pyspark.sql.functions.dayofmonth#
- pyspark.sql.functions.dayofmonth(col)[source]#
- Extract the day of the month of a given date/timestamp as integer. - New in version 1.5.0. - Changed in version 3.4.0: Supports Spark Connect. - Parameters
- colColumnor column name
- target date/timestamp column to work on. 
 
- col
- Returns
- Column
- day of the month for given date/timestamp as integer. 
 
 - See also - Examples - Example 1: Extract the day of the month from a string column representing dates - >>> from pyspark.sql import functions as sf >>> df = spark.createDataFrame([('2015-04-08',), ('2024-10-31',)], ['dt']) >>> df.select("*", sf.typeof('dt'), sf.dayofmonth('dt')).show() +----------+----------+--------------+ | dt|typeof(dt)|dayofmonth(dt)| +----------+----------+--------------+ |2015-04-08| string| 8| |2024-10-31| string| 31| +----------+----------+--------------+ - Example 2: Extract the day of the month from a string column representing timestamp - >>> from pyspark.sql import functions as sf >>> df = spark.createDataFrame([('2015-04-08 13:08:15',), ('2024-10-31 10:09:16',)], ['ts']) >>> df.select("*", sf.typeof('ts'), sf.dayofmonth('ts')).show() +-------------------+----------+--------------+ | ts|typeof(ts)|dayofmonth(ts)| +-------------------+----------+--------------+ |2015-04-08 13:08:15| string| 8| |2024-10-31 10:09:16| string| 31| +-------------------+----------+--------------+ - Example 3: Extract the day of the month from a date column - >>> import datetime >>> from pyspark.sql import functions as sf >>> df = spark.createDataFrame([ ... (datetime.date(2015, 4, 8),), ... (datetime.date(2024, 10, 31),)], ['dt']) >>> df.select("*", sf.typeof('dt'), sf.dayofmonth('dt')).show() +----------+----------+--------------+ | dt|typeof(dt)|dayofmonth(dt)| +----------+----------+--------------+ |2015-04-08| date| 8| |2024-10-31| date| 31| +----------+----------+--------------+ - Example 4: Extract the day of the month from a timestamp column - >>> import datetime >>> from pyspark.sql import functions as sf >>> df = spark.createDataFrame([ ... (datetime.datetime(2015, 4, 8, 13, 8, 15),), ... (datetime.datetime(2024, 10, 31, 10, 9, 16),)], ['ts']) >>> df.select("*", sf.typeof('ts'), sf.dayofmonth('ts')).show() +-------------------+----------+--------------+ | ts|typeof(ts)|dayofmonth(ts)| +-------------------+----------+--------------+ |2015-04-08 13:08:15| timestamp| 8| |2024-10-31 10:09:16| timestamp| 31| +-------------------+----------+--------------+