807 converged Fitting Repeat 1 # weights: 507 initial value 96.387166 iter 10 value 93.756351 iter 20 value 88.413713 iter 30 value 88.391447 iter 40 value 88.379986 iter 50 value 86.900440 iter 60 value 86.497315 iter 70 value 85.755858 iter 80 value 81.509512 iter 90 value 78.671791 iter 100 value 77.503910 final value 77.503910 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 112.599529 iter 10 value 94.061234 iter 20 value 94.010444 iter 30 value 91.355241 iter 40 value 87.714851 iter 50 value 82.751335 iter 60 value 82.706192 iter 70 value 82.545516 iter 80 value 82.545005 iter 90 value 82.543794 iter 100 value 81.688908 final value 81.688908 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 101.417776 iter 10 value 94.024451 iter 20 value 91.515621 iter 30 value 87.060977 iter 40 value 86.997217 iter 50 value 85.298190 iter 60 value 84.182324 iter 70 value 84.157762 iter 80 value 84.155883 iter 90 value 83.984408 iter 100 value 81.297353 final value 81.297353 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 120.410619 iter 10 value 94.041329 iter 20 value 94.038065 iter 30 value 94.036133 iter 40 value 90.436604 iter 50 value 83.405429 iter 60 value 82.560415 iter 70 value 80.761517 iter 80 value 79.038217 iter 90 value 78.796647 iter 100 value 78.748274 final value 78.748274 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 122.397165 iter 10 value 89.434773 iter 20 value 88.529270 iter 30 value 83.848695 iter 40 value 82.931704 iter 50 value 82.371902 iter 60 value 82.322251 final value 82.321859 converged Fitting Repeat 1 # weights: 103 initial value 96.227449 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 102.980053 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 105.464654 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 95.174045 iter 10 value 94.119478 iter 20 value 93.976697 iter 30 value 93.923304 final value 93.922611 converged Fitting Repeat 5 # weights: 103 initial value 96.289376 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 105.031052 iter 10 value 86.467760 iter 20 value 86.440703 final value 86.440679 converged Fitting Repeat 2 # weights: 305 initial value 101.973197 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 109.828687 iter 10 value 94.305883 iter 10 value 94.305882 iter 10 value 94.305882 final value 94.305882 converged Fitting Repeat 4 # weights: 305 initial value 109.101367 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 106.201650 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 96.926456 final value 94.354396 converged Fitting Repeat 2 # weights: 507 initial value 95.847473 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 112.361906 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 96.977407 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 96.040731 final value 94.289216 converged Fitting Repeat 1 # weights: 103 initial value 96.827332 iter 10 value 94.494809 iter 20 value 87.582413 iter 30 value 86.475885 iter 40 value 85.707199 iter 50 value 85.550353 iter 60 value 85.134287 iter 70 value 84.665397 iter 80 value 84.471175 iter 90 value 83.395597 iter 100 value 82.051926 final value 82.051926 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 98.273291 iter 10 value 94.486513 iter 20 value 94.097892 iter 30 value 94.041667 iter 40 value 85.224751 iter 50 value 84.050867 iter 60 value 83.139136 iter 70 value 82.985279 iter 80 value 82.962878 iter 90 value 82.932546 final value 82.932143 converged Fitting Repeat 3 # weights: 103 initial value 97.326581 iter 10 value 94.495364 iter 20 value 94.129601 iter 30 value 92.964388 iter 40 value 89.244216 iter 50 value 88.803073 iter 60 value 87.845280 iter 70 value 83.896909 iter 80 value 83.090443 iter 90 value 82.935230 iter 100 value 82.933918 final value 82.933918 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 102.634268 iter 10 value 94.458885 iter 20 value 92.343622 iter 30 value 85.958169 iter 40 value 83.122912 iter 50 value 82.037979 iter 60 value 81.779621 iter 70 value 81.428411 iter 80 value 81.247646 final