Back to Multiple platform build/check report for BioC 3.23:   simplified   long
A[B]CDEFGHIJKLMNOPQRSTUVWXYZ

This page was generated on 2025-11-19 10:14 -0500 (Wed, 19 Nov 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo1Linux (Ubuntu 24.04.3 LTS)x86_64R Under development (unstable) (2025-10-20 r88955) -- "Unsuffered Consequences" 4827
lconwaymacOS 12.7.6 Montereyx86_64R Under development (unstable) (2025-10-21 r88958) -- "Unsuffered Consequences" 4600
kjohnson3macOS 13.7.7 Venturaarm64R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences" 4564
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 251/2325HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
BufferedMatrix 1.75.0  (landing page)
Ben Bolstad
Snapshot Date: 2025-11-18 13:40 -0500 (Tue, 18 Nov 2025)
git_url: https://git.bioconductor.org/packages/BufferedMatrix
git_branch: devel
git_last_commit: ecdbf23
git_last_commit_date: 2025-10-29 09:58:55 -0500 (Wed, 29 Oct 2025)
nebbiolo1Linux (Ubuntu 24.04.3 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
lconwaymacOS 12.7.6 Monterey / x86_64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
kjohnson3macOS 13.7.7 Ventura / arm64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published


CHECK results for BufferedMatrix on kjohnson3

To the developers/maintainers of the BufferedMatrix package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/BufferedMatrix.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: BufferedMatrix
Version: 1.75.0
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings BufferedMatrix_1.75.0.tar.gz
StartedAt: 2025-11-18 18:57:44 -0500 (Tue, 18 Nov 2025)
EndedAt: 2025-11-18 18:58:04 -0500 (Tue, 18 Nov 2025)
EllapsedTime: 20.3 seconds
RetCode: 0
Status:   WARNINGS  
CheckDir: BufferedMatrix.Rcheck
Warnings: 1

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings BufferedMatrix_1.75.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck’
* using R Under development (unstable) (2025-11-04 r88984)
* using platform: aarch64-apple-darwin20
* R was compiled by
    Apple clang version 16.0.0 (clang-1600.0.26.6)
    GNU Fortran (GCC) 14.2.0
* running under: macOS Ventura 13.7.8
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘BufferedMatrix/DESCRIPTION’ ... OK
* this is package ‘BufferedMatrix’ version ‘1.75.0’
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘BufferedMatrix’ can be installed ... WARNING
Found the following significant warnings:
  doubleBufferedMatrix.c:1580:7: warning: logical not is only applied to the left hand side of this bitwise operator [-Wlogical-not-parentheses]
See ‘/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/00install.out’ for details.
* used C compiler: ‘Apple clang version 15.0.0 (clang-1500.1.0.2.5)’
* used SDK: ‘MacOSX11.3.1.sdk’
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) BufferedMatrix-class.Rd:209: Lost braces; missing escapes or markup?
   209 |     $x^{power}$ elementwise of the matrix
       |        ^
prepare_Rd: createBufferedMatrix.Rd:26: Dropping empty section \keyword
prepare_Rd: createBufferedMatrix.Rd:17-18: Dropping empty section \details
prepare_Rd: createBufferedMatrix.Rd:15-16: Dropping empty section \value
prepare_Rd: createBufferedMatrix.Rd:19-20: Dropping empty section \references
prepare_Rd: createBufferedMatrix.Rd:21-22: Dropping empty section \seealso
prepare_Rd: createBufferedMatrix.Rd:23-24: Dropping empty section \examples
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking line endings in C/C++/Fortran sources/headers ... OK
* checking compiled code ... INFO
Note: information on .o files is not available
* checking sizes of PDF files under ‘inst/doc’ ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... NONE
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘Rcodetesting.R’
  Running ‘c_code_level_tests.R’
  Running ‘objectTesting.R’
  Running ‘rawCalltesting.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 1 WARNING, 1 NOTE
See
  ‘/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/00check.log’
for details.


Installation output

BufferedMatrix.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL BufferedMatrix
###
##############################################################################
##############################################################################


* installing to library ‘/Library/Frameworks/R.framework/Versions/4.6-arm64/Resources/library’
* installing *source* package ‘BufferedMatrix’ ...
** this is package ‘BufferedMatrix’ version ‘1.75.0’
** using staged installation
** libs
using C compiler: ‘Apple clang version 15.0.0 (clang-1500.1.0.2.5)’
using SDK: ‘MacOSX11.3.1.sdk’
clang -arch arm64 -std=gnu2x -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/arm64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c RBufferedMatrix.c -o RBufferedMatrix.o
clang -arch arm64 -std=gnu2x -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/arm64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c doubleBufferedMatrix.c -o doubleBufferedMatrix.o
doubleBufferedMatrix.c:1580:7: warning: logical not is only applied to the left hand side of this bitwise operator [-Wlogical-not-parentheses]
  if (!(Matrix->readonly) & setting){
      ^                   ~
doubleBufferedMatrix.c:1580:7: note: add parentheses after the '!' to evaluate the bitwise operator first
  if (!(Matrix->readonly) & setting){
      ^
       (                           )
doubleBufferedMatrix.c:1580:7: note: add parentheses around left hand side expression to silence this warning
  if (!(Matrix->readonly) & setting){
      ^
      (                  )
doubleBufferedMatrix.c:3327:12: warning: unused function 'sort_double' [-Wunused-function]
static int sort_double(const double *a1,const double *a2){
           ^
2 warnings generated.
clang -arch arm64 -std=gnu2x -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/arm64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c doubleBufferedMatrix_C_tests.c -o doubleBufferedMatrix_C_tests.o
clang -arch arm64 -std=gnu2x -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/arm64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c init_package.c -o init_package.o
clang -arch arm64 -std=gnu2x -dynamiclib -Wl,-headerpad_max_install_names -undefined dynamic_lookup -L/Library/Frameworks/R.framework/Resources/lib -L/opt/R/arm64/lib -o BufferedMatrix.so RBufferedMatrix.o doubleBufferedMatrix.o doubleBufferedMatrix_C_tests.o init_package.o -F/Library/Frameworks/R.framework/.. -framework R
installing to /Library/Frameworks/R.framework/Versions/4.6-arm64/Resources/library/00LOCK-BufferedMatrix/00new/BufferedMatrix/libs
** R
** inst
** byte-compile and prepare package for lazy loading
Creating a new generic function for ‘rowMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘rowSums’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colSums’ in package ‘BufferedMatrix’
Creating a generic function for ‘ncol’ from package ‘base’ in package ‘BufferedMatrix’
Creating a generic function for ‘nrow’ from package ‘base’ in package ‘BufferedMatrix’
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** checking absolute paths in shared objects and dynamic libraries
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (BufferedMatrix)

Tests output

BufferedMatrix.Rcheck/tests/c_code_level_tests.Rout


R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix", "BufferedMatrix", .libPaths());.C("dbm_c_tester",integer(1))

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

Adding Additional Column
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 

Reassigning values
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 3
Buffer Cols: 3
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Activating Row Buffer
In row mode: 1
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Squaring Last Column
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 900.000000 

Square rooting Last Row, then turing off Row Buffer
In row mode: 0
Checking on value that should be not be in column buffer2.236068 
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
2.236068 3.162278 3.872983 4.472136 5.000000 30.000000 

Single Indexing. Assign each value its square
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Resizing Buffers Smaller
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Activating Row Mode.
Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
Activating ReadOnly Mode.
The results of assignment is: 0
Printing matrix reversed.
900.000000 625.000000 400.000000 225.000000 100.000000 25.000000 
841.000000 576.000000 361.000000 196.000000 81.000000 16.000000 
784.000000 529.000000 324.000000 169.000000 64.000000 9.000000 
729.000000 484.000000 289.000000 144.000000 49.000000 -30.000000 
676.000000 441.000000 256.000000 121.000000 -20.000000 -10.000000 

