pyspark.sql.functions.sum#
- pyspark.sql.functions.sum(col)[source]#
- Aggregate function: returns the sum of all values in the expression. - New in version 1.3.0. - Changed in version 3.4.0: Supports Spark Connect. - Parameters
- colColumnor str
- target column to compute on. 
 
- col
- Returns
- Column
- the column for computed results. 
 
 - Examples - Example 1: Calculating the sum of values in a column - >>> from pyspark.sql import functions as sf >>> df = spark.range(10) >>> df.select(sf.sum(df["id"])).show() +-------+ |sum(id)| +-------+ | 45| +-------+ - Example 2: Using a plus expression together to calculate the sum - >>> from pyspark.sql import functions as sf >>> df = spark.createDataFrame([(1, 2), (3, 4)], ["A", "B"]) >>> df.select(sf.sum(sf.col("A") + sf.col("B"))).show() +------------+ |sum((A + B))| +------------+ | 10| +------------+ - Example 3: Calculating the summation of ages with None - >>> import pyspark.sql.functions as sf >>> df = spark.createDataFrame([(1982, None), (1990, 2), (2000, 4)], ["birth", "age"]) >>> df.select(sf.sum("age")).show() +--------+ |sum(age)| +--------+ | 6| +--------+