value 81.247569 converged Fitting Repeat 5 # weights: 103 initial value 97.509450 iter 10 value 94.488782 iter 20 value 94.062112 iter 30 value 86.672928 iter 40 value 84.977195 iter 50 value 84.900957 iter 60 value 84.588642 iter 70 value 83.587250 iter 80 value 82.958732 iter 90 value 81.950492 iter 100 value 81.498888 final value 81.498888 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 101.684715 iter 10 value 94.408767 iter 20 value 85.680862 iter 30 value 83.816565 iter 40 value 83.673292 iter 50 value 82.960828 iter 60 value 81.030409 iter 70 value 80.471252 iter 80 value 80.264459 iter 90 value 80.124332 iter 100 value 79.736162 final value 79.736162 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 103.331885 iter 10 value 93.882514 iter 20 value 92.031854 iter 30 value 85.340835 iter 40 value 84.139608 iter 50 value 83.447322 iter 60 value 81.751884 iter 70 value 80.578890 iter 80 value 80.308104 iter 90 value 79.939186 iter 100 value 79.620754 final value 79.620754 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 102.239567 iter 10 value 94.388097 iter 20 value 85.152704 iter 30 value 83.628439 iter 40 value 82.659179 iter 50 value 82.186285 iter 60 value 81.891004 iter 70 value 81.859252 iter 80 value 81.247805 iter 90 value 80.619809 iter 100 value 80.127546 final value 80.127546 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 115.074750 iter 10 value 91.049139 iter 20 value 84.365141 iter 30 value 83.354758 iter 40 value 82.863524 iter 50 value 81.588733 iter 60 value 80.450335 iter 70 value 80.005422 iter 80 value 79.970814 iter 90 value 79.927997 iter 100 value 79.828946 final value 79.828946 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 101.710579 iter 10 value 95.135448 iter 20 value 94.487380 iter 30 value 94.212996 iter 40 value 89.994140 iter 50 value 85.730298 iter 60 value 83.830852 iter 70 value 83.697055 iter 80 value 82.950942 iter 90 value 82.659747 iter 100 value 82.655655 final value 82.655655 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 109.489999 iter 10 value 100.063777 iter 20 value 90.601020 iter 30 value 87.717134 iter 40 value 84.808045 iter 50 value 84.288414 iter 60 value 82.939261 iter 70 value 80.672212 iter 80 value 80.363032 iter 90 value 80.152868 iter 100 value 79.594965 final value 79.594965 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 115.752867 iter 10 value 94.552586 iter 20 value 88.471176 iter 30 value 87.851068 iter 40 value 84.718991 iter 50 value 83.719205 iter 60 value 82.823675 iter 70 value 81.148359 iter 80 value 80.091745 iter 90 value 80.023100 iter 100 value 79.971668 final value 79.971668 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 110.343305 iter 10 value 94.490459 iter 20 value 94.174658 iter 30 value 89.195065 iter 40 value 85.400040 iter 50 value 83.403999 iter 60 value 83.191673 iter 70 value 82.042828 iter 80 value 81.540416 iter 90 value 80.502080 iter 100 value 79.955967 final value 79.955967 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 107.615288 iter 10 value 95.781976 iter 20 value 94.625802 iter 30 value 93.803065 iter 40 value 87.248085 iter 50 value 84.311325 iter 60 value 82.131486 iter 70 value 81.492063 iter 80 value 80.629509 iter 90 value 80.449288 iter 100 value 80.355050 final value 80.355050 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 112.221564 iter 10 value 94.483505 iter 20 value 85.156026 iter 30 value 84.875005 iter 40 value 83.970352 iter 50 value 83.579732 iter 60 value 81.894607 iter 70 value 81.463663 iter 80 value 80.645067 iter 90 value 80.267797 iter 100 value 79.937641 final value 79.937641 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 101.097446 iter 10 value 94.298166 iter 20 value 94.090255 iter 30 value 86.817691 iter 40 value 84.016457 iter 50 value 83.983578 iter 60 value 82.579162 iter 70 value 82.520780 final value 82.520735 converged Fitting Repeat 2 # weights: 103 initial value 106.045664 final value 94.485783 converged Fitting Repeat 3 # weights: 103 initial value 98.116542 final value 