pyspark.sql.DataFrame.randomSplit#
- DataFrame.randomSplit(weights, seed=None)[source]#
- Randomly splits this - DataFramewith the provided weights.- New in version 1.4.0. - Changed in version 3.4.0: Supports Spark Connect. - Parameters
- weightslist
- list of doubles as weights with which to split the - DataFrame. Weights will be normalized if they don’t sum up to 1.0.
- seedint, optional
- The seed for sampling. 
 
- Returns
- list
- List of DataFrames. 
 
 - Examples - >>> from pyspark.sql import Row >>> df = spark.createDataFrame([ ... Row(age=10, height=80, name="Alice"), ... Row(age=5, height=None, name="Bob"), ... Row(age=None, height=None, name="Tom"), ... Row(age=None, height=None, name=None), ... ]) - >>> splits = df.randomSplit([1.0, 2.0], 24) >>> splits[0].count() 2 >>> splits[1].count() 2