[[1]]
[1] 0

> 
> proc.time()
   user  system elapsed 
  0.142   0.070   0.212 

BufferedMatrix.Rcheck/tests/objectTesting.Rout


R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> 
> ### this is used to control how many repetitions in something below
> ### higher values result in more checks.
> nreps <-100 ##20000
> 
> 
> ## test creation and some simple assignments and subsetting operations
> 
> ## first on single elements
> tmp <- createBufferedMatrix(1000,10)
> 
> tmp[10,5]
[1] 0
> tmp[10,5] <- 10
> tmp[10,5]
[1] 10
> tmp[10,5] <- 12.445
> tmp[10,5]
[1] 12.445
> 
> 
> 
> ## now testing accessing multiple elements
> tmp2 <- createBufferedMatrix(10,20)
> 
> 
> tmp2[3,1] <- 51.34
> tmp2[9,2] <- 9.87654
> tmp2[,1:2]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[,-(3:20)]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[3,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
[1,] 51.34    0    0    0    0    0    0    0    0     0     0     0     0
     [,14] [,15] [,16] [,17] [,18] [,19] [,20]
[1,]     0     0     0     0     0     0     0
> tmp2[-3,]
      [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]    0 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19] [,20]
 [1,]     0     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0     0
> tmp2[2,1:3]
     [,1] [,2] [,3]
[1,]    0    0    0
> tmp2[3:9,1:3]
      [,1]    [,2] [,3]
[1,] 51.34 0.00000    0
[2,]  0.00 0.00000    0
[3,]  0.00 0.00000    0
[4,]  0.00 0.00000    0
[5,]  0.00 0.00000    0
[6,]  0.00 0.00000    0
[7,]  0.00 9.87654    0
> tmp2[-4,-4]
       [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,] 51.34 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]  0.00 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19]
 [1,]     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0
> 
> ## now testing accessing/assigning multiple elements
> tmp3 <- createBufferedMatrix(10,10)
> 
> for (i in 1:10){
+   for (j in 1:10){
+     tmp3[i,j] <- (j-1)*10 + i
+   }
+ }
> 
> tmp3[2:4,2:4]
     [,1] [,2] [,3]
[1,]   12   22   32
[2,]   13   23   33
[3,]   14   24   34
> tmp3[c(-10),c(2:4,2:4,10,1,2,1:10,10:1)]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]   11   21   31   11   21   31   91    1   11     1    11    21    31
 [2,]   12   22   32   12   22   32   92    2   12     2    12    22    32
 [3,]   13   23   33   13   23   33   93    3   13     3    13    23    33
 [4,]   14   24   34   14   24   34   94    4   14     4    14    24    34
 [5,]   15   25   35   15   25   35   95    5   15     5    15    25    35
 [6,]   16   26   36   16   26   36   96    6   16     6    16    26    36
 [7,]   17   27   37   17   27   37   97    7   17     7    17    27    37
 [8,]   18   28   38   18   28   38   98    8   18     8    18    28    38
 [9,]   19   29   39   19   29   39   99    9   19     9    19    29    39
      [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
 [1,]    41    51    61    71    81    91    91    81    71    61    51    41
 [2,]    42    52    62    72    82    92    92    82    72    62    52    42
 [3,]    43    53    63    73    83    93    93    83    73    63    53    43
 [4,]    44    54    64    74    84    94    94    84    74    64    54    44
 [5,]    45    55    65    75    85    95    95    85    75    65    55    45
 [6,]    46    56    66    76    86    96    96    86    76    66    56    46
 [7,]    47    57    67    77    87    97    97    87    77    67    57    47
 [8,]    48    58    68    78    88    98    98    88    78    68    58    48
 [9,]    49    59    69    79    89    99    99    89    79    69    59    49
      [,26] [,27] [,28] [,29]
 [1,]    31    21    11     1
 [2,]    32    22    12     2
 [3,]    33    23    13     3
 [4,]    34    24    14     4
 [5,]    35    25    15     5
 [6,]    36    26    16     6
 [7,]    37    27    17     7
 [8,]    38    28    18     8
 [9,]    39    29    19     9
> tmp3[-c(1:5),-c(6:10)]
     [,1] [,2] [,3] [,4] [,5]
[1,]    6   16   26   36   46
[2,]    7   17   27   37   47
[3,]    8   18   28   38   48
[4,]    9   19   29   39   49
[5,]   10   20   30   40   50
> 
> ## assignment of whole columns
> tmp3[,1] <- c(1:10*100.0)
> tmp3[,1:2] <- tmp3[,1:2]*100
> tmp3[,1:2] <- tmp3[,2:1]
> tmp3[,1:2]
      [,1]  [,2]
 [1,] 1100 1e+04
 [2,] 1200 2e+04
 [3,] 1300 3e+04
 [4,] 1400 4e+04
 [5,] 1500 5e+04
 [6,] 1600 6e+04
 [7,] 1700 7e+04
 [8,] 1800 8e+04
 [9,] 1900 9e+04
[10,] 2000 1e+05
> 
> 
> tmp3[,-1] <- tmp3[,1:9]
> tmp3[,1:10]
      [,1] [,2]  [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,] 1100 1100 1e+04   21   31   41   51   61   71    81
 [2,] 1200 1200 2e+04   22   32   42   52   62   72    82
 [3,] 1300 1300 3e+04   23   33   43   53   63   73    83
 [4,] 1400 1400 4e+04   24   34   44   54   64   74    84
 [5,] 1500 1500 5e+04   25   35   45   55   65   75    85
 [6,] 1600 1600 6e+04   26   36   46   56   66   76    86
 [7,] 1700 1700 7e+04   27   37   47   57   67   77    87
 [8,] 1800 1800 8e+04   28   38   48   58   68   78    88
 [9,] 1900 1900 9e+04   29   39   49   59   69   79    89
[10,] 2000 2000 1e+05   30   40   50   60   70   80    90
> 
> tmp3[,1:2] <- rep(1,10)
> tmp3[,1:2] <- rep(1,20)
> tmp3[,1:2] <- matrix(c(1:5),1,5)
> 
> tmp3[,-c(1:8)] <- matrix(c(1:5),1,5)
> 
> tmp3[1,] <- 1:10
> tmp3[1,]
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,]    1    2    3    4    5    6    7    8    9    10
> tmp3[-1,] <- c(1,2)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    2    1    2    1    2    1    2    1    2     1
[10,]    1    2    1    2    1    2    1    2    1     2
> tmp3[-c(1:8),] <- matrix(c(1:5),1,5)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    1    3    5    2    4    1    3    5    2     4
[10,]    2    4    1    3    5    2    4    1    3     5
> 
> 
> tmp3[1:2,1:2] <- 5555.04
> tmp3[-(1:2),1:2] <- 1234.56789
> 
> 
> 
> ## testing accessors for the directory and prefix
> directory(tmp3)
[1] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests"
> prefix(tmp3)
[1] "BM"
> 
> ## testing if we can remove these objects
> rm(tmp, tmp2, tmp3)
> gc()
         used (Mb) gc trigger (Mb) limit (Mb) max used (Mb)
Ncells 481248 25.8    1058085 56.6         NA   633817 33.9
Vcells 891449  6.9    8388608 64.0     196608  2110969 16.2
> 
> 
> 
> 
> ##
> ## checking reads
> ##
> 
> tmp2 <- createBufferedMatrix(10,20)
> 
> test.sample <- rnorm(10*20)
> 
> tmp2[1:10,1:20] <- test.sample
> 
> test.matrix <- matrix(test.sample,10,20)
> 
> ## testing reads
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Tue Nov 18 18:57:55 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Tue Nov 18 18:57:55 2025"
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> 
> 
> RowMode(tmp2)
<pointer: 0x6000000e8360>
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Tue Nov 18 18:57:56 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Tue Nov 18 18:57:57 2025"
> 
> ColMode(tmp2)
<pointer: 0x6000000e8360>
> 
> 
> 
> ### Now testing assignments
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+ 
+   new.data <- rnorm(20)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,] <- new.data
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   new.data <- rnorm(10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+ 
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col  <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(25),5,5)
+   tmp2[which.row,which.col] <- new.data
+   test.matrix[which.row,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,prev.col] == test.matrix[prev.row,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> ###
> ###
> ### testing some more functions
> ###
> 
> 
> 
> ## duplication function
> tmp5 <- duplicate(tmp2)
> 
> # making sure really did copy everything.
> tmp5[1,1] <- tmp5[1,1] +100.00
> 
> if (tmp5[1,1] == tmp2[1,1]){
+   stop("Problem with duplication")
+ }
> 
> 
> 
> 
> ### testing elementwise applying of functions
> 
> tmp5[1:4,1:4]
            [,1]       [,2]       [,3]        [,4]
[1,] 101.6950812 1.73316036  0.1387626 -1.20220525
[2,]   1.0186275 1.95625716  0.2416758  0.09033101
[3,]   0.5723744 0.89270491 -0.2390751  0.68590695
[4,]   1.2366143 0.09843718 -0.4248639  0.85721818
> ewApply(tmp5,abs)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
            [,1]       [,2]      [,3]       [,4]
[1,] 101.6950812 1.73316036 0.1387626 1.20220525
[2,]   1.0186275 1.95625716 0.2416758 0.09033101
[3,]   0.5723744 0.89270491 0.2390751 0.68590695
[4,]   1.2366143 0.09843718 0.4248639 0.85721818
> ewApply(tmp5,sqrt)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
           [,1]      [,2]      [,3]      [,4]
[1,] 10.0843979 1.3164955 0.3725085 1.0964512
[2,]  1.0092708 1.3986626 0.4916054 0.3005512
[3,]  0.7565543 0.9448306 0.4889531 0.8281950
[4,]  1.1120316 0.3137470 0.6518158 0.9258608
> 
> my.function <- function(x,power){
+   (x+5)^power
+ }
> 
> ewApply(tmp5,my.function,power=2)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]     [,2]     [,3]     [,4]
[1,] 227.53906 39.89812 28.86385 37.16672
[2,]  36.11134 40.94288 30.15773 28.09584
[3,]  33.13792 35.34101 30.12861 33.96786
[4,]  37.35693 28.23591 31.94302 35.11583
> 
> 
> 
> ## testing functions that elementwise transform the matrix
> sqrt(tmp5)
<pointer: 0x6000000ec480>
> exp(tmp5)
<pointer: 0x6000000ec480>
> log(tmp5,2)
<pointer: 0x6000000ec480>
> pow(tmp5,2)
> 
> 
> 
> 
> 
> ## testing functions that apply to entire matrix
> Max(tmp5)
[1] 473.5927
> Min(tmp5)
[1] 54.63163
> mean(tmp5)
[1] 72.62233
> Sum(tmp5)
[1] 14524.47
> Var(tmp5)
[1] 895.7411
> 
> 
> ## testing functions applied to rows or columns
> 
> rowMeans(tmp5)
 [1] 93.17490 70.21072 68.45320 71.13455 73.88046 68.59467 73.69894 68.83019
 [9] 68.42236 69.82329
> rowSums(tmp5)
 [1] 1863.498 1404.214 1369.064 1422.691 1477.609 1371.893 1473.979 1376.604
 [9] 1368.447 1396.466
> rowVars(tmp5)
 [1] 8091.63636   68.91685   46.82033  116.56732  103.52554   78.76475
 [7]   61.86001   90.28469   95.94285   94.08796
> rowSd(tmp5)
 [1] 89.953523  8.301617  6.842538 10.796634 10.174750  8.874951  7.865113
 [8]  9.501826  9.795042  9.699895
> rowMax(tmp5)
 [1] 473.59274  85.21725  82.67028  95.24620  92.34479  91.91090  90.02645
 [8]  88.88144  94.97469  85.93934
> rowMin(tmp5)
 [1] 54.71944 57.64493 56.12161 55.97102 54.63163 54.96693 57.52171 55.33173
 [9] 54.91532 55.64082