94.485749 converged Fitting Repeat 4 # weights: 103 initial value 101.309565 final value 94.485659 converged Fitting Repeat 5 # weights: 103 initial value 99.576818 iter 10 value 94.485885 iter 20 value 94.482615 final value 94.354437 converged Fitting Repeat 1 # weights: 305 initial value 103.568180 iter 10 value 94.057467 iter 20 value 93.978164 iter 30 value 93.974436 iter 40 value 88.732796 iter 50 value 85.992984 iter 60 value 85.992167 iter 70 value 84.734091 iter 80 value 84.323460 iter 90 value 84.320982 final value 84.320327 converged Fitting Repeat 2 # weights: 305 initial value 103.012784 iter 10 value 93.556346 iter 20 value 85.101110 iter 30 value 85.089778 iter 40 value 84.964734 iter 50 value 83.530514 iter 60 value 82.184952 iter 70 value 80.907596 iter 80 value 80.906444 iter 80 value 80.906443 final value 80.906443 converged Fitting Repeat 3 # weights: 305 initial value 105.859490 iter 10 value 94.489076 iter 20 value 94.484233 iter 30 value 94.060906 final value 93.974019 converged Fitting Repeat 4 # weights: 305 initial value 103.510435 iter 10 value 94.488743 iter 20 value 94.447197 iter 30 value 89.876963 iter 40 value 86.968269 iter 50 value 86.960418 iter 60 value 86.945995 iter 70 value 86.940533 iter 80 value 86.799394 iter 90 value 86.351256 iter 100 value 80.866800 final value 80.866800 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 94.604624 iter 10 value 94.359499 iter 20 value 91.713991 iter 30 value 82.475080 iter 40 value 82.474799 iter 50 value 82.465601 iter 60 value 82.464863 iter 70 value 82.382421 iter 80 value 82.339781 iter 90 value 82.339714 iter 100 value 82.069403 final value 82.069403 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 138.645790 iter 10 value 89.005078 iter 20 value 87.601197 iter 30 value 87.594675 iter 40 value 87.592652 final value 87.592598 converged Fitting Repeat 2 # weights: 507 initial value 104.591278 iter 10 value 94.492517 iter 20 value 94.397668 iter 30 value 91.249423 iter 40 value 87.448874 iter 50 value 86.326025 iter 60 value 83.789000 iter 70 value 83.717826 iter 80 value 83.715414 iter 90 value 83.708840 iter 100 value 83.707620 final value 83.707620 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 101.967313 iter 10 value 94.489410 iter 20 value 94.064015 final value 94.057429 converged Fitting Repeat 4 # weights: 507 initial value 102.336690 iter 10 value 94.363471 iter 20 value 94.355638 iter 30 value 93.104263 iter 40 value 90.689458 final value 90.687761 converged Fitting Repeat 5 # weights: 507 initial value 100.303521 iter 10 value 93.993352 iter 20 value 93.981442 iter 30 value 93.975104 iter 40 value 92.978190 iter 50 value 83.548987 iter 60 value 80.498813 iter 70 value 79.618173 iter 80 value 79.615895 iter 90 value 79.607638 iter 100 value 79.605862 final value 79.605862 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.722435 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 104.535480 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 98.919873 final value 93.671508 converged Fitting Repeat 4 # weights: 103 initial value 98.794017 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 104.110586 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 101.547269 final value 94.050051 converged Fitting Repeat 2 # weights: 305 initial value 107.452454 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 108.606911 final value 94.038251 converged Fitting Repeat 4 # weights: 305 initial value 97.297839 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 95.549895 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 103.343383 iter 10 value 87.848180 iter 20 value 87.098425 final value 87.097089 converged Fitting Repeat 2 # weights: 507 initial value 101.079871 final value 94.052910 converged Fitting Repeat 3 # weights: 507 initial value 95.070341 iter 10 value 92.458327 iter 20 value 91.702995 iter 30 value 89.373269 iter 40 value 89.160206 iter 50 value 89.104082 iter 60 value 88.974788 iter 70 value 88.963174 iter 80 value 88.963087 final value 88.963083 