pyspark.pandas.window.Rolling.mean#
- Rolling.mean()[source]#
- Calculate the rolling mean of the values. - Note - the current implementation of this API uses Spark’s Window without specifying partition specification. This leads to move all data into single partition in single machine and could cause serious performance degradation. Avoid this method against very large dataset. - Returns
- Series or DataFrame
- Returned object type is determined by the caller of the rolling calculation. 
 
 - See also - pyspark.pandas.Series.rolling
- Calling object with Series data. 
- pyspark.pandas.DataFrame.rolling
- Calling object with DataFrames. 
- pyspark.pandas.Series.mean
- Equivalent method for Series. 
- pyspark.pandas.DataFrame.mean
- Equivalent method for DataFrame. 
 - Examples - >>> s = ps.Series([4, 3, 5, 2, 6]) >>> s 0 4 1 3 2 5 3 2 4 6 dtype: int64 - >>> s.rolling(2).mean() 0 NaN 1 3.5 2 4.0 3 3.5 4 4.0 dtype: float64 - >>> s.rolling(3).mean() 0 NaN 1 NaN 2 4.000000 3 3.333333 4 4.333333 dtype: float64 - For DataFrame, each rolling mean is computed column-wise. - >>> df = ps.DataFrame({"A": s.to_numpy(), "B": s.to_numpy() ** 2}) >>> df A B 0 4 16 1 3 9 2 5 25 3 2 4 4 6 36 - >>> df.rolling(2).mean() A B 0 NaN NaN 1 3.5 12.5 2 4.0 17.0 3 3.5 14.5 4 4.0 20.0 - >>> df.rolling(3).mean() A B 0 NaN NaN 1 NaN NaN 2 4.000000 16.666667 3 3.333333 12.666667 4 4.333333 21.666667