> 
> colMeans(tmp5)
 [1] 112.32932  73.40902  64.54921  69.17140  69.34764  72.23020  68.94506
 [8]  68.76157  68.88186  67.25385  72.20824  71.46734  72.01864  71.26821
[15]  75.15551  67.72808  70.34946  71.15920  71.63626  74.57653
> colSums(tmp5)
 [1] 1123.2932  734.0902  645.4921  691.7140  693.4764  722.3020  689.4506
 [8]  687.6157  688.8186  672.5385  722.0824  714.6734  720.1864  712.6821
[15]  751.5551  677.2808  703.4946  711.5920  716.3626  745.7653
> colVars(tmp5)
 [1] 16158.47061   118.19798    28.93463    35.10525    49.73766    58.11702
 [7]    95.53332   130.31885    81.62777    58.66568    77.57900   123.62328
[13]    61.18201   125.64224    70.32627   129.97833   113.08111   116.06778
[19]    32.76472   160.16920
> colSd(tmp5)
 [1] 127.115973  10.871889   5.379092   5.924969   7.052493   7.623452
 [7]   9.774115  11.415728   9.034809   7.659353   8.807894  11.118601
[13]   7.821893  11.209025   8.386076  11.400804  10.633960  10.773476
[19]   5.724047  12.655797
> colMax(tmp5)
 [1] 473.59274  92.34479  72.34048  77.35765  79.60589  83.97121  86.01325
 [8]  83.77064  85.79714  78.41954  84.24114  91.26935  83.86398  95.24620
[15]  85.37092  90.02645  88.88144  88.02864  85.93934  94.97469
> colMin(tmp5)
 [1] 61.65101 58.76934 57.07688 58.47782 60.68309 62.97635 54.63163 55.33173
 [9] 56.75389 56.93865 62.07918 55.49150 58.65113 58.56358 58.97753 54.96693
[17] 54.91532 55.64082 66.03841 54.71944
> 
> 
> ### setting a random element to NA and then testing with na.rm=TRUE or na.rm=FALSE (The default)
> 
> 
> which.row <- sample(1:10,1,replace=TRUE)
> which.col  <- sample(1:20,1,replace=TRUE)
> 
> tmp5[which.row,which.col] <- NA
> 
> Max(tmp5)
[1] NA
> Min(tmp5)
[1] NA
> mean(tmp5)
[1] NA
> Sum(tmp5)
[1] NA
> Var(tmp5)
[1] NA
> 
> rowMeans(tmp5)
 [1] 93.17490 70.21072 68.45320 71.13455       NA 68.59467 73.69894 68.83019
 [9] 68.42236 69.82329
> rowSums(tmp5)
 [1] 1863.498 1404.214 1369.064 1422.691       NA 1371.893 1473.979 1376.604
 [9] 1368.447 1396.466
> rowVars(tmp5)
 [1] 8091.63636   68.91685   46.82033  116.56732  108.37470   78.76475
 [7]   61.86001   90.28469   95.94285   94.08796
> rowSd(tmp5)
 [1] 89.953523  8.301617  6.842538 10.796634 10.410317  8.874951  7.865113
 [8]  9.501826  9.795042  9.699895
> rowMax(tmp5)
 [1] 473.59274  85.21725  82.67028  95.24620        NA  91.91090  90.02645
 [8]  88.88144  94.97469  85.93934
> rowMin(tmp5)
 [1] 54.71944 57.64493 56.12161 55.97102       NA 54.96693 57.52171 55.33173
 [9] 54.91532 55.64082
> 
> colMeans(tmp5)
 [1] 112.32932  73.40902  64.54921  69.17140  69.34764  72.23020  68.94506
 [8]  68.76157  68.88186  67.25385  72.20824  71.46734  72.01864  71.26821
[15]  75.15551  67.72808  70.34946  71.15920        NA  74.57653
> colSums(tmp5)
 [1] 1123.2932  734.0902  645.4921  691.7140  693.4764  722.3020  689.4506
 [8]  687.6157  688.8186  672.5385  722.0824  714.6734  720.1864  712.6821
[15]  751.5551  677.2808  703.4946  711.5920        NA  745.7653
> colVars(tmp5)
 [1] 16158.47061   118.19798    28.93463    35.10525    49.73766    58.11702
 [7]    95.53332   130.31885    81.62777    58.66568    77.57900   123.62328
[13]    61.18201   125.64224    70.32627   129.97833   113.08111   116.06778
[19]          NA   160.16920
> colSd(tmp5)
 [1] 127.115973  10.871889   5.379092   5.924969   7.052493   7.623452
 [7]   9.774115  11.415728   9.034809   7.659353   8.807894  11.118601
[13]   7.821893  11.209025   8.386076  11.400804  10.633960  10.773476
[19]         NA  12.655797
> colMax(tmp5)
 [1] 473.59274  92.34479  72.34048  77.35765  79.60589  83.97121  86.01325
 [8]  83.77064  85.79714  78.41954  84.24114  91.26935  83.86398  95.24620
[15]  85.37092  90.02645  88.88144  88.02864        NA  94.97469
> colMin(tmp5)
 [1] 61.65101 58.76934 57.07688 58.47782 60.68309 62.97635 54.63163 55.33173
 [9] 56.75389 56.93865 62.07918 55.49150 58.65113 58.56358 58.97753 54.96693
[17] 54.91532 55.64082       NA 54.71944
> 
> Max(tmp5,na.rm=TRUE)
[1] 473.5927
> Min(tmp5,na.rm=TRUE)
[1] 54.63163
> mean(tmp5,na.rm=TRUE)
[1] 72.63575
> Sum(tmp5,na.rm=TRUE)
[1] 14454.51
> Var(tmp5,na.rm=TRUE)
[1] 900.2289
> 
> rowMeans(tmp5,na.rm=TRUE)
 [1] 93.17490 70.21072 68.45320 71.13455 74.08719 68.59467 73.69894 68.83019
 [9] 68.42236 69.82329
> rowSums(tmp5,na.rm=TRUE)
 [1] 1863.498 1404.214 1369.064 1422.691 1407.657 1371.893 1473.979 1376.604
 [9] 1368.447 1396.466
> rowVars(tmp5,na.rm=TRUE)
 [1] 8091.63636   68.91685   46.82033  116.56732  108.37470   78.76475
 [7]   61.86001   90.28469   95.94285   94.08796
> rowSd(tmp5,na.rm=TRUE)
 [1] 89.953523  8.301617  6.842538 10.796634 10.410317  8.874951  7.865113
 [8]  9.501826  9.795042  9.699895
> rowMax(tmp5,na.rm=TRUE)
 [1] 473.59274  85.21725  82.67028  95.24620  92.34479  91.91090  90.02645
 [8]  88.88144  94.97469  85.93934
> rowMin(tmp5,na.rm=TRUE)
 [1] 54.71944 57.64493 56.12161 55.97102 54.63163 54.96693 57.52171 55.33173
 [9] 54.91532 55.64082
> 
> colMeans(tmp5,na.rm=TRUE)
 [1] 112.32932  73.40902  64.54921  69.17140  69.34764  72.23020  68.94506
 [8]  68.76157  68.88186  67.25385  72.20824  71.46734  72.01864  71.26821
[15]  75.15551  67.72808  70.34946  71.15920  71.82335  74.57653
> colSums(tmp5,na.rm=TRUE)
 [1] 1123.2932  734.0902  645.4921  691.7140  693.4764  722.3020  689.4506
 [8]  687.6157  688.8186  672.5385  722.0824  714.6734  720.1864  712.6821
[15]  751.5551  677.2808  703.4946  711.5920  646.4101  745.7653
> colVars(tmp5,na.rm=TRUE)
 [1] 16158.47061   118.19798    28.93463    35.10525    49.73766    58.11702
 [7]    95.53332   130.31885    81.62777    58.66568    77.57900   123.62328
[13]    61.18201   125.64224    70.32627   129.97833   113.08111   116.06778
[19]    36.46657   160.16920
> colSd(tmp5,na.rm=TRUE)
 [1] 127.115973  10.871889   5.379092   5.924969   7.052493   7.623452
 [7]   9.774115  11.415728   9.034809   7.659353   8.807894  11.118601
[13]   7.821893  11.209025   8.386076  11.400804  10.633960  10.773476
[19]   6.038755  12.655797
> colMax(tmp5,na.rm=TRUE)
 [1] 473.59274  92.34479  72.34048  77.35765  79.60589  83.97121  86.01325
 [8]  83.77064  85.79714  78.41954  84.24114  91.26935  83.86398  95.24620
[15]  85.37092  90.02645  88.88144  88.02864  85.93934  94.97469
> colMin(tmp5,na.rm=TRUE)
 [1] 61.65101 58.76934 57.07688 58.47782 60.68309 62.97635 54.63163 55.33173
 [9] 56.75389 56.93865 62.07918 55.49150 58.65113 58.56358 58.97753 54.96693
[17] 54.91532 55.64082 66.03841 54.71944
> 
> # now set an entire row to NA
> 
> tmp5[which.row,] <- NA
> rowMeans(tmp5,na.rm=TRUE)
 [1] 93.17490 70.21072 68.45320 71.13455      NaN 68.59467 73.69894 68.83019
 [9] 68.42236 69.82329
> rowSums(tmp5,na.rm=TRUE)
 [1] 1863.498 1404.214 1369.064 1422.691    0.000 1371.893 1473.979 1376.604
 [9] 1368.447 1396.466
> rowVars(tmp5,na.rm=TRUE)
 [1] 8091.63636   68.91685   46.82033  116.56732         NA   78.76475
 [7]   61.86001   90.28469   95.94285   94.08796
> rowSd(tmp5,na.rm=TRUE)
 [1] 89.953523  8.301617  6.842538 10.796634        NA  8.874951  7.865113
 [8]  9.501826  9.795042  9.699895
> rowMax(tmp5,na.rm=TRUE)
 [1] 473.59274  85.21725  82.67028  95.24620        NA  91.91090  90.02645
 [8]  88.88144  94.97469  85.93934
> rowMin(tmp5,na.rm=TRUE)
 [1] 54.71944 57.64493 56.12161 55.97102       NA 54.96693 57.52171 55.33173
 [9] 54.91532 55.64082
> 
> 
> # now set an entire col to NA
> 
> 
> tmp5[,which.col] <- NA
> colMeans(tmp5,na.rm=TRUE)
 [1] 115.69969  71.30504  64.32306  70.05874  68.24566  72.28728  70.53544
 [8]  69.87549  68.46929  66.01321  70.87126  69.26712  70.94858  71.60398
[15]  75.52913  66.64449  69.92332  70.30334       NaN  75.92328
> colSums(tmp5,na.rm=TRUE)
 [1] 1041.2972  641.7454  578.9075  630.5287  614.2109  650.5855  634.8189
 [8]  628.8794  616.2237  594.1189  637.8413  623.4041  638.5372  644.4359
[15]  679.7622  599.8004  629.3099  632.7300    0.0000  683.3095
> colVars(tmp5,na.rm=TRUE)
 [1] 18050.48630    83.17222    31.97607    30.63542    42.29329    65.34499
 [7]    79.02024   132.64937    89.91642    48.68325    67.16657    84.61515
[13]    55.94810   140.07911    77.54659   133.01624   125.17330   122.33556
[19]          NA   159.78581
> colSd(tmp5,na.rm=TRUE)
 [1] 134.352098   9.119881   5.654739   5.534928   6.503329   8.083625
 [7]   8.889333  11.517351   9.482427   6.977338   8.195521   9.198649
[13]   7.479846  11.835502   8.806054  11.533267  11.188088  11.060541
[19]         NA  12.640641
> colMax(tmp5,na.rm=TRUE)
 [1] 473.59274  85.21725  72.34048  77.35765  79.60589  83.97121  86.01325
 [8]  83.77064  85.79714  76.19832  82.70091  82.67028  83.86398  95.24620
[15]  85.37092  90.02645  88.88144  88.02864      -Inf  94.97469
> colMin(tmp5,na.rm=TRUE)
 [1] 61.65101 58.76934 57.07688 58.47782 60.68309 62.97635 55.97102 55.33173
 [9] 56.75389 56.93865 62.07918 55.49150 58.65113 58.56358 58.97753 54.96693
[17] 54.91532 55.64082      Inf 54.71944
> 
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 3
> which.col  <- 1
> cat(which.row," ",which.col,"\n")
3   1 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> rowVars(tmp5,na.rm=TRUE)
 [1] 159.6278 169.0889 206.2944 285.9162 162.0465 101.0313 177.2122 297.3145
 [9] 126.1871 388.4472
> apply(copymatrix,1,var,na.rm=TRUE)
 [1] 159.6278 169.0889 206.2944 285.9162 162.0465 101.0313 177.2122 297.3145
 [9] 126.1871 388.4472
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 1
> which.col  <- 3
> cat(which.row," ",which.col,"\n")
1   3 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> colVars(tmp5,na.rm=TRUE)-apply(copymatrix,2,var,na.rm=TRUE)
 [1] -1.421085e-13 -1.421085e-14 -5.684342e-14  5.684342e-14 -1.136868e-13
 [6]  9.947598e-14  1.705303e-13 -1.136868e-13  0.000000e+00 -5.684342e-14
[11] -8.526513e-14  5.684342e-14  7.105427e-14  9.947598e-14  2.842171e-14
[16]  0.000000e+00  1.136868e-13  5.684342e-14  5.684342e-14 -2.842171e-14
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> ## making sure these things agree
> ##
> ## first when there is no NA
> 
> 
> 
> agree.checks <- function(buff.matrix,r.matrix,err.tol=1e-10){
+ 
+   if (Max(buff.matrix,na.rm=TRUE) != max(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Max")
+   }
+   
+ 
+   if (Min(buff.matrix,na.rm=TRUE) != min(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Min")
+   }
+ 
+ 
+   if (abs(Sum(buff.matrix,na.rm=TRUE)- sum(r.matrix,na.rm=TRUE)) > err.tol){
+ 
+     cat(Sum(buff.matrix,na.rm=TRUE),"\n")