converged Fitting Repeat 4 # weights: 507 initial value 100.918559 final value 94.052910 converged Fitting Repeat 5 # weights: 507 initial value 94.761959 iter 10 value 93.137669 iter 20 value 93.134753 final value 93.134731 converged Fitting Repeat 1 # weights: 103 initial value 106.191142 iter 10 value 94.056655 iter 10 value 94.056654 iter 20 value 88.139583 iter 30 value 86.397184 iter 40 value 86.004028 iter 50 value 85.859275 iter 60 value 85.010604 iter 70 value 84.697855 iter 80 value 84.693316 iter 80 value 84.693316 iter 80 value 84.693316 final value 84.693316 converged Fitting Repeat 2 # weights: 103 initial value 96.762727 iter 10 value 94.064582 iter 20 value 94.049421 iter 30 value 93.802960 iter 40 value 93.007450 iter 50 value 92.937362 iter 60 value 92.897630 iter 70 value 92.837726 final value 92.836375 converged Fitting Repeat 3 # weights: 103 initial value 102.696247 iter 10 value 94.058156 iter 20 value 94.056723 iter 30 value 94.029462 iter 40 value 87.936518 iter 50 value 87.765953 iter 60 value 87.294425 iter 70 value 86.978377 iter 80 value 86.208977 iter 90 value 86.148920 final value 86.147159 converged Fitting Repeat 4 # weights: 103 initial value 97.156606 iter 10 value 94.056710 iter 20 value 90.212490 iter 30 value 87.762220 iter 40 value 86.636580 iter 50 value 85.734064 iter 60 value 85.320505 iter 70 value 85.151686 iter 80 value 85.113528 final value 85.113488 converged Fitting Repeat 5 # weights: 103 initial value 104.885233 iter 10 value 94.058174 iter 20 value 91.194910 iter 30 value 88.978771 iter 40 value 88.646913 iter 50 value 88.068981 iter 60 value 88.020986 iter 70 value 88.010844 iter 80 value 88.002532 iter 90 value 84.937001 iter 100 value 84.282423 final value 84.282423 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 109.865802 iter 10 value 94.010861 iter 20 value 90.980165 iter 30 value 86.614928 iter 40 value 84.746919 iter 50 value 84.216948 iter 60 value 82.653626 iter 70 value 81.613204 iter 80 value 81.396586 iter 90 value 81.313793 iter 100 value 81.222076 final value 81.222076 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 108.144270 iter 10 value 93.595063 iter 20 value 88.363231 iter 30 value 87.848744 iter 40 value 85.687296 iter 50 value 83.380360 iter 60 value 81.502974 iter 70 value 81.432202 iter 80 value 81.350673 iter 90 value 81.083845 iter 100 value 80.668641 final value 80.668641 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 105.615036 iter 10 value 94.033921 iter 20 value 92.631059 iter 30 value 87.165163 iter 40 value 85.973445 iter 50 value 84.825072 iter 60 value 82.150951 iter 70 value 81.884131 iter 80 value 81.547290 iter 90 value 80.893776 iter 100 value 80.413556 final value 80.413556 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 110.090574 iter 10 value 93.375427 iter 20 value 87.266301 iter 30 value 85.850828 iter 40 value 85.023369 iter 50 value 84.378156 iter 60 value 84.211922 iter 70 value 84.183391 iter 80 value 83.555352 iter 90 value 82.417823 iter 100 value 81.834830 final value 81.834830 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 113.924272 iter 10 value 93.734552 iter 20 value 87.887979 iter 30 value 86.785415 iter 40 value 86.101852 iter 50 value 84.834080 iter 60 value 83.098634 iter 70 value 81.927218 iter 80 value 81.315582 iter 90 value 81.156010 iter 100 value 81.114180 final value 81.114180 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 103.118748 iter 10 value 92.718181 iter 20 value 89.991285 iter 30 value 85.510711 iter 40 value 83.561444 iter 50 value 81.361798 iter 60 value 81.090728 iter 70 value 80.876188 iter 80 value 80.844245 iter 90 value 80.781750 iter 100 value 80.669205 final value 80.669205 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 104.794073 iter 10 value 94.864835 iter 20 value 93.956096 iter 30 value 87.751696 iter 40 value 87.474904 iter 50 value 85.539815 iter 60 value 84.392159 iter 70 value 83.045545 iter 80 value 82.284945 iter 90 value 81.884091 iter 100 value 81.237156 final value 81.237156 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 109.232928 iter 10 value 94.359865 iter 20 value 91.484230 iter 30 value 87.758745 iter 40 value 86.101960 iter 50 value 83.047110 iter 60 value 82.204311 iter 70 value 81.758838 iter 80 value 81.548154 iter 90 value 80.887715 iter 100 value 80.638657 final value 80.638657 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 111.636370 iter 10 value 94.424298 iter 20 value 94.061858 iter 30 value 91.229694 iter 40 value 90.636402 iter 50 value 88.023576 iter 60 value 85.423573 iter 70 value 84.710682 iter 80 value 84.288143 iter 90 value 83.780805 iter 100 value 83.116924 final value 83.116924 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 110.383588 iter 10 value 93.301648 iter 20 value 92.645390 iter 30 value 92.150153 iter 40 value 90.992527 iter 50 value 90.773036 iter 60 value 90.615940 iter 70 value 87.902920 iter 80 value 83.800234 iter 90 value 82.851174 iter 100 value 82.493780 final value 82.493780 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 94.532283 final value 94.054628 converged Fitting Repeat 2 # weights: 103 initial value 107.217538 final value 94.054552 converged Fitting Repeat 3 # weights: 103 initial value 100.866659 iter 10 value 94.054492 iter 20 value 94.053003 final value 94.052916 converged Fitting Repeat 4 # weights: 103 initial value 99.169258 final value 94.054572 converged Fitting Repeat 5 # weights: 103 initial value 98.539865 final value 94.054642 converged Fitting Repeat 1 # weights: 305 initial value 103.135867 iter 10 value 94.057238 iter 20 value 94.052097 iter 30 value 92.580849 iter 40 value 92.541682 iter 50 value 92.540864 iter 60 value 92.521135 iter 70 value 92.477313 iter 80 value 92.476976 final value 92.476911 converged Fitting Repeat 2 # weights: 305 initial value 106.188017 iter 10 value 94.057791 iter 20 value 94.055328 iter 30 value 94.043045 iter 40 value 94.040610 final value 94.039068 converged Fitting Repeat 3 # weights: 305 initial value 100.551463 iter 10 value 94.043587 iter 20 value 94.039551 final value 94.039476 converged Fitting Repeat 4 # weights: 305 initial value 101.702216 iter 10 value 94.043141 iter 20 value 94.038461 iter 30 value 92.688294 iter 40 value 85.267189 iter 50 value 82.401484 iter 60 value 81.979734 iter 70 value 81.894213 final value 81.893954 converged Fitting Repeat 5 # weights: 305 initial value 98.174204 iter 10 value 94.058084 iter 20 value 93.597437 iter 30 value 86.177915 final value 86.176903 converged Fitting Repeat 1 # weights: 507 initial value 97.795458 iter 10 value 94.059126 iter 20 value 93.889512 iter 30 value 90.477839 iter 40 value 89.492746 iter 50 value 89.156185 iter 60 value 89.123567 iter 70 value 88.453246 iter 80 value 86.915234 iter 90 value 86.900534 final value 86.900501 converged Fitting Repeat 2 # weights: 507 initial value 100.006373 iter 10 value 94.047166 iter 20 value 94.039008 iter 30 value 93.703892 iter 40 value 88.455231 iter 50 value 87.899995 iter 60 value 87.829168 iter 70 value 87.744035 iter 80 value 87.741586 iter 90 value 87.741498 iter 100 value 87.740451 final value 87.740451 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 95.484272 iter 10 value 94.054565 iter 20 value 90.667404 iter 30 value 89.345029 final value 89.344927 converged Fitting Repeat 4 # weights: 507 initial value 100.683143 iter 10 value 94.045958 iter 20 value 94.038902 iter 30 value 94.010810 iter 40 value 93.197211 iter 50 value 92.912001 iter 60 value 91.674820 iter 70 value 83.761093 iter 80 value 83.470229 final value 83.470196 converged Fitting Repeat 5 # weights: 507 initial value 113.977758 iter 10 value 94.046690 iter 20 value 94.040625 iter 30 value 90.970126 iter 40 value 86.447492 iter 50 value 86.445889 iter 60 value 86.444621 final value 86.444608 converged Fitting Repeat 1 # weights: 103 initial value 96.161288 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 115.798800 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 95.015178 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 101.605913 