+     cat(sum(r.matrix,na.rm=TRUE),"\n")
+     cat(Sum(buff.matrix,na.rm=TRUE) - sum(r.matrix,na.rm=TRUE),"\n")
+     
+     stop("No agreement in Sum")
+   }
+   
+   if (abs(mean(buff.matrix,na.rm=TRUE) - mean(r.matrix,na.rm=TRUE)) > err.tol){
+     stop("No agreement in mean")
+   }
+   
+   
+   if(abs(Var(buff.matrix,na.rm=TRUE) - var(as.vector(r.matrix),na.rm=TRUE)) > err.tol){
+     stop("No agreement in Var")
+   }
+   
+   
+ 
+   if(any(abs(rowMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,mean,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowMeans")
+   }
+   
+   
+   if(any(abs(colMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,mean,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colMeans")
+   }
+   
+   
+   if(any(abs(rowSums(buff.matrix,na.rm=TRUE)  -  apply(r.matrix,1,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in rowSums")
+   }
+   
+   
+   if(any(abs(colSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colSums")
+   }
+   
+   ### this is to get around the fact that R doesn't like to compute NA on an entire vector of NA when 
+   ### computing variance
+   my.Var <- function(x,na.rm=FALSE){
+    if (all(is.na(x))){
+      return(NA)
+    } else {
+      var(x,na.rm=na.rm)
+    }
+ 
+   }
+   
+   if(any(abs(rowVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+   
+   
+   if(any(abs(colVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+ 
+ 
+   if(any(abs(rowMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+ 
+   if(any(abs(colMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+   
+   
+   if(any(abs(rowMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+   
+ 
+   if(any(abs(colMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+ 
+   if(any(abs(colMedians(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,median,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMedian")
+   }
+ 
+   if(any(abs(colRanges(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,range,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colRanges")
+   }
+ 
+ 
+   
+ }
> 
> 
> 
> 
> 
> 
> 
> 
> 
> for (rep in 1:20){
+   copymatrix <- matrix(rnorm(200,150,15),10,20)
+   
+   tmp5[1:10,1:20] <- copymatrix
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ## now lets assign some NA values and check agreement
+ 
+   which.row <- sample(1:10,1,replace=TRUE)
+   which.col  <- sample(1:20,1,replace=TRUE)
+   
+   cat(which.row," ",which.col,"\n")
+   
+   tmp5[which.row,which.col] <- NA
+   copymatrix[which.row,which.col] <- NA
+   
+   agree.checks(tmp5,copymatrix)
+ 
+   ## make an entire row NA
+   tmp5[which.row,] <- NA
+   copymatrix[which.row,] <- NA
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ### also make an entire col NA
+   tmp5[,which.col] <- NA
+   copymatrix[,which.col] <- NA
+ 
+   agree.checks(tmp5,copymatrix)
+ 
+   ### now make 1 element non NA with NA in the rest of row and column
+ 
+   tmp5[which.row,which.col] <- rnorm(1,150,15)
+   copymatrix[which.row,which.col] <- tmp5[which.row,which.col]
+ 
+   agree.checks(tmp5,copymatrix)
+ }
1   17 
2   1 
10   6 
10   3 
2   14 
6   16 
5   19 
6   6 
4   3 
4   15 
5   4 
8   15 
6   16 
9   6 
6   1 
2   12 
6   4 
7   18 
10   8 
10   5 
There were 50 or more warnings (use warnings() to see the first 50)
> 
> 
> ### now test 1 by n and n by 1 matrix
> 
> 
> err.tol <- 1e-12
> 
> rm(tmp5)
> 
> dataset1 <- rnorm(100)
> dataset2 <- rnorm(100)
> 
> tmp <- createBufferedMatrix(1,100)
> tmp[1,] <- dataset1
> 
> tmp2 <- createBufferedMatrix(100,1)
> tmp2[,1] <- dataset2
> 
> 
> 
> 
> 
> Max(tmp)
[1] 2.442567
> Min(tmp)
[1] -2.151773
> mean(tmp)
[1] -0.04062855
> Sum(tmp)
[1] -4.062855
> Var(tmp)
[1] 1.004726
> 
> rowMeans(tmp)
[1] -0.04062855
> rowSums(tmp)
[1] -4.062855
> rowVars(tmp)
[1] 1.004726
> rowSd(tmp)
[1] 1.00236
> rowMax(tmp)
[1] 2.442567
> rowMin(tmp)
[1] -2.151773
> 
> colMeans(tmp)
  [1] -1.145046788 -2.059648744  0.170744490  0.667224786  0.746210815
  [6] -0.231460485 -0.433076493 -0.615174129 -0.426450886  0.359136384
 [11] -0.443183400  1.668039457 -0.862146812  0.994475663  2.060426051
 [16] -0.755552344 -0.010478020  0.078359979  0.295140432 -0.105698253
 [21]  0.235572279  0.070920617  0.152637630  0.364775621 -0.127067263
 [26]  0.948366458 -0.603868902  0.494274159 -1.114366672 -0.317280832
 [31]  0.661269968 -0.556179878  0.060268633  0.622374459 -0.808483708
 [36] -0.951899301 -0.134764152  0.625712942 -1.583918574  0.735519840
 [41]  0.525880457 -1.285364345 -1.393732599 -1.449020500 -0.481324786
 [46]  0.589509002 -1.937588764 -1.008504600  0.450370733  0.507398134
 [51] -0.450361075  2.442567414 -0.906208852 -0.653734415  1.351374573
 [56]  0.822241399  1.407687948  0.120455575 -0.211444677 -0.413349008
 [61] -1.211083573 -1.849626761 -1.000473764  0.664007917  1.813386778
 [66]  0.830226209 -1.204319887  0.130902815  0.218584865  0.694501049
 [71] -0.466953770 -0.648967902 -1.327575222 -1.176173873 -1.018702673
 [76]  0.993985813 -0.316275796  0.498335004  1.166346019  0.856131069
 [81] -1.563952225  1.935205239  2.158259549  0.654674851 -0.606584529
 [86] -1.471129613 -0.479587722  0.855748266 -0.617552634 -2.151773271
 [91] -1.730098353  0.002855817  0.534990201  0.719528430  1.142944608
 [96]  0.687898195 -0.809351309  1.011395489 -0.051935336  1.316798361
> colSums(tmp)
  [1] -1.145046788 -2.059648744  0.170744490  0.667224786  0.746210815
  [6] -0.231460485 -0.433076493 -0.615174129 -0.426450886  0.359136384
 [11] -0.443183400  1.668039457 -0.862146812  0.994475663  2.060426051
 [16] -0.755552344 -0.010478020  0.078359979  0.295140432 -0.105698253
 [21]  0.235572279  0.070920617  0.152637630  0.364775621 -0.127067263
 [26]  0.948366458 -0.603868902  0.494274159 -1.114366672 -0.317280832
 [31]  0.661269968 -0.556179878  0.060268633  0.622374459 -0.808483708
 [36] -0.951899301 -0.134764152  0.625712942 -1.583918574  0.735519840
 [41]  0.525880457 -1.285364345 -1.393732599 -1.449020500 -0.481324786
 [46]  0.589509002 -1.937588764 -1.008504600  0.450370733  0.507398134
 [51] -0.450361075  2.442567414 -0.906208852 -0.653734415  1.351374573
 [56]  0.822241399  1.407687948  0.120455575 -0.211444677 -0.413349008
 [61] -1.211083573 -1.849626761 -1.000473764  0.664007917  1.813386778
 [66]  0.830226209 -1.204319887  0.130902815  0.218584865  0.694501049
 [71] -0.466953770 -0.648967902 -1.327575222 -1.176173873 -1.018702673
 [76]  0.993985813 -0.316275796  0.498335004  1.166346019  0.856131069
 [81] -1.563952225  1.935205239  2.158259549  0.654674851 -0.606584529
 [86] -1.471129613 -0.479587722  0.855748266 -0.617552634 -2.151773271
 [91] -1.730098353  0.002855817  0.534990201  0.719528430  1.142944608
 [96]  0.687898195 -0.809351309  1.011395489 -0.051935336  1.316798361
> colVars(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colSd(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colMax(tmp)
  [1] -1.145046788 -2.059648744  0.170744490  0.667224786  0.746210815
  [6] -0.231460485 -0.433076493 -0.615174129 -0.426450886  0.359136384
 [11] -0.443183400  1.668039457 -0.862146812  0.994475663  2.060426051
 [16] -0.755552344 -0.010478020  0.078359979  0.295140432 -0.105698253
 [21]  0.235572279  0.070920617  0.152637630  0.364775621 -0.127067263
 [26]  0.948366458 -0.603868902  0.494274159 -1.114366672 -0.317280832
 [31]  0.661269968 -0.556179878  0.060268633  0.622374459 -0.808483708
 [36] -0.951899301 -0.134764152  0.625712942 -1.583918574  0.735519840
 [41]  0.525880457 -1.285364345 -1.393732599 -1.449020500 -0.481324786
 [46]  0.589509002 -1.937588764 -1.008504600  0.450370733  0.507398134
 [51] -0.450361075  2.442567414 -0.906208852 -0.653734415  1.351374573
 [56]  0.822241399  1.407687948  0.120455575 -0.211444677 -0.413349008
 [61] -1.211083573 -1.849626761 -1.000473764  0.664007917  1.813386778
 [66]  0.830226209 -1.204319887  0.130902815  0.218584865  0.694501049
 [71] -0.466953770 -0.648967902 -1.327575222 -1.176173873 -1.018702673
 [76]  0.993985813 -0.316275796  0.498335004  1.166346019  0.856131069
 [81] -1.563952225  1.935205239  2.158259549  0.654674851 -0.606584529
 [86] -1.471129613 -0.479587722  0.855748266 -0.617552634 -2.151773271
 [91] -1.730098353  0.002855817  0.534990201  0.719528430  1.142944608
 [96]  0.687898195 -0.809351309  1.011395489 -0.051935336  1.316798361
> colMin(tmp)
  [1] -1.145046788 -2.059648744  0.170744490  0.667224786  0.746210815
  [6] -0.231460485 -0.433076493 -0.615174129 -0.426450886  0.359136384
 [11] -0.443183400  1.668039457 -0.862146812  0.994475663  2.060426051
 [16] -0.755552344 -0.010478020  0.078359979  0.295140432 -0.105698253
 [21]  0.235572279  0.070920617  0.152637630  0.364775621 -0.127067263
 [26]  0.948366458 -0.603868902  0.494274159 -1.114366672 -0.317280832
 [31]  0.661269968 -0.556179878  0.060268633  0.622374459 -0.808483708
 [36] -0.951899301 -0.134764152  0.625712942 -1.583918574  0.735519840
 [41]  0.525880457 -1.285364345 -1.393732599 -1.449020500 -0.481324786
 [46]  0.589509002 -1.937588764 -1.008504600  0.450370733  0.507398134
 [51] -0.450361075  2.442567414 -0.906208852 -0.653734415  1.351374573
 [56]  0.822241399  1.407687948  0.120455575 -0.211444677 -0.413349008
 [61] -1.211083573 -1.849626761 -1.000473764  0.664007917  1.813386778
 [66]  0.830226209 -1.204319887  0.130902815  0.218584865  0.694501049
 [71] -0.466953770 -0.648967902 -1.327575222 -1.176173873 -1.018702673
 [76]  0.993985813 -0.316275796  0.498335004  1.166346019  0.856131069
 [81] -1.563952225  1.935205239  2.158259549  0.654674851 -0.606584529
 [86] -1.471129613 -0.479587722  0.855748266 -0.617552634 -2.151773271
 [91] -1.730098353  0.002855817  0.534990201  0.719528430  1.142944608
 [96]  0.687898195 -0.809351309  1.011395489 -0.051935336  1.316798361
> colMedians(tmp)
  [1] -1.145046788 -2.059648744  0.170744490  0.667224786  0.746210815
  [6] -0.231460485 -0.433076493 -0.615174129 -0.426450886  0.359136384
 [11] -0.443183400  1.668039457 -0.862146812  0.994475663  2.060426051
 [16] -0.755552344 -0.010478020  0.078359979  0.295140432 -0.105698253
 [21]  0.235572279  0.070920617  0.152637630  0.364775621 -0.127067263
 [26]  0.948366458 -0.603868902  0.494274159 -1.114366672 -0.317280832
 [31]  0.661269968 -0.556179878  0.060268633  0.622374459 -0.808483708
 [36] -0.951899301 -0.134764152  0.625712942 -1.583918574  0.735519840