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 99.241634 iter 10 value 94.112903 iter 10 value 94.112903 iter 10 value 94.112903 final value 94.112903 converged Fitting Repeat 1 # weights: 305 initial value 97.362808 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 101.844707 final value 94.354286 converged Fitting Repeat 3 # weights: 305 initial value 100.888864 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 103.584760 iter 10 value 94.359327 final value 94.354293 converged Fitting Repeat 5 # weights: 305 initial value 94.728728 iter 10 value 93.921936 iter 20 value 93.889246 final value 93.888889 converged Fitting Repeat 1 # weights: 507 initial value 104.084060 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 98.175148 iter 10 value 93.950049 final value 93.950035 converged Fitting Repeat 3 # weights: 507 initial value 111.179188 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 100.570222 iter 10 value 93.761394 final value 93.756277 converged Fitting Repeat 5 # weights: 507 initial value 108.873948 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 99.473134 iter 10 value 94.489122 iter 20 value 94.032605 iter 30 value 92.656062 iter 40 value 90.673004 iter 50 value 87.171304 iter 60 value 85.642354 iter 70 value 85.603938 iter 80 value 85.596625 iter 90 value 85.592781 iter 100 value 85.373900 final value 85.373900 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 97.026912 iter 10 value 94.494285 iter 20 value 94.151632 iter 30 value 90.000890 iter 40 value 88.735162 iter 50 value 86.666796 iter 60 value 86.369056 iter 70 value 83.695912 iter 80 value 82.894067 iter 90 value 82.778156 iter 100 value 82.058816 final value 82.058816 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 100.044751 iter 10 value 94.349824 iter 20 value 93.985580 iter 30 value 93.973228 iter 40 value 93.936777 iter 50 value 91.957631 iter 60 value 89.402435 iter 70 value 85.770848 iter 80 value 85.387199 iter 90 value 85.234527 iter 100 value 84.936338 final value 84.936338 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 106.917222 iter 10 value 94.483231 iter 20 value 94.239259 iter 30 value 94.038233 iter 40 value 93.755182 iter 50 value 92.147096 iter 60 value 87.910161 iter 70 value 87.312797 iter 80 value 85.221736 iter 90 value 83.578119 iter 100 value 82.743438 final value 82.743438 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 98.708438 iter 10 value 94.486489 iter 20 value 94.239888 iter 30 value 91.493045 iter 40 value 87.886969 iter 50 value 87.172376 iter 60 value 84.740484 iter 70 value 82.986693 iter 80 value 82.551255 iter 90 value 82.190187 iter 100 value 82.164732 final value 82.164732 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 110.458275 iter 10 value 94.292703 iter 20 value 91.093445 iter 30 value 90.553039 iter 40 value 88.425098 iter 50 value 84.639494 iter 60 value 81.728353 iter 70 value 80.811646 iter 80 value 80.686288 iter 90 value 80.607492 iter 100 value 80.556629 final value 80.556629 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 106.582164 iter 10 value 96.806749 iter 20 value 94.169805 iter 30 value 92.077575 iter 40 value 91.453887 iter 50 value 91.397629 iter 60 value 90.752244 iter 70 value 90.306498 iter 80 value 89.938840 iter 90 value 84.704872 iter 100 value 84.079131 final value 84.079131 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 106.733614 iter 10 value 96.908318 iter 20 value 88.499732 iter 30 value 85.997870 iter 40 value 85.301533 iter 50 value 84.512482 iter 60 value 83.365988 iter 70 value 82.745111 iter 80 value 82.454971 iter 90 value 82.424949 iter 100 value 82.371508 final value 82.371508 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 102.041949 iter 10 value 94.573821 iter 20 value 86.496713 iter 30 value 86.166099 iter 40 value 85.906360 iter 50 value 85.167898 iter 60 value 85.008578 iter 70 value 84.796167 iter 80 value 83.232208 iter 90 value 82.656814 iter 100 value 82.607393 final value 82.607393 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 99.654557 iter 10 value 90.896267 iter 20 value 86.533327 iter 30 value 85.697796 iter 40 value 83.953075 iter 50 value 82.147652 iter 60 value 81.690399 iter 70 value 81.120418 iter 80 value 80.988224 iter 90 value 80.980977 iter 100 value 80.975424 final value 80.975424 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 123.769562 iter 10 value 94.566347 iter 20 value 92.505346 iter 30 value 86.179668 iter 40 value 85.001778 iter 50 value 84.668912 iter 60 value 84.374783 iter 70 value 83.859781 iter 80 value 83.429769 iter 90 value 83.036349 iter 100 value 82.767677 final value 82.767677 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 130.085830 iter 10 value 94.994255 iter 20 value 86.442021 iter 30 value 83.946263 iter 40 value 82.536093 iter 50 value 81.760739 iter 60 value 81.459506 iter 70 value 81.398404 iter 80 value 81.364115 iter 90 value 81.159285 iter 100 value 80.722461 final value 80.722461 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 104.663513 iter 10 value 94.754433 iter 20 value 90.177867 iter 30 value 85.685788 iter 40 value 84.405796 iter 50 value 84.181156 iter 60 value 83.797928 iter 70 value 83.379026 iter 80 value 83.274552 iter 90 value 82.973376 iter 100 value 82.752586 final value 82.752586 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 119.163509 iter 10 value 94.170617 iter 20 value 89.137637 iter 30 value 87.694856 iter 40 value 86.800254 iter 50 value 86.178515 iter 60 value 85.217768 iter 70 value 84.622250 iter 80 value 83.353220 iter 90 value 81.966984 iter 100 value 81.473574 final value 81.473574 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 105.770625 iter 10 value 94.683978 iter 20 value 93.636718 iter 30 value 88.186032 iter 40 value 83.450786 iter 50 value 83.232012 iter 60 value 82.775320 iter 70 value 82.402123 iter 80 value 81.841164 iter 90 value 81.563939 iter 100 value 81.463629 final value 81.463629 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 98.614374 iter 10 value 94.486012 iter 20 value 94.484225 final value 94.484216 converged Fitting Repeat 2 # weights: 103 initial value 101.439845 final value 94.485872 converged Fitting Repeat 3 # weights: 103 initial value 97.699919 final value 94.485868 converged Fitting Repeat 4 # weights: 103 initial value 98.887494 final value 94.486249 converged Fitting Repeat 5 # weights: 103 initial value 95.406472 final value 94.485877 converged Fitting Repeat 1 # weights: 305 initial value 108.474990 iter 10 value 94.489023 iter 20 value 88.416370 iter 30 value 85.489897 iter 40 value 85.038594 iter 50 value 84.211026 iter 60 value 81.970006 iter 70 value 81.593610 iter 80 value 81.409823 iter 90 value 80.845748 iter 100 value 80.743489 final value 80.743489 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 119.793675 iter 10 value 94.489549 iter 20 value 93.855755 iter 30 value 85.174062 iter 40 value 84.559922 final value 84.555521 converged Fitting Repeat 3 # weights: 305 initial value 95.669804 iter 10 value 94.488457 iter 20 value 94.444148 iter 30 value 93.871865 final value 93.871763 converged Fitting Repeat 4 # weights: 305 initial value 100.061804 iter 10 value 94.121919 iter 20 value 94.117913 iter 30 value 83.307420 iter 40 value 83.133728 iter 50 value 83.128678 iter 50 value 83.128678 final value 83.128678 converged Fitting Repeat 5 # weights: 305 initial value 110.230190 iter 10 value 93.927277 iter 20 value 93.857748 iter 30 value 88.608555 iter 40 value 88.258023 iter 50 value 87.840127 iter 60 value 85.773910 iter 70 value 85.555960 iter 80 value 85.551796 iter 90 value 85.551612 iter 100 value 85.549811 final value 85.549811 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 102.623698 iter 10 value 94.491827 iter 20 value 94.039219 iter 30 value 91.828081 iter 40 value 91.824858 final value 91.824741 converged Fitting Repeat 2 # weights: 507 initial value 98.753279 iter 10 value 94.417713 iter 20 value 94.195268 iter 30 value 88.208127 iter 40 value 85.182222 iter 50 value 85.103545 iter 60 value 84.959095 iter 70 value 