 [41]  0.525880457 -1.285364345 -1.393732599 -1.449020500 -0.481324786
 [46]  0.589509002 -1.937588764 -1.008504600  0.450370733  0.507398134
 [51] -0.450361075  2.442567414 -0.906208852 -0.653734415  1.351374573
 [56]  0.822241399  1.407687948  0.120455575 -0.211444677 -0.413349008
 [61] -1.211083573 -1.849626761 -1.000473764  0.664007917  1.813386778
 [66]  0.830226209 -1.204319887  0.130902815  0.218584865  0.694501049
 [71] -0.466953770 -0.648967902 -1.327575222 -1.176173873 -1.018702673
 [76]  0.993985813 -0.316275796  0.498335004  1.166346019  0.856131069
 [81] -1.563952225  1.935205239  2.158259549  0.654674851 -0.606584529
 [86] -1.471129613 -0.479587722  0.855748266 -0.617552634 -2.151773271
 [91] -1.730098353  0.002855817  0.534990201  0.719528430  1.142944608
 [96]  0.687898195 -0.809351309  1.011395489 -0.051935336  1.316798361
> colRanges(tmp)
          [,1]      [,2]      [,3]      [,4]      [,5]       [,6]       [,7]
[1,] -1.145047 -2.059649 0.1707445 0.6672248 0.7462108 -0.2314605 -0.4330765
[2,] -1.145047 -2.059649 0.1707445 0.6672248 0.7462108 -0.2314605 -0.4330765
           [,8]       [,9]     [,10]      [,11]    [,12]      [,13]     [,14]
[1,] -0.6151741 -0.4264509 0.3591364 -0.4431834 1.668039 -0.8621468 0.9944757
[2,] -0.6151741 -0.4264509 0.3591364 -0.4431834 1.668039 -0.8621468 0.9944757
        [,15]      [,16]       [,17]      [,18]     [,19]      [,20]     [,21]
[1,] 2.060426 -0.7555523 -0.01047802 0.07835998 0.2951404 -0.1056983 0.2355723
[2,] 2.060426 -0.7555523 -0.01047802 0.07835998 0.2951404 -0.1056983 0.2355723
          [,22]     [,23]     [,24]      [,25]     [,26]      [,27]     [,28]
[1,] 0.07092062 0.1526376 0.3647756 -0.1270673 0.9483665 -0.6038689 0.4942742
[2,] 0.07092062 0.1526376 0.3647756 -0.1270673 0.9483665 -0.6038689 0.4942742
         [,29]      [,30]   [,31]      [,32]      [,33]     [,34]      [,35]
[1,] -1.114367 -0.3172808 0.66127 -0.5561799 0.06026863 0.6223745 -0.8084837
[2,] -1.114367 -0.3172808 0.66127 -0.5561799 0.06026863 0.6223745 -0.8084837
          [,36]      [,37]     [,38]     [,39]     [,40]     [,41]     [,42]
[1,] -0.9518993 -0.1347642 0.6257129 -1.583919 0.7355198 0.5258805 -1.285364
[2,] -0.9518993 -0.1347642 0.6257129 -1.583919 0.7355198 0.5258805 -1.285364
         [,43]     [,44]      [,45]    [,46]     [,47]     [,48]     [,49]
[1,] -1.393733 -1.449021 -0.4813248 0.589509 -1.937589 -1.008505 0.4503707
[2,] -1.393733 -1.449021 -0.4813248 0.589509 -1.937589 -1.008505 0.4503707
         [,50]      [,51]    [,52]      [,53]      [,54]    [,55]     [,56]
[1,] 0.5073981 -0.4503611 2.442567 -0.9062089 -0.6537344 1.351375 0.8222414
[2,] 0.5073981 -0.4503611 2.442567 -0.9062089 -0.6537344 1.351375 0.8222414
        [,57]     [,58]      [,59]     [,60]     [,61]     [,62]     [,63]
[1,] 1.407688 0.1204556 -0.2114447 -0.413349 -1.211084 -1.849627 -1.000474
[2,] 1.407688 0.1204556 -0.2114447 -0.413349 -1.211084 -1.849627 -1.000474
         [,64]    [,65]     [,66]    [,67]     [,68]     [,69]    [,70]
[1,] 0.6640079 1.813387 0.8302262 -1.20432 0.1309028 0.2185849 0.694501
[2,] 0.6640079 1.813387 0.8302262 -1.20432 0.1309028 0.2185849 0.694501
          [,71]      [,72]     [,73]     [,74]     [,75]     [,76]      [,77]
[1,] -0.4669538 -0.6489679 -1.327575 -1.176174 -1.018703 0.9939858 -0.3162758
[2,] -0.4669538 -0.6489679 -1.327575 -1.176174 -1.018703 0.9939858 -0.3162758
        [,78]    [,79]     [,80]     [,81]    [,82]   [,83]     [,84]
[1,] 0.498335 1.166346 0.8561311 -1.563952 1.935205 2.15826 0.6546749
[2,] 0.498335 1.166346 0.8561311 -1.563952 1.935205 2.15826 0.6546749
          [,85]    [,86]      [,87]     [,88]      [,89]     [,90]     [,91]
[1,] -0.6065845 -1.47113 -0.4795877 0.8557483 -0.6175526 -2.151773 -1.730098
[2,] -0.6065845 -1.47113 -0.4795877 0.8557483 -0.6175526 -2.151773 -1.730098
           [,92]     [,93]     [,94]    [,95]     [,96]      [,97]    [,98]
[1,] 0.002855817 0.5349902 0.7195284 1.142945 0.6878982 -0.8093513 1.011395
[2,] 0.002855817 0.5349902 0.7195284 1.142945 0.6878982 -0.8093513 1.011395
           [,99]   [,100]
[1,] -0.05193534 1.316798
[2,] -0.05193534 1.316798
> 
> 
> Max(tmp2)
[1] 2.662525
> Min(tmp2)
[1] -2.995018
> mean(tmp2)
[1] -0.102555
> Sum(tmp2)
[1] -10.2555
> Var(tmp2)
[1] 1.122043
> 
> rowMeans(tmp2)
  [1]  2.662525191  0.649563551 -1.200822945  0.564440200 -0.695020277
  [6]  0.145811342 -1.273219900 -0.395730400  0.277890466  0.235062011
 [11] -0.837863930 -2.081455905 -0.769470355 -0.571148620  0.846639941
 [16]  1.020975395  0.041511368  0.694978737 -0.975007140 -1.085647562
 [21]  0.537626998  0.187958478  0.272865544  0.889507716  0.722071818
 [26]  0.150509535  1.147065867 -1.317660142 -1.782322127  0.292236825
 [31] -1.013553198  0.961917408 -1.270264585 -0.778055983 -0.545186743
 [36] -0.432662201  0.149714777 -1.600660061  1.725876412  1.793870868
 [41]  1.502265763 -2.995017548 -1.958434553 -0.867840537 -0.548280007
 [46]  0.615202041  0.298913152 -0.332257971  0.608821592 -0.856266992
 [51] -0.858134507 -1.372032371  0.111432304 -0.869449389 -0.153220462
 [56]  0.353763731  0.691349476  0.372837527  0.060017735 -1.744423893
 [61] -0.009238849  1.675289869  1.461215994 -0.210049968  0.270318463
 [66]  1.283742925  0.354125042 -0.071590933 -0.710083362 -0.413642201
 [71]  1.047806101 -1.233399949  0.991637203  0.173566129  0.489856884
 [76]  0.826465329  1.152297790 -0.972497612 -0.936845525 -1.818927377
 [81]  0.565573705 -0.414680790 -0.566569144 -2.216983389 -0.825805384
 [86]  1.667581701  0.150113513  1.164220833  0.092138350  1.028596682
 [91] -2.708270967  0.193717092 -0.894587009  0.192064187  1.363074697
 [96] -0.666281855  0.668526303  0.370520719 -1.186750879 -0.985853363
> rowSums(tmp2)
  [1]  2.662525191  0.649563551 -1.200822945  0.564440200 -0.695020277
  [6]  0.145811342 -1.273219900 -0.395730400  0.277890466  0.235062011
 [11] -0.837863930 -2.081455905 -0.769470355 -0.571148620  0.846639941
 [16]  1.020975395  0.041511368  0.694978737 -0.975007140 -1.085647562
 [21]  0.537626998  0.187958478  0.272865544  0.889507716  0.722071818
 [26]  0.150509535  1.147065867 -1.317660142 -1.782322127  0.292236825
 [31] -1.013553198  0.961917408 -1.270264585 -0.778055983 -0.545186743
 [36] -0.432662201  0.149714777 -1.600660061  1.725876412  1.793870868
 [41]  1.502265763 -2.995017548 -1.958434553 -0.867840537 -0.548280007
 [46]  0.615202041  0.298913152 -0.332257971  0.608821592 -0.856266992
 [51] -0.858134507 -1.372032371  0.111432304 -0.869449389 -0.153220462
 [56]  0.353763731  0.691349476  0.372837527  0.060017735 -1.744423893
 [61] -0.009238849  1.675289869  1.461215994 -0.210049968  0.270318463
 [66]  1.283742925  0.354125042 -0.071590933 -0.710083362 -0.413642201
 [71]  1.047806101 -1.233399949  0.991637203  0.173566129  0.489856884
 [76]  0.826465329  1.152297790 -0.972497612 -0.936845525 -1.818927377
 [81]  0.565573705 -0.414680790 -0.566569144 -2.216983389 -0.825805384
 [86]  1.667581701  0.150113513  1.164220833  0.092138350  1.028596682
 [91] -2.708270967  0.193717092 -0.894587009  0.192064187  1.363074697
 [96] -0.666281855  0.668526303  0.370520719 -1.186750879 -0.985853363
> rowVars(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowSd(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowMax(tmp2)
  [1]  2.662525191  0.649563551 -1.200822945  0.564440200 -0.695020277
  [6]  0.145811342 -1.273219900 -0.395730400  0.277890466  0.235062011
 [11] -0.837863930 -2.081455905 -0.769470355 -0.571148620  0.846639941
 [16]  1.020975395  0.041511368  0.694978737 -0.975007140 -1.085647562
 [21]  0.537626998  0.187958478  0.272865544  0.889507716  0.722071818
 [26]  0.150509535  1.147065867 -1.317660142 -1.782322127  0.292236825
 [31] -1.013553198  0.961917408 -1.270264585 -0.778055983 -0.545186743
 [36] -0.432662201  0.149714777 -1.600660061  1.725876412  1.793870868
 [41]  1.502265763 -2.995017548 -1.958434553 -0.867840537 -0.548280007
 [46]  0.615202041  0.298913152 -0.332257971  0.608821592 -0.856266992
 [51] -0.858134507 -1.372032371  0.111432304 -0.869449389 -0.153220462
 [56]  0.353763731  0.691349476  0.372837527  0.060017735 -1.744423893
 [61] -0.009238849  1.675289869  1.461215994 -0.210049968  0.270318463
 [66]  1.283742925  0.354125042 -0.071590933 -0.710083362 -0.413642201
 [71]  1.047806101 -1.233399949  0.991637203  0.173566129  0.489856884
 [76]  0.826465329  1.152297790 -0.972497612 -0.936845525 -1.818927377
 [81]  0.565573705 -0.414680790 -0.566569144 -2.216983389 -0.825805384
 [86]  1.667581701  0.150113513  1.164220833  0.092138350  1.028596682
 [91] -2.708270967  0.193717092 -0.894587009  0.192064187  1.363074697
 [96] -0.666281855  0.668526303  0.370520719 -1.186750879 -0.985853363
> rowMin(tmp2)
  [1]  2.662525191  0.649563551 -1.200822945  0.564440200 -0.695020277
  [6]  0.145811342 -1.273219900 -0.395730400  0.277890466  0.235062011
 [11] -0.837863930 -2.081455905 -0.769470355 -0.571148620  0.846639941
 [16]  1.020975395  0.041511368  0.694978737 -0.975007140 -1.085647562
 [21]  0.537626998  0.187958478  0.272865544  0.889507716  0.722071818
 [26]  0.150509535  1.147065867 -1.317660142 -1.782322127  0.292236825
 [31] -1.013553198  0.961917408 -1.270264585 -0.778055983 -0.545186743
 [36] -0.432662201  0.149714777 -1.600660061  1.725876412  1.793870868
 [41]  1.502265763 -2.995017548 -1.958434553 -0.867840537 -0.548280007
 [46]  0.615202041  0.298913152 -0.332257971  0.608821592 -0.856266992
 [51] -0.858134507 -1.372032371  0.111432304 -0.869449389 -0.153220462
 [56]  0.353763731  0.691349476  0.372837527  0.060017735 -1.744423893
 [61] -0.009238849  1.675289869  1.461215994 -0.210049968  0.270318463
 [66]  1.283742925  0.354125042 -0.071590933 -0.710083362 -0.413642201
 [71]  1.047806101 -1.233399949  0.991637203  0.173566129  0.489856884
 [76]  0.826465329  1.152297790 -0.972497612 -0.936845525 -1.818927377
 [81]  0.565573705 -0.414680790 -0.566569144 -2.216983389 -0.825805384
 [86]  1.667581701  0.150113513  1.164220833  0.092138350  1.028596682
 [91] -2.708270967  0.193717092 -0.894587009  0.192064187  1.363074697
 [96] -0.666281855  0.668526303  0.370520719 -1.186750879 -0.985853363
> 
> colMeans(tmp2)
[1] -0.102555
> colSums(tmp2)
[1] -10.2555
> colVars(tmp2)
[1] 1.122043
> colSd(tmp2)
[1] 1.059265
> colMax(tmp2)
[1] 2.662525
> colMin(tmp2)
[1] -2.995018
> colMedians(tmp2)
[1] 0.1017853
> colRanges(tmp2)
          [,1]
[1,] -2.995018
[2,]  2.662525
> 
> dataset1 <- matrix(dataset1,1,100)
> 
> agree.checks(tmp,dataset1)
> 
> dataset2 <- matrix(dataset2,100,1)
> agree.checks(tmp2,dataset2)
>   
> 
> tmp <- createBufferedMatrix(10,10)
> 
> tmp[1:10,1:10] <- rnorm(100)
> colApply(tmp,sum)
 [1]  0.40681836  0.72218522 -0.03959428  0.03671872 -2.41417448 -3.65218602
 [7] -0.43107125 -5.51156560 -1.98946066  1.63216183
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -0.9049076
[2,] -0.6520269
[3,] -0.1814644
[4,]  0.2369639
[5,]  1.6778469
> 
> rowApply(tmp,sum)
 [1] -0.9818889  2.5949039 -4.9554111 -1.2560367  0.7914731 -1.5762512
 [7]  2.9419271 -5.1300285 -1.3139989 -2.3548571
> rowApply(tmp,rank)[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    5    2    3    7    9    4    5    5   10     7
 [2,]    4   10   10    2    4   10    3    9    1     3
 [3,]    2    4    8    8    6    9    8    4    5     6
 [4,]    7    9    1    3    7    7    4    7    7     4
 [5,]   10    5    9    1    3    2    1    6    6    10
 [6,]    1    8    5   10    5    1    9    8    4     1
 [7,]    3    7    6    5    8    3    6   10    9     8
 [8,]    6    1    2    6    2    5    2    3    3     5
 [9,]    9    3    4    9    1    8    7    1    8     2
[10,]    8    6    7    4   10    6   10    2    2     9
> 
> tmp <- createBufferedMatrix(5,20)
> 
> tmp[1:5,1:20] <- rnorm(100)
> colApply(tmp,sum)
 [1]  1.963550177 -0.327266876  2.738957511  0.151146627  2.919455180
 [6] -2.417053007 -1.268442626 -5.634975378 -2.840299010 -2.489719887
[11] -0.049787567 -2.712070065  0.619668108  2.659223603  1.201434507
[16] -1.088458400 -2.274303055 -0.008186237  0.577768612  1.395684730
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -0.4545000
[2,] -0.3734317
[3,]  0.4253350
[4,]  0.9389137
[5,]  1.4272331
> 
> rowApply(tmp,sum)
[1] -6.3605984 -3.9126522 -1.3976524  5.1539931 -0.3667632
> rowApply(tmp,rank)[1:5,]
     [,1] [,2] [,3] [,4] [,5]
[1,]   11   15   17   19    6
[2,]   13   11    5   20    2
[3,]   20   16   13   13    7
[4,]    8   18    4   11   17
[5,]   18    5   18   17   18
> 
> 
> as.matrix(tmp)
           [,1]       [,2]       [,3]       [,4]       [,5]        [,6]
[1,] -0.4545000 -0.2119279  1.7095257 -0.5665970  1.0875402 -1.62387145
[2,]  0.4253350 -0.2402933  0.4872638  1.0325662 -0.9851152  0.73717022
[3,]  0.9389137 -0.7547522  0.3078948 -0.9694863  0.9988877 -1.75049762
[4,]  1.4272331  1.7207238  0.5511917  0.1600339  1.2081507  0.09356922
[5,] -0.3734317 -0.8410172 -0.3169184  0.4946299  0.6099919  0.12657662
           [,7]       [,8]        [,9]      [,10]      [,11]      [,12]
[1,] -0.5127836 -2.4025972 -0.49103763 -1.7134851 -0.9938959 -0.9700815
[2,] -1.5990401 -3.0482262 -2.05695922 -0.4045572 -1.0334386 -0.5994748
[3,]  0.8601776 -0.1700967  0.07336456 -0.4010091  1.5586382  0.4350537
[4,] -0.1540118 -1.4332687 -0.17741061 -0.1887110  1.4048436 -1.0219460
[5,]  0.1372154  1.4192134 -0.18825611  0.2180424 -0.9859349 -0.5556214
          [,13]       [,14]       [,15]      [,16]      [,17]      [,18]
[1,] -0.6554965  0.85951361  0.41753011 -0.4218649 -1.4140405  0.7495388
[2,]  2.0103711  0.06035702  0.27275310 -0.6495583 -0.2564645 -0.7080534
[3,] -0.4624752  1.66046647 -0.42510216 -0.4278507  0.6693398 -0.6599824
[4,] -0.4303562  0.18217805  1.00844578  1.0633028 -0.6279904 -0.7312737
[5,]  0.1576250 -0.10329155 -0.07219232 -0.6524874 -0.6451475  1.3415844
           [,19]        [,20]
[1,]  0.13166308  1.116269259
[2,]  0.35875737  2.283954968
[3,] -0.97517347 -1.903963041
[4,]  1.10475209 -0.005463297
[5,] -0.04223046 -0.095113160
> 
> 
> is.BufferedMatrix(tmp)
[1] TRUE
> 
> as.BufferedMatrix(as.matrix(tmp))
BufferedMatrix object
Matrix size:  5 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  800  bytes.
> 
> 
> 
> subBufferedMatrix(tmp,1:5,1:5)
BufferedMatrix object
Matrix size:  5 5 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  653  bytes.
Disk usage :  200  bytes.
> subBufferedMatrix(tmp,,5:8)
BufferedMatrix object
Matrix size:  5 4 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  566  bytes.
Disk usage :  160  bytes.
> subBufferedMatrix(tmp,1:3,)
BufferedMatrix object
Matrix size:  3 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  480  bytes.
> 
> 
> rm(tmp)
> 
> 
> ###
> ### Testing colnames and rownames
> ###
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> 
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> tmp["row1",]
          col1      col2     col3       col4      col5      col6       col7
row1 0.4427294 0.7186857 0.747699 -0.9073199 -2.048208 0.4765079 0.07217026
          col8     col9     col10    col11     col12      col13      col14
row1 0.1564922 1.115052 -1.155832 1.671951 0.2096088 -0.3184283 -0.6229052
       col15     col16     col17     col18    col19      col20
row1 1.53944 0.6038705 0.8243856 0.1255928 0.589845 -0.5008107
> tmp[,"col10"]
          col10
row1 -1.1558316
row2  1.1014750
row3 -0.3487216
row4  0.1590552
row5 -1.2863592
> tmp[c("row1","row5"),]
           col1       col2      col3       col4       col5      col6       col7
row1  0.4427294  0.7186857 0.7476990 -0.9073199 -2.0482083 0.4765079 0.07217026
row5 -0.4199905 -1.3929191 0.2447481  1.7732471  0.9238533 0.4142968 1.42391064
           col8      col9     col10    col11      col12      col13      col14
row1 0.15649222  1.115052 -1.155832 1.671951  0.2096088 -0.3184283 -0.6229052
row5 0.05769207 -1.577417 -1.286359 1.232415 -0.1086862 -1.2988654  0.1070711
         col15     col16     col17     col18     col19      col20
row1  1.539440 0.6038705 0.8243856 0.1255928 0.5898450 -0.5008107
row5 -1.238996 1.2577082 1.7487968 0.6324776 0.9343916 -0.9351372
> tmp[,c("col6","col20")]
           col6      col20
row1  0.4765079 -0.5008107
row2 -1.1920315 -0.7995213
row3  0.1865841 -0.4925259
row4 -2.7584958  0.1791658
row5  0.4142968 -0.9351372
> tmp[c("row1","row5"),c("col6","col20")]
          col6      col20
row1 0.4765079 -0.5008107
row5 0.4142968 -0.9351372
> 
> 
> 
> 
> tmp["row1",] <- rnorm(20,mean=10)
> tmp[,"col10"] <- rnorm(5,mean=30)
> tmp[c("row1","row5"),] <- rnorm(40,mean=50)
> tmp[,c("col6","col20")] <- rnorm(10,mean=75)
> tmp[c("row1","row5"),c("col6","col20")]  <- rnorm(4,mean=105)
> 
> tmp["row1",]
         col1     col2     col3    col4     col5     col6    col7     col8
row1 49.13016 50.45684 51.12876 49.0748 49.33386 107.0429 48.9859 50.76998
        col9    col10    col11    col12    col13    col14    col15    col16
row1 50.1807 50.05166 49.29834 48.92695 49.14023 50.11764 50.04059 50.88932
        col17    col18    col19    col20
row1 49.92257 48.60022 48.44421 105.5597
> tmp[,"col10"]
        col10
row1 50.05166
row2 30.73889
row3 30.01112
row4 29.42619
row5 48.81316
> tmp[c("row1","row5"),]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 49.13016 50.45684 51.12876 49.07480 49.33386 107.0429 48.98590 50.76998
row5 49.60476 48.53976 50.59359 49.68071 49.45623 105.6703 50.32836 50.50870
         col9    col10    col11    col12    col13    col14    col15    col16
row1 50.18070 50.05166 49.29834 48.92695 49.14023 50.11764 50.04059 50.88932
row5 51.30567 48.81316 49.03830 49.17207 50.36134 50.16545 51.05007 49.19120
        col17    col18    col19    col20
row1 49.92257 48.60022 48.44421 105.5597
row5 51.12576 49.40057 50.24094 104.3825
> tmp[,c("col6","col20")]
          col6     col20
row1 107.04290 105.55970
row2  75.33145  74.04885
row3  75.63832  75.33147
row4  74.90398  74.41058
row5 105.67025 104.38246
> tmp[c("row1","row5"),c("col6","col20")]
         col6    col20
row1 107.0429 105.5597
row5 105.6703 104.3825
> 
> 
> subBufferedMatrix(tmp,c("row1","row5"),c("col6","col20"))[1:2,1:2]
         col6    col20
row1 107.0429 105.5597
row5 105.6703 104.3825
> 
> 
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> 
> tmp[,"col13"]
          col13
[1,] -1.1427352
[2,] -0.5708828
[3,]  0.2302549
[4,]  0.1830142
[5,] -1.7658465
> tmp[,c("col17","col7")]
          col17       col7
[1,]  0.8139651 -1.7120291
[2,] -0.6875780  0.6701931
[3,] -0.2912013  1.1629336
[4,]  0.4862802  1.4924188
[5,]  0.1494930 -0.5087658
> 
> subBufferedMatrix(tmp,,c("col6","col20"))[,1:2]
            col6      col20
[1,]  2.19368647 -1.5949626
[2,]  0.09169909 -0.8339813
[3,]  0.18819024 -0.9771335
[4,] -0.72631766  0.7902575
[5,]  0.26867624 -0.1027388
> subBufferedMatrix(tmp,1,c("col6"))[,1]
         col1
[1,] 2.193686
> subBufferedMatrix(tmp,1:2,c("col6"))[,1]
           col6
[1,] 2.19368647
[2,] 0.09169909
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> 
> 
> 
> subBufferedMatrix(tmp,c("row3","row1"),)[,1:20]
           [,1]       [,2]       [,3]      [,4]      [,5]      [,6]       [,7]
row3 -0.4814912  0.5159903  0.2261019 0.7645918 0.7763392 0.3992366 -0.3555758
row1  0.4003311 -0.9285450 -0.3418244 0.6990960 0.8189570 0.4668328 -0.7832514
         [,8]      [,9]     [,10]      [,11]      [,12]      [,13]      [,14]
row3 1.991137 1.0484087 -1.638726 -0.3492296 -0.4554418 -0.6791113 -0.4755509
row1 0.295082 0.1857809  1.440805  2.2905208  0.8259165 -0.1757283  0.2990213
           [,15]       [,16]      [,17]      [,18]      [,19]      [,20]
row3 -0.86265368 -0.02754966 -0.3352551 -1.1860332 -0.9989807  0.1538517
row1  0.04944577  0.05664589 -2.3790920 -0.2030493  0.5953603 -3.8517658
> subBufferedMatrix(tmp,c("row2"),1:10)[,1:10]
        [,1]      [,2]      [,3]       [,4]       [,5]      [,6]      [,7]
row2 1.11611 0.3002371 0.7269462 -0.9178605 -0.5510285 0.0184301 0.3606795
          [,8]      [,9]     [,10]
row2 0.8255673 0.8223056 0.8904947
> subBufferedMatrix(tmp,c("row5"),1:20)[,1:20]
          [,1]       [,2]          [,3]      [,4]      [,5]     [,6]     [,7]
row5 0.6793358 -0.6597989 -0.0007621012 0.8301839 -1.125122 1.319399 1.682667
           [,8]      [,9]      [,10]     [,11]     [,12]      [,13]     [,14]
row5 -0.2682046 0.5258494 -0.6181713 -1.631013 0.5743809 -0.3046106 0.3312224
         [,15]      [,16]      [,17]    [,18]      [,19]    [,20]
row5 0.7908681 -0.6147979 -0.1893772 2.014346 -0.2865379 1.627035
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> colnames(tmp) <- NULL
> rownames(tmp) <- NULL
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> dimnames(tmp) <- NULL
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> dimnames(tmp) <- NULL
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
NULL