84.102350 iter 80 value 82.496604 iter 90 value 82.432110 iter 100 value 81.085189 final value 81.085189 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 122.586889 iter 10 value 94.121157 iter 20 value 93.895419 iter 30 value 93.751773 iter 40 value 93.726155 iter 50 value 93.713931 iter 60 value 92.593555 iter 70 value 90.087639 iter 80 value 89.233131 iter 90 value 86.844362 iter 100 value 82.769033 final value 82.769033 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 104.260140 iter 10 value 93.265816 iter 20 value 87.290464 iter 30 value 86.961712 iter 40 value 86.943157 iter 50 value 86.939439 iter 60 value 86.938638 iter 70 value 86.934136 final value 86.932558 converged Fitting Repeat 5 # weights: 507 initial value 104.678148 iter 10 value 94.492133 iter 20 value 94.437296 iter 30 value 86.543056 iter 40 value 85.528307 iter 50 value 83.840138 iter 60 value 81.412122 iter 70 value 79.715827 iter 80 value 79.678092 iter 90 value 79.661629 iter 100 value 79.638293 final value 79.638293 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 140.138840 iter 10 value 117.936583 iter 20 value 116.855233 iter 30 value 113.839691 iter 40 value 113.329002 iter 50 value 110.643478 iter 60 value 108.839764 iter 70 value 105.787116 iter 80 value 102.990953 iter 90 value 102.805848 iter 100 value 102.198433 final value 102.198433 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 140.713408 iter 10 value 112.812917 iter 20 value 106.666165 iter 30 value 106.257348 iter 40 value 105.710870 iter 50 value 105.129045 iter 60 value 104.071832 iter 70 value 103.284008 iter 80 value 102.085724 iter 90 value 101.388102 iter 100 value 101.199147 final value 101.199147 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 137.106889 iter 10 value 119.376587 iter 20 value 110.515131 iter 30 value 107.792521 iter 40 value 107.333084 iter 50 value 105.866068 iter 60 value 105.240463 iter 70 value 105.018931 iter 80 value 105.004465 iter 90 value 104.980408 iter 100 value 104.555198 final value 104.555198 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 138.209095 iter 10 value 113.536498 iter 20 value 109.824801 iter 30 value 105.227176 iter 40 value 103.871329 iter 50 value 102.107412 iter 60 value 101.567386 iter 70 value 101.115146 iter 80 value 101.103185 iter 90 value 101.092119 iter 100 value 100.986559 final value 100.986559 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 165.931756 iter 10 value 119.063435 iter 20 value 118.094737 iter 30 value 110.030410 iter 40 value 104.323678 iter 50 value 101.152745 iter 60 value 100.756452 iter 70 value 100.467611 iter 80 value 100.406281 iter 90 value 100.324047 iter 100 value 100.295525 final value 100.295525 stopped after 100 iterations svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Thu Oct 17 06:56:21 2024 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 73.349 2.223 85.173
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 51.468 | 1.800 | 61.499 | |
FreqInteractors | 0.493 | 0.030 | 0.585 | |
calculateAAC | 0.074 | 0.016 | 0.100 | |
calculateAutocor | 0.858 | 0.108 | 1.070 | |
calculateCTDC | 0.149 | 0.008 | 0.175 | |
calculateCTDD | 1.270 | 0.037 | 1.494 | |
calculateCTDT | 0.439 | 0.013 | 0.500 | |
calculateCTriad | 0.776 | 0.045 | 0.914 | |
calculateDC | 0.257 | 0.027 | 0.324 | |
calculateF | 0.718 | 0.014 | 0.799 | |
calculateKSAAP | 0.288 | 0.024 | 0.338 | |
calculateQD_Sm | 3.633 | 0.177 | 4.269 | |
calculateTC | 4.744 | 0.460 | 5.573 | |
calculateTC_Sm | 0.533 | 0.028 | 0.623 | |
corr_plot | 51.405 | 1.709 | 60.029 | |
enrichfindP | 0.914 | 0.081 | 15.509 | |
enrichfind_hp | 0.133 | 0.026 | 1.178 | |
enrichplot | 0.828 | 0.013 | 0.907 | |
filter_missing_values | 0.003 | 0.001 | 0.004 | |
getFASTA | 0.122 | 0.017 | 10.414 | |
getHPI | 0.002 | 0.002 | 0.003 | |
get_negativePPI | 0.003 | 0.000 | 0.003 | |
get_positivePPI | 0 | 0 | 0 | |
impute_missing_data | 0.002 | 0.002 | 0.004 | |
plotPPI | 0.138 | 0.006 | 0.147 | |
pred_ensembel | 24.631 | 0.471 | 22.945 | |
var_imp | 50.818 | 1.721 | 61.452 | |