> 
> dimnames(tmp) <- list(NULL,c(colnames(tmp,do.NULL=FALSE)))
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> 
> ###
> ### Testing logical indexing
> ###
> ###
> 
> tmp <- createBufferedMatrix(230,15)
> tmp[1:230,1:15] <- rnorm(230*15)
> x <-tmp[1:230,1:15]  
> 
> for (rep in 1:10){
+   which.cols <- sample(c(TRUE,FALSE),15,replace=T)
+   which.rows <- sample(c(TRUE,FALSE),230,replace=T)
+   
+   if (!all(tmp[which.rows,which.cols] == x[which.rows,which.cols])){
+     stop("No agreement when logical indexing\n")
+   }
+   
+   if (!all(subBufferedMatrix(tmp,,which.cols)[,1:sum(which.cols)] ==  x[,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix cols\n")
+   }
+   if (!all(subBufferedMatrix(tmp,which.rows,)[1:sum(which.rows),] ==  x[which.rows,])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows\n")
+   }
+   
+   
+   if (!all(subBufferedMatrix(tmp,which.rows,which.cols)[1:sum(which.rows),1:sum(which.cols)]==  x[which.rows,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows and columns\n")
+   }
+ }
> 
> 
> ##
> ## Test the ReadOnlyMode
> ##
> 
> ReadOnlyMode(tmp)
<pointer: 0x6000000d0360>
> is.ReadOnlyMode(tmp)
[1] TRUE
> 
> filenames(tmp)
 [1] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM183b320ebdff3"
 [2] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM183b35dbbdb67"
 [3] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM183b358417744"
 [4] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM183b331fd3ea0"
 [5] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM183b3691a9403"
 [6] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM183b34feb86dd"
 [7] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM183b36fe34028"
 [8] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM183b330893b7b"
 [9] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM183b31a02122" 
[10] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM183b337df4003"
[11] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM183b321e3a19d"
[12] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM183b367875bcc"
[13] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM183b3679be32d"
[14] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM183b32b5fd47f"
[15] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM183b32077f418"
> 
> 
> ### testing coercion functions
> ###
> 
> tmp <- as(tmp,"matrix")
> tmp <- as(tmp,"BufferedMatrix")
> 
> 
> 
> ### testing whether can move storage from one location to another
> 
> MoveStorageDirectory(tmp,"NewDirectory",full.path=FALSE)
<pointer: 0x6000000dc240>
> MoveStorageDirectory(tmp,getwd(),full.path=TRUE)
<pointer: 0x6000000dc240>
Warning message:
In dir.create(new.directory) :
  '/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests' already exists
> 
> 
> RowMode(tmp)
<pointer: 0x6000000dc240>
> rowMedians(tmp)
  [1]  0.148261925  0.168672490 -0.132027615  0.468450986  0.698547889
  [6] -0.168512614 -0.430917600 -0.159215964 -0.326847618  0.353012489
 [11] -0.065863087 -0.759543086  0.174724869  0.560700457 -0.176366181
 [16] -0.411058353 -0.379688713 -0.723551124 -0.259892441  0.050463893
 [21]  0.425510688 -0.491733994  0.140079615  0.385671356 -0.094875228
 [26] -0.074378082  0.215663996 -0.111856462  0.515136726 -0.104511245
 [31]  0.218335010  0.181839287  0.174093689 -0.169988682  0.117653497
 [36] -0.100764168  0.066006268 -0.167730049  0.252787662 -0.420068835
 [41]  0.511063666  0.640472764  0.603428342 -0.087068356 -0.776050487
 [46] -0.143155655  0.141604386 -0.108246674  0.151116150  0.108173377
 [51]  0.608193163  0.204939382 -0.197335363  0.633593620  0.156519092
 [56]  0.431861745  0.328187689  0.196211877 -0.565559516 -0.492407079
 [61]  0.290587109  0.199573288  0.037351903 -0.235490106  0.035998258
 [66] -0.108794945 -0.359285242  0.136995132  0.388863397 -0.069633959
 [71]  0.226859743 -0.007496318  0.116993290  0.230551182  0.450465740
 [76]  0.202814222  0.052641712 -0.087271254 -0.536088935 -0.179729372
 [81]  0.010464385 -0.289388953 -0.260981899  0.559736681  0.065621179
 [86] -0.027044752  0.206365636  0.002857145  0.150529815 -0.460599798
 [91]  0.012018963 -0.019757747 -0.278985329  0.481709282 -0.250898187
 [96]  0.110571170  0.224301523 -0.087286691  0.085874322  0.209379922
[101] -0.124847674  0.433064348 -0.178507256 -0.317919218 -0.503192836
[106] -0.337906853 -0.064833413  0.010809684  0.051565795  0.567580277
[111] -0.144217298  0.221786804 -0.620412632  0.192612170 -0.420496630
[116]  0.438461100  0.055956671 -0.130180373  0.334703135 -0.075972651
[121]  0.235669455  0.191145723  0.210074487  0.358600920  0.053869785
[126] -0.741445633 -0.031019617  0.147431476 -0.128017707 -0.396440555
[131] -0.167878041  0.114062611 -0.697298189 -0.032802464  0.614058888
[136]  0.014891731  0.184973641 -0.162061658  0.099339255  0.178380558
[141] -0.302492728 -0.221582094 -0.125039129  0.177749563 -0.353388590
[146]  0.176365231  0.133679048 -0.255235039 -0.325740516  0.104332114
[151]  0.050413265  0.063561079  0.171245255  0.054552159 -0.290964637
[156] -0.487197367 -0.017114523  0.067785360 -0.211658640  0.047481433
[161]  0.132184243 -0.187293607 -0.230246435 -0.075069969  0.151111051
[166]  0.147187342  0.389731096  0.353316089 -0.355226884  0.343720424
[171]  0.469690332  0.236113370 -0.167523420  0.115379098 -0.409922212
[176] -0.025048259  0.596348882 -0.463662200 -0.373927056 -0.035606429
[181]  0.405465054  0.235765066 -0.189034110 -0.000815446 -0.422633331
[186] -0.350594505  0.617959351  0.257679988  0.488691907  0.242161879
[191] -0.227730165 -0.023661679 -0.056873528 -0.313370208  0.033633430
[196]  0.845867360 -0.316836858 -0.129463628  0.032564747  0.281769037
[201]  0.786507141  0.099738796 -0.620822733  0.121614035  0.081663177
[206]  0.087279843  0.041047906 -0.492797214  0.248315964  0.283876444
[211]  0.279949090 -0.286980012  0.476372044 -0.445920085  0.396829450
[216] -0.071032293 -0.056664794 -0.235221792 -0.609303058 -0.154225868
[221]  0.051127588  0.405217304  0.193045044 -0.443301619 -0.630984379
[226]  0.221849928  0.155222113 -0.057832059  0.294794524 -0.120139540
> 
> proc.time()
   user  system elapsed 
  0.685   3.528   4.701 

BufferedMatrix.Rcheck/tests/rawCalltesting.Rout


R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> prefix <- "dbmtest"
> directory <- getwd()
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x6000009480c0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x6000009480c0>
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x6000009480c0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

<pointer: 0x6000009480c0>
> rm(P)
> 
> #P <- .Call("R_bm_Destroy",P)
> #.Call("R_bm_Destroy",P)
> #.Call("R_bm_Test_C",P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 0
Buffer Rows: 1
Buffer Cols: 1

Printing Values






<pointer: 0x6000009700c0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000009700c0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 1
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

<pointer: 0x6000009700c0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000009700c0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x6000009700c0>
> rm(P)
> 
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x600000970240>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600000970240>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600000970240>
> 
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x600000970240>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600000970240>
> 
> .Call("R_bm_RowMode",P)
<pointer: 0x600000970240>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600000970240>
> 
> .Call("R_bm_ColMode",P)
<pointer: 0x600000970240>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600000970240>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x600000970420>
> .Call("R_bm_SetPrefix",P,"BufferedMatrixFile")
<pointer: 0x600000970420>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600000970420>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600000970420>
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile14a416d6564" "BufferedMatrixFile14a751ba9ca"
> rm(P)
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile14a416d6564" "BufferedMatrixFile14a751ba9ca"
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000009706c0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000009706c0>
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x6000009706c0>
> .Call("R_bm_isReadOnlyMode",P)
[1] TRUE
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x6000009706c0>
> .Call("R_bm_isReadOnlyMode",P)
[1] FALSE
> .Call("R_bm_isRowMode",P)
[1] FALSE
> .Call("R_bm_RowMode",P)
<pointer: 0x6000009706c0>
> .Call("R_bm_isRowMode",P)
[1] TRUE
> .Call("R_bm_ColMode",P)
<pointer: 0x6000009706c0>
> .Call("R_bm_isRowMode",P)
[1] FALSE
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000009708a0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000009708a0>
> 
> .Call("R_bm_getSize",P)
[1] 10  2
> .Call("R_bm_getBufferSize",P)
[1] 1 1
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x6000009708a0>
> 
> .Call("R_bm_getBufferSize",P)
[1] 5 5
> .Call("R_bm_ResizeBuffer",P,-1,5)
<pointer: 0x6000009708a0>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600000944000>
> .Call("R_bm_getValue",P,3,3)
[1] 6
> 
> .Call("R_bm_getValue",P,100000,10000)
[1] NA
> .Call("R_bm_setValue",P,3,3,12345.0)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 12345.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600000944000>
> rm(P)
> 
> proc.time()
   user  system elapsed 
  0.135   0.055   0.194 

BufferedMatrix.Rcheck/tests/Rcodetesting.Rout


R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> Temp <- createBufferedMatrix(100)
> dim(Temp)
[1] 100   0
> buffer.dim(Temp)
[1] 1 1
> 
> 
> proc.time()
   user  system elapsed 
  0.134   0.037   0.166 

Example timings